
1

1

Knowledge Representation in Protégé –OWL
Please install from CDs or USB pens provided:

Protégé 3 Beta – complete installation

Racer – plus a shortcut to start it easily

GraphViz – please install in default location

Example ontologies

Optional: Long version of Pizza tutorial
“Pizza finder” application

2

Ontology Design Patterns and Problems:
Practical Ontology Engineering using

Protege-OWL

Alan Rector1, Natasha Noy2, Holger Knublauch2,
Guus Schreiber,3 Mark Musen2

1University of Manchester
2Stanford University

3 Free University of Amsterdam
rector@cs.man.ac.uk

{noy, holger}@smi.stanford.edu
schreiber@cs.vu.nl

musen@smi.stanford.edu

2

3

Program

I Ontologies and “Best Practice”
II Creating an ontology – useful patterns
III Hands on examples
IV Patterns: n-ary relations
V Patterns: classes as values
VI Patterns: part-whole relations
VII Summary

4

Part I: Ontologies & “Best
Practice”

What are Ontologies & a review of
History
Semantic Web
OWL
“Best Practice”

Semantic Web Best Practice &
Deployment Working Group (SWBP)

3

5

What Is An Ontology?
Ontology (Socrates & Aristotle 400-360 BC)
The study of being
Word borrowed by computing for the
explicit description of the conceptualisation of a domain:

concepts
properties and attributes of concepts
constraints on properties and attributes
Individuals (often, but not always)

An ontology defines
a common vocabulary
a shared understanding

6

Why Develop an Ontology?

To share common understanding of the
structure of descriptive information

among people
among software agents
between people and software

To enable reuse of domain knowledge
to avoid “re-inventing the wheel”
to introduce standards to allow interoperability

4

7

Measure the world…quantitative models
(not ontologies)

Quantitative
Numerical data:

2mm, 2.4V, between 4 and 5 feet
Unambiguous tokens
Main problem is accuracy at initial capture
Numerical analysis (e.g. statistics) well
understood

Examples:
How big is this breast lump?
What is the average age of patients with
cancer ?
How much time elapsed between original
referral and first appointment at the hospital ?

8

describe the our understanding of
the world - ontologies

Qualitative
Descriptive data

Cold, colder, blueish, not pink, drunk
Ambiguous tokens

What’s wrong with being drunk ?
Ask a glass of water.

Accuracy poorly defined
Automated analysis or aggregation is a new science

Examples
Which animals are dangerous ?
What is their coat like?
What do animals eat ?

5

9

More Reasons

To make domain assumptions explicit
easier to change domain assumptions (consider a
genetics knowledge base)
easier to understand and update legacy data

To separate domain knowledge from the
operational knowledge

re-use domain and operational knowledge
separately (e.g., configuration based on
constraints)

To manage the combinatorial explosion

10

An Ontology should be just the
Beginning

Ontologies

Software
agents Problem-

solving
methods Domain-

independent
applications

DatabasesDeclare
structure

Knowledge
bases

Provide
domain

description

The
“Semantic

Web”

6

11

Outline

What are Ontologies
Semantic Web
OWL
Best Practice

12

The semantic web

Tim Berners-Lee’s dream of a computable
meaningful web

Now critical to Web Services and Grid
computing

Metadata with everything
Machine understandable!

Ontologies are one of the keys

7

13

Understanding rather than text matching

Mark Musen

Alan Rector

Google image results for
Charlie Safran

14

Ontology Examples

Taxonomies on the Web
Yahoo! categories

Catalogs for on-line shopping
Amazon.com product catalog

Dublin Core and other standards for the Web
Domain independent examples

Ontoclean
Sumo

8

15

Ontology Technology

“Ontology” covers a range of things
Controlled vocabularies – e.g. MeSH

Linguistic structures – e.g. WordNet
Hierarchies (with bells and whistles) – e.g. Gene
Ontology
Frame representations – e.g. FMA
Description logic formalisms – Snomed-CT,
GALEN, OWL-DL based ontologies
Philosophically inspired e.g. Ontoclean and SUMO

16

Outline

What are Ontologies
Semantic Web
OWL
Best Practice

9

17

OWL
The Web Ontology Language

W3C standard
Collision of DAML (frames) and Oil (DLs in Frame
clothing)
Three ‘flavours’

OWL-Lite –simple but limited
OWL-DL – complex but deliverable (real soon now)
OWL-Full – fully expressive but serious logical/computational
problems

Russel Paradox etc etc
All layered (awkwardly) on RDF Schema

Still work in progress – see Semantic Web Best
Practices & Deployment Working Group (SWBP)

18

Note on syntaxes for OWL
Three official syntaxes + Protégé-OWL syntax

Abstract syntax -Specific to OWL
N3 -OWL & RDF

-used in all SWBP documents
XML/RDF -very verbose
Protégé-OWL -Compact, derived from DL syntax

This tutorial uses simplified abstract syntax
someValuesFrom some
allValuesFrom only
intersectionOf AND
unionOf OR
complementOf not

Protégé/OWL can generate all syntaxes

10

19

A simple ontology: Animals

Living Thing

Grass

Animal

Plant

Tree

Body Part

Arm

Leg

Person

Cow
Carnivore

Herbivore
eats

eats

eats
has part

20

Description Logics

What the logicians made of Frames
Greater expressivity and semantic precision

Compositional definitions
“Conceptual Lego” – define new concepts from old

To allow automatic classification & consistency
checking

The mathematics of classification is tricky
Some seriously counter-intuitive results

The basics are simple – devil in the detail

11

21

Description Logics

Underneath:
computationally tractable subsets of first order logic

Describes relations between
Concepts/Classes

Individuals secondary
DL Ontologies are NOT databases!

22

Description Logics:
A brief history

Informal Semantic Networks and Frames (pre 1980)
Wood: What’s in a Link; Brachman What IS-A is and IS-A isn’t.

First Formalisation (1980)
Bobrow KRL, Brachman: KL-ONE

All useful systems are intractable (1983)
Brachman & Levesque: A fundamental tradeoff

Hybrid systems: T-Box and A-Box

All tractable systems are useless (1987-1990)
Doyle and Patel: Two dogmas of Knowledge Representation

12

23

A brief history of KR
‘Maverick’ incomplete/intractable logic systems (1985-90)

GRAIL, LOOM, Cyc, Apelon, …,

Practical knowledge management systems based on frames
Protégé

The German School: Description Logics (1988-98)
Complete decidable algorithms using tableaux methods (1991-1992)
Detailed catalogue of complexity of family – “alphabet soup of systems”

Optimised systems for practical cases (1996-)

Emergence of the Semantic Web
Development of DAML (frames), OIL (DLs) DAML+OIL OWL

Development of Protégé-OWL

A dynamic field – constant new developments & possibilities

24

Outline

What are Ontologies
Semantic Web
OWL
“Best Practice”

Semantic Web Best Practice & Deployment
Working Group (SWBP)

13

25

Why the
“Best Practice working Group”?

There is no established “best practice”
It is new; We are all learning
A place to gather experience
A catalogue of things that work –
Analogue of Software Patterns

Some pitfalls to avoid

…but there is no one way

Learning to build ontologies
Too many choices

Need starting points for gaining experience

Provide requirements for tool builders

26

Contributing to “best practice”

Please give us feedback
Your questions and experience

On the SW in general:
semanticweb@yahoogroups.com

For specific feedback to SWBP
Home & Mail Archive:
http://www.w3.org/2001/sw/BestPractices/
public-swbp-wg@w3.org

14

27

Protégé OWL: New tools for
ontologies

Transatlantic collaboration
Implement robust OWL environment
within PROTÉGÉ framework
Shared UI
components
Enables hybrid
working

28

Protégé-OWL & CO-ODE

Joint work: Stanford & U Manchester +
Southampton & Epistemics

Please give us feedback on tools – mailing lists & forums at:
protege.stanford.edu
www.co-ode.org

Don’t beat your head against a brick wall!
Look to see if others have had the same problem; If not…
ASK!

We are all learning.

15

29

Part II – Creating an ontology
Useful patterns

Upper ontologies & Domain ontologies
Building from trees and untangling
Using a classifier
Closure axioms
Specifying Values
n-ary relations
Classes as values – using the ontology
Part-whole relations

30

Upper Ontologies

Ontology Schemas
High level abstractions to constrain
construction

e.g. There are “Objects” & “Processes”
Highly controversial

Sumo, Dolce, Onions, GALEN, SBU,…
Needed when you work with many people
together
NOT in this tutorial – a different tutorial

16

31

Domain Ontologies
Concepts specific to a field

Diseases, animals, food, art work, languages, …
The place to start

Understand ontologies from the bottom up
Or middle out

Levels
Top domain ontologies – the starting points for the field

Living Things, Geographic Region, Geographic_feature
Domain ontologies – the concepts in the field

Cat, Country, Mountain
Instances – the things in the world

Felix the cat, Japan, Mt Fuji

32

Part II – Useful Patterns
(continued)

Upper ontologies & Domain ontologies
Building from trees and untangling
Using a classifier
Closure axioms & Open World Reasoning
Specifying Values
n-ary relations
Classes as values – using the ontology

17

33

Example: Animals & Plants
Dog
Cat
Cow
Person
Tree
Grass
Herbivore
Male
Female

Dangerous
Pet
Domestic
Animal
Farm animal
Draft animal
Food animal
Fish
Carp
Goldfish

Carnivore
Plant
Animal
Fur
Child
Parent
Mother
Father

34

Example: Animals & Plants
Dog
Cat
Cow
Person
Tree
Grass
Herbivore
Male
Female

Healthy
Pet
Domestic
Animal
Farm animal
Draft animal
Food animal
Fish
Carp
Goldfish

Carnivore
Plant
Animal
Fur
Child
Parent
Mother
Father

18

35

Choose some main axes
Add abstractions where needed; identify relations;
Identify definable things, make names explicit

Living Thing
Animal

Mammal
Cat
Dog
Cow
Person

Fish
Carp
Goldfish

Plant
Tree
Grass
Fruit

Modifiers
domestic

pet
Farmed

Draft
Food

Wild
Health

healthy
sick

Sex
Male
Female

Age
Adult
Child

Definable
Carinvore
Herbivore
Child
Parent
Mother
Father
Food Animal
Draft Animal

Relations
eats
owns
parent-of
…

36

Reorganise everything but “definable” things into
pure trees – these will be the “primitives”

Primitives
Living Thing

Animal
Mammal

Cat
Dog
Cow
Person

Fish
Carp

Goldfish
Plant

Tree
Grass
Fruit

Modifiers
Domestication

Domestic
Wild

Use
Draft
Food
pet

Risk
Dangerous
Safe

Sex
Male
Female

Age
Adult
Child

Definables
Carnivore
Herbivore
Child
Parent
Mother
Father
Food Animal
Draft Animal

Relations
eats
owns
parent-of
…

19

37

Set domain and range constraints
for properties

Animal eats Living_thing
eats domain: Animal;

range: Living_thing
Person owns Living_thing except person

owns domain: Person
range: Living_thing & not Person

Living_thing parent_of Living_thing
parent_of: domain: Animal

range: Animal

38

Define the things that are definable
from the primitives and relations

Parent =
Animal and parent_of some Animal

Herbivore=
Animal and eats only Plant

Carnivore =
Animal and eats only Animal

20

39

Which properties can be filled in
at the class level now?

What can we say about all members of a
class

eats is the only one
All cows eat some plants
All cats eat some animals
All dogs eat some animals &

eat some plants

40

Fill in the details
(can use property matrix wizard)

21

41

Check with classifier

Cows should be Herbivores
Are they? why not?

What have we said?
Cows are animals and, amongst other things,

eat some grass and
eat some leafy_plants

What do we need to say:
Closure axiom

Cows are animals and, amongst other things,
eat some plants and eat only plants

42

Closure Axiom

Cows are animals and, amongst other things,
eat some plants and eat only plants

Closure
Axiom

22

43

In the tool
Right mouse
button short cut
for closure
axioms

for any existential
restriction

44

Open vs Closed World reasoning

Open world reasoning
Negation as contradiction

Anything might be true unless it can be proven
false

Reasoning about any world consistent with this one

Closed world reasoning
Negation as failure

Anything that cannot be found is false
Reasoning about this world

23

45

Normalisation and Untangling
Let the reasoner do multiple classification

Tree
Everything has just one parent

A ‘strict hierarchy’

Directed Acyclic Graph (DAG)
Things can have multiple parents

A ‘Polyhierarchy’

Normalisation
Separate primitives into disjoint trees
Link the trees with restrictions

Fill in the values

46

Tables are easier to manage than
DAGs / Polyhierarchies

…and get the benefit of inference:
Grass and Leafy_plants are both kinds of Plant

24

47

Remember to add any closure
axioms

Closure
Axiom

Then let the reasoner do the work

48

Normalisation:
From Trees to DAGs

Before classification
A tree

After classification
A DAG

Directed Acyclic Graph

25

49

Part II – Useful Patterns
(continued)

Upper ontologies & Domain ontologies
Building from trees and untangling
Using a classifier
Closure axioms & Open World Reasoning
Specifying Values
n-ary relations
Classes as values – using the ontology

50

Examine the modifier list
Identify modifiers that are
mutually exclusive

Domestication
Risk
Sex
Age

Make meaning precise
Age Age_group

NB Uses are not mutually
exclusive

Can be both a draft and a food
animal

Modifiers
Domestication

Domestic
Wild

Use
Draft
Food

Risk
Dangerous
Safe

Sex
Male
Female

Age
Adult
Child

26

51

Extend and complete lists of
values

Identify modifiers that are
mutually exclusive

Domestication
Risk
Sex
Age

Make meaning precise
Age Age_group

NB Uses are not mutually
exclusive

Can be both a draft and a food
animal

Modifiers
Domestication

Domestic
Wild
Feral

Risk
Dangerous
Risky
Safe

Sex
Male
Female

Age
Infant
Toddler
Child
Adult
Elderly

52

Note any hierarchies of values

Identify modifiers that are
mutually exclusive

Domestication
Risk
Sex
Age

Make meaning precise
Age Age_group

NB Uses are not mutually
exclusive

Can be both a draft and a food
animal

Modifiers
Domestication

Domestic
Wild
Feral

Risk
Dangerous
Risky
Safe

Sex
Male
Female

Age
Child

Infant
Toddler

Adult
Elderly

27

53

Specify Values for each

Value partitions
Classes that partition a Quality

The disjunction of the partition classes equals the
quality class

Symbolic values
Individuals that enumerate all states of a Quality

The enumeration of the values equals the quality
class

54

Value Partitions: example
Dangerousness
A parent quality – Dangerousness
Subqualities for each degree

Dangerous, Risky, Safe
All subqualities disjoint
Subqualities ‘cover’ parent quality

Dangerousness = Dangerous OR Risky OR Safe
A functional property has_dangerousness

Range is parent quality, e.g. Dangerousness
Domain must be specified separately

Dangerous_animal =
Animal and has_dangerousness some Dangerous

28

55

as created by Value Partition
wizard

56

DangerousRisky

Safe

Leo’s
Danger

Dangerous
animal

Leo the
Lion

has_dangerousness

someValuesFrom

has_dangerousness

Value partitions
Diagram

Dangerousness

Animal

29

57

Dangerousness_
Value

Safe_
value

Risky_
value

Dangerous_
value

Animal

Dangerous
Animal

Leo the
Lion

Leo’s
Dangerousness

owl:unionOf

has_dangerousness

has_dangerousness
someValuesFrom

Value partitions UML style

58

Values as individuals:
Example Sex

There are only two sexes
Can argue that they are things

“Administrative sex” definitely a thing
“Biological sex” is more complicated

30

59

Value sets for specifying values
A parent quality – Sex_value
Individuals for each value

male, female
Values all different (NOT assumed by OWL)
Value type is enumeration of values

Sex_value = {male, female}
A functional property has_sex

Range is parent quality, e.g. Sex_value
Domain must be specified separately

Male_animal =
Animal and has_sex is Dangerous

60

Value sets UML style

Sex
Value

Person

Man

John

owl:oneOf

has_sex

has_sex

female male

31

61

Issues in specifying values
Value Partitions

Can be subdivided and specialised
Fit with philosophical notion of a quality space
Require interpretation to go in databases as values

in theory but rarely considered in practice
Work better with existing classifiers in OWL-DL

Value Sets
Cannot be subdivided
Fit with intuitions
More similar to data bases – no interpretation
Work less well with existing classifiers

62

Value partitions – practical
reasons for subdivisions

See also “Normality_status” in
http://www.cs.man.ac.uk/~rector/ontologies/mini-top-bio

One can have complicated value partitions if needed.

“All elderly are adults”
“All infants are children”
etc.

32

63

Picture of subdivided value
partition

Adult_value Child_value

Elderly_
value

Infant_
value

Toddler_
value

Age_Group_value

64

More defined kinds of animals
Before classification, trees After classification, DAGs

33

65

Part III – Hands On

Be sure you have installed the software
(See front page)

Open Animals-tutorial-step-1

66

Explore the interface

34

67

Protégé Syntax

68

Explore the interface

Asserted
Hierarchy

ew Subclass
icon

Class
escription

Disjoint
Classes

35

69

Explore the interface

New
expression

New
restriction

Add
superclass

Description
“Necessary
Conditions”

70

Explore the interface

Definition
“Necessary

&
Sufficient
Conditions”

“Defined class”
(orange/red circle)

36

71

Explore the interface
Classify button
(racer must be running

72

Exercise 1

Create a new animal, a Elephant and a
Ape

Make them disjoint from the other animals
Make the ape an omnivore

eats animals and plants
Make the sheep a herbivore

eats plants and only plants

37

73

Exercise 1b: Classification

Check it with the classifier
Is Sheep classified under Herbivore

If not, have you forgot the closure axiom?
Did it all turn red?

Do you have too many disjoint axioms?

74

Exercise 1c: checking disjoints –
make things that should be inconsistent

Create a Probe_Sheep_and_Cow that is
a kind of both Sheep and Cow
Create a Probe_Ape_and_Man that is a
kind of both Ape and Man
Run the classifier
Did both probes turn red?

If not, check the disjoints

38

75

Exercise 2: A new value partition

Create a new value partition
Size_partition

Big
Medium
Small

Describe
Lions, Cows, and Elephants as Big
domestic_cat as Small
the rest Medium

76

Exercise 2b

Define Big_animal and Small_animal
Does the classification work

Extra
Make a subdivision of Big for Huge and make
elephants Huge

Do elephants still classify as “Big Animal

39

77

Part IV – Patterns: n-ary relations

Upper ontologies & Domain ontologies
Building from trees and untangling
Using a classifier
Closure axioms & Open World Reasoning
Specifying Values
n-ary relations
Classes as values – using the ontology

78

Saying something about a
restriction

Not just
that an animal is dangerous,
but why
And how dangerous
And how to avoid

But can say nothing about properties
except special thing

Super and subproperties
Functional, transitive, symmetric

40

79

Re-representing properties as
classes

To say something about a property it must be
re-represented as a class

property:has_danger Class: Danger
plus property: Thing has_quality Danger
plus properties: Danger has_reason

has_risk
has_avoidance_measure

Sometimes called “reification”
But “reification” is used differently in different
communities

80

Re-representing the property has_danger as
the class Risk

Animal Dangeroushas_danger

Animal Risk
has_Quality

Risk_type

Seriousness

Avoidance

has_ris
k_typ

e

has_seriousness
has_avoidance

41

81

Lions are dangerous

All lions pose a deadly risk of physical attack
that can be avoided by physical separation

All lions have the quality risk that is
of type some physical attack
of seriousness some deadly
has avoidance means some physical separation

82

Can add a second definition of
Dangerous Animal

A dangerous animal is any animal that has the
quality Risk that is Deadly

or

Dangerous_animal =
Animal
has_quality some

(Risk AND has_seriousness some Deadly)

[NB: “that” paraphrases as “AND”]

42

83

In the tool

Dangerous_animal =
Animal
has_quality some

(Risk AND has_seriousness some Deadly)

84

This says that

Any animal that is Dangerous

is also

An animal that has the quality
Dangerousness with the seriousness Deadly

43

85

Anopheles Mosquitos now count
as dangerous

Because they have a deadly risk of carrying
disease

86

Multiple definitions are dangerous

Better to use one way or the other
Otherwise keeping the two ways consistent is
difficult

… but ontologies often evolve so that
simple Properties are re-represented
as Qualities

44

87

Often have to re-analyse

What do we mean by “Dangerous”
How serious the danger?
How probable the danger?
Whether from individuals (Lions) or the
presence or many (Mosquitos)?

Moves to serious questions of “ontology”
The information we really want to convey

Often a sign that we have gone to far
So we will stop

88

45

89

Part V – Patterns: Classes as
values

Upper ontologies & Domain ontologies
Building from trees and untangling
Using a classifier
Closure axioms & Open World Reasoning
Specifying Values
n-ary relations
Classes as values – using the ontology
Part-whole relations

90

Using Classes as Property
Values

subject

dc:subject Animal

African
Lion

Lion Tiger

46

91

Using Classes Directly As Values

rdfs:subclassOf

Animal

African
Lion

Lion

rdfs:subclassOf
"Lions:

Life in the Pride"

”The African
Lion"

rdf:type

rdf:type

dc:subject

dc:subject

BookAboutAnimals

92

Representation in Protégé

47

93

Approach 1: Considerations

Compatible with OWL Full and RDF
Schema
Outside OWL DL

94

Approach 2: Hierarchy of
Subjects

"Lions:
Life in the Pride"

”The African
Lion"

rdf:type

rdf:type

dc:subject

dc:subject

AfricanLionSubject

LionSubject

rdf:type

rdf:type

Animal

African
Lion

Lion

rdfs:subclassOf

rdfs:subclassOf

BookAboutAnimals

48

95

Hierarchy of Subjects:
Considerations

Compatible with OWL DL
Instances of class Lion are now
subjects
No direct relation between
LionSubject and
AfricalLionSubject
Maintenance penalty

Lion

LionSubject

rdf:type

African
Lion

AfricanLionSubject

rdf:type

rdfs:subclassOf

96

Hierarchy of Subjects

"Lions:
Life in the Pride"

”The African
Lion"

rdf:type

rdf:type

dc:subject

dc:subject

AfricanLionSubject

LionSubject
rdf:type

rdf:type

Subject

rdfs:seeAlso

rdfs:seeAlso

Animal

African
Lion

Lion

rdfs:subclassOf

rdfs:subclassOf

BookAboutAnimals

parentSubject

49

97

Hierarchy of Subjects:
Considerations

Compatible with OWL DL
Subject hierarchy
(terminology) is
independent of class
hierarchy (rdfs:seeAlso)
Maintenance penalty

Lion

LionSubject

rdf:type

African
Lion

AfricanLionSubject

rdfs:subclassOf

Subject

parentSubjectrdfs:seeAlso

98

Using members of a class as
values

Animal

African
Lion

Lion

rdfs:subclassOf

rdfs:subclassOf

BookAboutAnimals

"Lions:
Life in the Pride"

”The African
Lion"

rdf:type

rdf:type

rdf:type

rdf:type dc:subject

dc:subject

Unidentified Lion(s)

Unidentified African
Lion(s)

50

99

Representation in Protege

rdf:typ
e

Note: no subject value

100

Considerations

Compatible with OWL DL
Interpretation: the subject is one or more
specific lions, rather than the Lion class
Can use a DL reasoner to classify specific
books

51

101

Part VI – Patterns:
Part-whole relations

Upper ontologies & Domain ontologies
Building from trees and untangling
Using a classifier
Closure axioms & Open World Reasoning
Specifying Values
n-ary relations
Classes as values – using the ontology
Part-whole relations

102

Part-whole relations
One method: NOT a SWBP draft

How to represent part-whole relations in
OWL is a commonly asked question
SWBP will put out a draft.
This is one approach that will be
proposed

It has been used with classes
It has no official standing
It is presented for information only

52

103

Part Whole relations

OWL has no special constructs
But provides the building blocks

Transitive relations
Finger is_part_of Hand

Hand is_part_of Arm
Arm is_part_of Body

Finger is_part_of Body

104

Many kinds of part-whole
relations

Physical parts
hand-arm

Geographic regions
Hiroshima - Japan

Functional parts
cpu – computer

See Winston & Odell
Artale
Rosse

53

105

Simple version

One property is_part_of
transitive

finger is_part_of some Hand
Hand is_part_of some Arm
Arm is_part_of some Body

106

Get a simple list

Probe_part_of_body =
Domain_category
is_part_of some Body Logically correct

But may not be what
we want to see

The finger is not a kind
of Hand

It is a part of the hand

54

107

Injuries, Faults, Diseases, Etc.
A hand is not a kind of a body

… but an injury to a hand is a kind of injury to
a body

A motor is not a kind of automobile
… but a fault in the motor is a kind of fault in

the automobile

And people often expect to see partonomy
hierarchies

108

Being more precise: “Adapted SEP
Triples”

Body (‘as a whole’)
Body

The Body’s parts
is_part_of some Body

The Body and it’s parts
Body OR is_part_of some body

Repeat for all parts
Use ‘Clone class’ or
NB: ‘JOT’ Python plugin is good for this

55

109

Adapted SEP triples:
UML like view

Forearm

Arm Part of
Arm

Hand

Arm OR part part of arm
has_locus

some
Injury to Arm

(or part of arm)

Injury to Hand has_locus
some

110

Adapted SEP triples:
Venn style view

Arm or parts of Arm

Arm

Parts of Arm

HandFore
Arm

56

111

Resulting classification:
Ugly to look at, but correct

112

Using part-whole relations:
Defining injuries or faults
Injury_to_Hand =
Injury has_locus some Hand_or_part_of_hand

Injury_to_Arm =
Injury has_locus some Arm_or_part_of_Arm

Injury_to_Body =
Injury has_locus some Body_or_part_of_Body

The expected
hierarchy from
point of view of
anatomy

57

113

Geographical regions and
individuals

Similar representation possible for
individuals but more difficult

and less well explored

114

Simplified view:
Geographical_regions

Class: Geographical_region
Include countries, cities, provinces, …

A detailed ontology would break them down
Geographical features

Include Hotels, Mountains, Islands, etc.
Properties:

Geographical_region is_subregion_of Geographical_Region
Geogrpahical_feature has_location Geographical_Region

is_subregion_of is transitive

Features located in subregions are located in the region.

58

115

Geographical regions & features
are represented as individuals

Japan, Honshu, Hiroshima,
Hiroshima-ken,…

Mt_Fuji, Hiroshima_Prince_Hotel, …

116

Facts*
Honshu is_subregion_of hasValue Japan
Hiroshima-ken is_subregion_of hasValue Honshu
Hiroshima is_subregion_of hasValue Hiroshima-ken

Mt_Fuji has_location hasValue Honsh
Hiroshima_prince_hotel has_location hasValue Hiroshima-ken

*with apologies for any errors in Japanese geography

59

117

Definitions
Region_of_Japan =

Geographical_region AND
is_subregion_of hasValue Japan

Feature_of_Japan =
Geographical_feature AND
(hasLocation hasValue Japan OR
hasLocation hasValue Region_of_Japan)

118

In tools at this time
Must ask from right mouse button menu in Individuals tab

better integration under
development

60

119

Warning:
Individuals and reasoners

Individuals only partly implemented in reasoners
If results do not work, ask

Open World reasoning with individuals is very difficult to implement

If it doesn’t work, try simulating individuals by classes

Large sets of individuals better in “Instance Stores”, RDF
triple stores, databases, etc that are restricted or closed
world

Ontologies are mainly about classes
Ontologies are NOT databases

120

Qualified cardinality constraints

Use with partonomy
Use with n-ary relations

61

121

Cardinality Restrictions

“All mammals have four limbs”
“All Persons have two legs and two arms”
“(All mammals have two forelimbs and two

hind limbs)”

122

What we would like to say:
Qualified cardinality constraints
Mammal

has_part cardinality=4 Limb
Mammal

has_part cardinality = 2 Forelimb
has_part cardinality = 2 Hindlimb

Arm = Forelimb AND is_part_of some Person

62

123

What we have to say in OWL
The property has_part has subproperties:

has_limb
has_leg
has_arm
has_wing

Mammal, Reptile, Bird has_limb cardinality=4
Person has_leg cardinality=2
Cow, Dog, Pig… has_leg cardinality=4
Bird has_leg cardinality=2

Biped = Animal AND
has_leg cardinality=2

124

Classification of bipeds and
quadrupeds

Before
classification

After
classificaiton

63

125

Cardinality and n-ary relations

Need to control cardinality of relations
represented as classes

An animal can have just 1 “dangerousness”
Requires a special subproperty of quality:

has_dangerousness_quality cardinality=1

126

Re-representing the property has_danger as
the class Risk

Animal Dangeroushas_danger
cardinality=1
‘functional’

Animal Risk
has_Quality
cardinality=1

Risk_type

Seriousness

Avoidance

has_ris
k_typ

e

cardinality
=1

has_seriousness
cardinality=1has_avoidance

cardinality=1

64

127

In OWL must add subproperty for each quality
to control cardinality, e.g. has_risk_quality

Leads to a proliferation of subproperties
The issue of “Qualified Cardinality Constraints”

Animal Risk
has_Risk_Quality
cardinality=1

Risk_type

Seriousness

Avoidance

has_ris
k_typ

e

cardinality
=1

has_seriousness
cardinality=1has_avoidance

cardinality=1

special
subproperty

128

65

129

Part VII – Summary
Upper ontologies & Domain ontologies
Building from trees and untangling
Using a classifier
Closure axioms & Open World Reasoning
Specifying Values
n-ary relations
Classes as values – using the ontology
Part-whole relations

Transitive properties
Qualified cardinality restrictions

130

End
To find out more:

http://www.co-ode.org
Comprehensive tutorial and sample ontologiesxz

http://protege.stanford.org
Subscribe to mailing lists; participate in forums

On the SW in general:
semanticweb@yahoogroups.com

For specific feedback to SWBP
Home & Mail Archive:
http://www.w3.org/2001/sw/BestPractices/
public-swbp-wg@w3.org

66

131

Part VI – Hands On supplement

Open Animals-tutorial-step-2

132

Exercise 3: (Advanced supplement)

Define a new kind of Limb – Wing
Describe birds as having 2 wings
Define a Two-Winged_animal
Does bird classify under
Two-Winged_animal?

