
OilEd Normalised Ontology Tutorial –
Biomedical Version
(For OilEd version 3.4)

Alan Rector & Colleagues
October 2002

Medical Informatics Group / Bio & Health Informatics Forum
Department of Computer Science, University of Manchester
Manchester M13 9PL, England
TEL +44-161`-275-6188/6239/7803 FAX +44-161-275-6204
{arector|jrogers}@cs.man.ac.uk
www.cs.man.ac.uk/mig

Table of Contents

2Table of Contents

4Introduction

41.
Introduction

41.1
Goals and plan of tutorial

41.2
OilEd, DAML+OIL & OWL

41.3
The starting ontologies

41.4
Plan of the tutorial

51.5
What are OIL, DAML+OIL, and OWL?

51.6
Notation and Conventions for this tutorial

61.7
Mechanics

11Part 1: Basic Principles

112.
First steps: Create the concept representing “Pneumonia”

112.1
Simple solution

122.2
Kinds of pneumonia – Make “Viral pneumonia” and “Bacterial pneumonia”, “Pneumococcal pneumonia”, and “Mixed Pneumonia”

183.
Creating new kinds of “Pneumonia”: ‘Self-standing concepts’, ‘Refining Concepts’ and ‘ValueTypes’

183.1
Extending the causes of pneumonia: Disjointness axioms

193.2
Representing “Severe pneumonia”: Properties, Value types and subclass (covered..by) axioms

223.3
Improving the definition of “Pneumonia”: Independent Value Types

243.4
The principle of independent taxonomies and “normalising” ontologies

253.5
Knowledge is fractal: How much detail should be modelled?

27Part 2: More principles: Some and All, Expressions, Parts and “Wholes”

274.
Locations, Parts, and filler expressions

274.1
Lobar Pneumonia

295.
More on the difference between Primitives and Definitions and the asymmetry of statements in OIL.

295.1
Asymmetry of statements and reciprocals

305.2
Reciprocal Statements

305.3
Additional restrictions on defined concepts

326.
BacterialPneumoniaPure and Restrictions of type “to-class”

35Part 3: Linking Micro and Macro Scales

357.
Structures and Substances

357.1
Reciprocal relations (reminder and digression)

367.2
The relation of Tissues to Organs

367.3
The relation of portions to substances – version 1

378.
Linking levels of granularity – Micro to Macro scale

379.
Containment and part-whole relations – cells and their components

379.1
Some relations in Eukaryotic Cells

409.2
Linking Cells to Tissues

4310.
Context – Why normalisation matters: Extending the Red cell and Eukaryot Example

4310.1
Cell types and Species

44Part 4: Extras

4411.
What is a Eurkaryotic Cell ? – other models

4411.1
What is a EukaryoticCell, version 3

4411.2
What is a Eukaryotic Cell, version 4

4412.
Normal and Abnormal

46Appendix 1:Hierarchy of Part Whole Properties

47Appendix 2: Table of Terminology from Different Versions and Sources

Introduction

1. Introduction

1.1 Goals and plan of tutorial

This tutorial is intended to take you through the basics of building a normalised ontology in a in DAML+OIL/OWL using OilEd 3.4. The examples are taken from biomedical applications, but the overall style is based on the notions of ‘normalisation’ which underpin the OpenGALEN experience. The idea of ‘normalisation’ is to produce ontologies which modular, extensible, and easy to understand. Detailed discussion of the principles is available in Rector 2002 & Rector 2003 available online – see References.

1.2 OilEd, DAML+OIL & OWL

This tutorial is built around OilEd, currently (late 2002) the de facto standard environment for the language which grew out of the combination of DAML and OIL and has been various known as DAML+OIL and OWL. It is now a W3C protostandard. Details are available under the Semantic Web activity of W3C at http://www.w3.org/2001/sw/. The definition of OWL is changing rapidly, and the terminology in the software has not kept pace with the new terminology of the proposed abstract syntax. See Appendix 2 for a listing of key differences. All differences relevant to this tutorial affect only the vocabulary used and not the substance. OilEd itself was developed as a quick demonstration environment rather than a full blooded ontology engineering tool. It has also demonstrated some “features” which we hope will not be included in future environments – the tutorial will try to guide around these smoothly. Hopefully more complete tools are on their way soon – hence the reluctance to spend too much effort on OilEd in tracking detailed changes in vocabulary. In the meantime, OilEd provides the best way to understand the constructs and principles in OWL.

1.3 The starting ontologies

One of the hardest parts of building any ontology is getting started and choosing appropriate high level concepts. The tutorial starts with a ready built high level ontology. You can ignore the details, but the outline is consistent with what we recommend. The ontology provides medical concepts down to Organs, OrganPart and Disorder. It provides a few biological concepts including the notions of Cell, CellularStructure, CellularProcess, and MembraneTransport. For the second part of the tutorial, beginning in Section 7, there is a second more elaborate ontology including many more notions from molecular biology.

The single organ Lung is supplied along with the MicroOrganism categories Bacterium, Virus, and Pneumococcus.

Two additional ontologies are provided for part 3 of the tutorial to short cut the labour of building all the pieces by hand, especially in formal presentations.

1.4 Plan of the tutorial

The tutorial consists of three parts:

1. Part 1 of the tutorial (Sections 2-3) introduces the basic patterns and meaning is to construct and classify representations for the notions such as “Pneumococal Pneumonia”.

2. Part 2 (sections 4-6) introduces notions of parts and wholes and a mechanism due to Schulz and Hahn for handling the common pattern “Diseases of a part are diseases of a whole”. To do so it introduces the use of “subclass axioms” to add additional necessary information to defined concepts.

3. Part 3 (Sections 7-10) shows how to link together the molecular, tissue, and organ levels and presents more information on parts and wholes. Part 3 also introduces some other useful notions such as ‘abnormal’ as an illustration of how context can be handled in OWL.

4. Part 4 (Section 11-12) indicates briefly how to extend the notion of Eukaryotic to manage species specific context and demonstrates the OpenGALEN approach to normal, abnormal and pathological – and thereby illustrates some other useful tricks.

The approach of the tutorial is first to work through the recommended solution of each issue and then to demonstrate the problems which occur if any of several alternatives are used. For some things, a simple version is given first and then a more sophisticated version later in the tutorial.

1.5 What are OIL, DAML+OIL, and OWL?

1.5.1 What is it?

The language which has been known in various revisions as OIL, DAML+OIL, and OWL is a developing standard knowledge representation language of the Semantic Web community and W3C. OWL is based description logics but has many of the syntactic and other features of Frame languages. Indeed, OWL looks very much like a frame language, and OilEd is patterned on PROTÉGÉ’s frame editor. However, OWL’s formal formal semantics are different and sufficient to allow “reasoners” to check whether concepts and knowledge bases are consistent and to infer much of the classification automatically. There is an abstract syntax available from the W3C site above. The actual concrete syntax underneath is in based on RDF/XML and neither easy to read nor to type.

1.5.2 What is in it?

· Classes – known in other systems as “concepts”, “categories”, or “types”, e.g. “Person”, “Diabetes”, “Fracture of neck of left femur”, etc. Classes come in two kinds

· Primitive classes – classes for concepts which have no complete definition although they may be described and placed in a hierarchy

· Defined classes – which are defined from other classes using the various operators in the language.

· Properties – known in other systems as “slots”, “relations”, “attributes”, or “roles”

· Restrictions – known in other systems as “filled slots”, “statements”, “relationships”, or “criteria”, or (confusingly) “properties. Restrictions express relationships between classes by means of property-value pairs qualified by some (has-class) , all (to-class) , or at-least, at-most, exactly. The syntax for the qualifiers is in flux. OilEd 3.4 uses an older syntax as shown described in Appendix 2 and throughout this tutorial

· Axioms – which provide additional information about classes

· Individuals – but these are not supported in OilEd 3.4

1.5.3 What can I do with it?

OWL allows the expression of an ‘ontology’ or logical model of a set of concepts and the relations amongst them in such a way that they can be tested for consistency and classified automatically. OWL is primarily about classes (aka “concepts”/ “types”) rather than individuals (aka “instances). It allows a the hierarchy (really a lattice) of classes to be calculated rigorously and (usually) efficiently. It allows complex highly interconnected hierarchies to be built consistently in a way that would be very difficult to achieve manually with a simple frame editor.

1.5.4 If this isn’t clear

Don’t worry. The purpose of this tutorial is to demonstrate what we mean.

1.6 Notation and Conventions for this tutorial

In this tutorial the following conventions are used

· Phrases in English for concepts to be represented or English text versions of definitions are presented between double quotes “Enzyme for membrane transport”

· Things that appear on the screen are given in a bold sans-serif font like this: TutorialTop-01
· Classes (aka ‘concepts’) and property names (aka ‘slot names’, ‘semantic links’, ‘roles’) are written in ‘camel back notation’, e.g. CellularStructure, hasLocation, etc.

· Class names always begin with an uppercase letter. Property names always begin with a lower case letter. It is a standard convention in English that Classes are always named with singular nouns
.

· Technical terms are enclosed in single ‘scare quotes’ like this.

· Where there is a need to refer to a class or other ontological notion in the abstract rather than on the screen it is printed like this, e.g. CellularStructure
So given these conventions, the ‘formal representation’ of “pneumococcal pneumonia” is PneumoccocalPneumonia. which appears on the screen as PneumoccocalPneumonia.

Note that OIL is case sensitive. “Pneumococcalpneumonia”, pneumococcalPneumonia, and PneumococcalPneumonia are all different.

Instruction on what to do with the computer are in turquoise boxes like this

:

· Press the Return key.

The detailed meaning of constructions is presented in boxed sections like this

:

What it means:

This means that …

Important notes concerning key principles and summaries are given in boxes like this

This is an important principle

1.7 Mechanics

If you have not downloaded and installed OilEd and the Reasoner, Do so now. The latest version can be found at OilEd.man.ac.uk and follow the instructions so that you have easy access on your desk top or start menu to the scripts oiled.bat and reasoner.bat.

The ontology initial files are found in TutorialTop-01.daml. If you have not downloaded it, download it now from http://www.cs.man.ac.uk/ai/ontology-tutorial/oiled-biomedical-ontology-tutorial.zip

Initial Setup

· Start the Reasoner from the start menu. This will probably be under OilEd, but might be someplace else, depending on how your machine is set up. Starting the Reasoner will cause several black command screens screens to appear after which a coloured Server window will appear in the upper left hand corner of the screen. You can minimise (not close) all of the windows except the Server window.

· Start OilEd which should bring up a single window with the menu bar File, Log, Reasoner, Help, Export.
· Click the [image: image1.wmf]F

 button to connect OilEd to the Reasoner. When the dialogue box entitled Server Connection appears, just click OK (ignoring the opportunity to change the opportunity to change the Host and Port settings – you will never need to change these unless you get into very complex programming.). The [image: image2.wmf]F

 button will be greyed out and the similar ‘stop’ button [image: image3.wmf]F

 beside it will turn red.
(‘F’ stands for FaCT, which is the name of the default reasoning system.)

The initial setup is now complete. You should do this each time you start OilEd.

Opening a file –

Example: Open TutorialTop-01

· Select Open from the File menu. Open the Tutorial-ALR folder and open TutorialTop-01.

· Optional: Click on the Namespace tab and click on the large D at the extreme right. This turns off the annoying #1 at the end of every name in the display.

·

[image: image4.wmf]
·
[image: image5.wmf]

Click again on the Classes tab to go back to the original view. The irritating # signs should have disappeared.

· Select Save as from the File menu and save the file immediately as MyTutorial-01-01—or any other name you choose ending in 01-01.
(Because it is so easy to overwrite files in OilEd, we recommend that you always do a Save as before you begin work on a file. We recommend a double numbering scheme – the first number for the stage of the tutorial, the second number for the number of your experiment with that stage. At least to start with, we recommend that you save all your work sequentially and pedantically – in fact we recommend that anyway from sad experience. The only way to go back is to have saved your work in a separate file before you move on.)

· Click on the (button to the right of the [image: image6.wmf]F

 symbol and wait until the hour glass goes away – a few seconds should be enough.
[image: image7.wmf]
· In the Classes pane in OilEd, double click on Disorder. Another window with a hierarchical ‘tree’ display will appear. Leave that window open. In the original Classes pane in the OilEd window double click on Lung. The hierarchy in the second window will expand so that you can see both Disorder and Lung.

The screen should now look approximately as shown below and you are ready to start. (You can adjust the exact size and position of the windows to suit in the usual way.)

[image: image8.wmf]
(At this point you may want to browse around the hierarchy. As you single click on classes in the Hierarchy window or double click on classes in the left alphabetical pane in the main OilEd window, the two windows will keep together. You can open and close levels in the hierarchy in the usual way. However, to start on the next phase of the tutorial we recommend that you close down all levels and open again to the image as shown. The difference between the yellow and red icons for classes in the hierarchy pane will be explained later.)

Part 1: Basic Principles

2. First steps: Create the concept representing “Pneumonia”

2.1 Simple solution

Of the options given, it seems natural to consider representing “Pneumonia” as a Disorder. The simple solution is just to tell OilEd that Pneumonia is a kind of disorder and then to say describe it.

First create the concept Pneumonia:

· Click on Disorder in either window The Properties button and Class pane and will indicate that Disorder is a subclass of OrganicProcess; the Documentation window will say something like “Anything wrong with something organic – to be elaborated later”.

· Using the right mouse button over Disorder in the Classes pane of the main OilEd window, select add subclass.

· In the Class Name: dialogue box that appears enter Pneumonia and click Ok.
· Pneumonia will be added to the Classes list in alphabetical order, highlighted, and the Name pane will show “Pneumonia” and the Classes pane will show “Disorder”.

· The Documentation pane is blank. Click on the pencil to the right of the pane to bring up a dialogue box. Enter something like “First attempt at defining Pneumonia simply” to remind you what you are doing and help anybody who comes along understand what they are seeing.

· Note that in the Properties pane, the SubclassOf button is pressed rather than the SameClassAs button. We will return to these later. For now it means that all we are saying is that Pneumonia is a new class to be ‘described’ rather than ‘defined’. (Such classes are called ‘primitive classes’).

So far, this means that “All pneumonias are also disorders” or “Pneumonia is a kind of Disorder”

Then describe the concept Pneumonia:

What can we say about Pneumonia? Most obviously that it occurs in the lungs. To do this:

· In the Restrictions pane of the OilEd window, click the + button.

· When the Property pop-up appears choose hasLocation. (hasLocation is the ‘property which links Disorders with anatomy. Other systems use the terms ‘slot’, ‘Role’ ‘Attribute’ or ‘Semantic link’ for what OWL now calls ‘property’)

· When the Filler Type pop-up appears click the [image: image9.wmf]C

 button . When the Classes dialogue appears select Lung.
You should now have a line in the Restriction
 pane which looks roughly like:

	type
	property
	filler

	has-class
	hasLocation
	Lung

What it means:

Making Pneumonia a subclass of Disorder and adding the restriction as shown means:

 “All pneumonias are located in some lung”
(AUTONUM)

 “All pneumonias are also disorders”
(AUTONUM)

There are several other ways of saying “All pneumonias are also disorders”:

 “Pneumonia is a kind of disorder”
(AUTONUM)
 “If something is a pneumonia then it is a disorder”
(AUTONUM)

 “Being a pneumonia implies being a disorder”
(AUTONUM)

 “Pneumonia is a subclass of Disorder”
(AUTONUM)

 “Disorder subsumes Pneumonia”
(AUTONUM)

 Pneumonia (Disorder
(AUTONUM)
Being a kind of, or subclass of, something has a specific and very strong meaning in OIL:

“Everything that is a member of the subclass, without exception, is a member of the superclass” or

“Being a member of the subclass implies being a member of the superclass”.

This strong logical meaning of “subclass” has to consequences:

· There can be no exceptions
· It is possibly to prove things logically, including in many cases, whether one thing is a subclass of another – this is the key power of OIL.
2.2 Kinds of pneumonia – Make “Viral pneumonia” and “Bacterial pneumonia”, “Pneumococcal pneumonia”, and “Mixed Pneumonia”

2.2.1 Bacterial, Viral, and Pneumococcal Pneumonia – ‘SubclassOf’ and ‘SameClassAs’ – ‘Primitives’ and ‘Definitions’

(This is a good point to save your work by selecting Save and then create a new file to continue with the next phase by doing a Save as to a new file Mytutorial-02-01.)

One way of classifying pneumonias is by their cause. Pneumonia can be caused either ‘viral’ or ‘bacterial’, i.e caused either by a virus or a bacterium or sometimes both.

The simplest way to represent “bacterial pneumonia”, is simply to define a subclass of Pneumonia.

First create BacterialPneumonia:
· Select Pneumonia in the Classes pane of the OilEd window.

· Use the right mouse button and select Add subclass

· Name the new subclass Bacterial Pneumonia
Then describe BacterialPneumonia:

· Add a restriction to say that it is caused by bacteria

– Under Restrictions click the +

– Select hasCause, the name of the causal property

–When then Filler Type dialogue box appears, click the [image: image10.wmf]C

 (Class) icon

– Select Bacterium

– Click Ok
The restriction pane should now look like:

	type
	property
	filler

	has-class
	hasCause
	Bacterium

What it means:

 “All bacterial pneumonia are pneumonias”

 “All bacterial pneumonia is caused by some bacteria”
(AUTONUM)

Represented in simple logic notation as:

 BacterialPneumonia (Pneumonia
(10.)

 BacterialPneumonia (causedBy Bacterium
(11.)

Represented in more formal logic notation as:

 (x. BacterialPneumonia x(Pneumonia x
(11.)
 (x. BacterialPneumonia x ((y. causedBy(x, y)
(1.2)
Make BacterialPneumonia into a definition:

Both statements above are undoubtedly true, if uninformative, but this is not enough to let the system recognise and classify other things, e.g. “pneumococcal pneumonia”, as kinds of “bacterial pneumonia”.

To allow the system to recognise classes as being kinds of “bacterial pneumonia” we need to change the class from being a Primitive to being Defined.

· In the Properties pane at the upper right of the OilEd window click the SameClassAs button

What it now means:

“Any pneumonia caused by a bacterium is a bacterial pneumonia”
(13)

or more in other words

“Something is a bacterial pneumonia if and only if it is a pneumonia and caused by a bacterium”
(14)

represented in simple logic notation as

BacterialPneumonia (Pneumonia & causedBy some Bacterium
(15)

represented in formal logic notation as:

(x. BacterialPneumonia x (
 Pneumonia x & ((y . Bacterium y & causedBy(x, y)
(16)

By clicking SameClassAs in the Properties pane, the implication is made to go both ways as represented by the double arrow and the two statements are joined irrevocably into a single definition as shown in (14). When SubclassOf is selected, the arrow only goes to the right and the statements can be regarded as separate as shown in (10) and (11).

Why the difference between Defined and Primitive classes matters
(SubclassOf button vs SameClassAs button):

In order to demonstrate how important this distinction between Defined and Primitive classes is, perform the following experiment in which we will first make a class for “pneumococal pneumonia” and then see how the reasoner treats the two classes depending on whether the class for “bacterial pneumonia” is defined or primitive.

Make PneumococcalPneumona as you made BacterialPneumonia
First create it:
· Select Pneumonia in the Classes pane of the OilEd window.

· Use the right mouse button and select Add subclass
· Name the new subclass Pneumococcal Pneumonia
Then describe it:

· Add a restriction to say that it is caused by bacteria

- Under Restrictions click the +

- Select hasCause, the name of the causal property

- Click the [image: image11.wmf]C

 button

- Select Pneumococcus
Then make it a definition:

· In the upper right hand pane of the OilEd window click the SameClassAs button.

Classify it to see the results:

· PneumococcalPneumonia should already be selected in the Classes pane of the OilEd window. If not, select it and double click on it.

· The Class Hierarchy window should now be expanded to look as shown below. This is the hierarchy before the Reasoner has performed automatic classification. Note that the defined concepts are shown as pink (red) boxes [image: image12.wmf]C

, the primitive concepts with yellow boxes [image: image13.wmf]C

 .

[image: image14.wmf]

· Click the (button on the tool bar to ‘classify the model’. This calls the FaCT Reasoner to make all the inferences it can about the model from the information that has been entered.
(If the (button is greyed out, you have not yet connected to FaCT – click [image: image15.wmf]F

 and respond OK to the dialogue box (see Initial Setup).

· When the hour glass goes away and the Class Hierarchy folds up, double click again on PneumococcalPneumonia. The Class Hierarchy window should look as shown below, with PneumococcalPneumonia classified under BacterialPneumonia

[image: image16.wmf]

2.2.2 ‘Inheritance’

· To see all the information you have created 0 the file with a new name e.g.
 MyTutorial-03-01.

· From the File menu select Preferences and tick Show inherited restrictions and click OK
· Select Open from the File menu and re-open the file you just saved.

The screen should now look like as shown below. Notice the two inherited restrictions, hasLocation Lung and hasCause Bacterium. The location of lung has been ‘inherited’. It is true of all Pneumonias, therefore it must be true of PneumococcalPneumonia
[image: image54.png]=lolx|

File Loy Reasoner Help Export

[E] organicProcess
[E] organicstatusvalusType
[E] organicstructure

BEDEICIEMEE

[E] Microstructure * | PneumococcalPneumonia) SubclassOf
[E] wtochondrion ® Sameciassts
g,

gle

Classes

[E] organism Proumonia

[E] organPart

[E] Physical

[E] PhysicalProcess 7

[E] Physicalstucture [EEstitons

[E] Physicalsubstance tpe | propery | filer

[E] Preumoccocus @ has-class hasCause Pneumoccocus

[E] PreumocacealPneumania

[E] Freumonia

[E] scaleReaimvalueTyne C inherited Restrictions-

18 sushcoccus C R[] = I
dalunTune, = as-tlass _hasCause’ Bacterium

Find has-class baslocalion L ung =

Bacterium

Tospragrom Fios1 EqzortaigesiTeoohng sxpmpioTon01.03 |

2.2.3 What happens if you forget to make it a definition?

One of the easiest mistakes to make in using OilEd is to forget to make something a definition by clicking the SameClassAs button. Just to emphasise the difference, throw away the results of this classification by pressing the [image: image17.wmf] button. Select BacterialPneumonia in the Classes pane of the OilEd window. Click SubclassOf button to make this a primitive plus a description instead of a definition. Now click the (button again and double click on BacterialPneumonia. PneumococcalPneumonia will now be a sibling of (beside) BacterialPneumonia instead of a subclass of it.

Nothing which is not Defined will ever have anything else classified underneath it by the reasoner!

(In the absence of axioms or domain/range constraints, to be covered later)

The reasoner can classify primitives under new definitions, but it cannot classify one primitive beneath another. That is why they are called “Primitive”. That’s the meaning of the difference between the single and double arrow in (9-16) above.

In OIL, to say that something is “primitive” is to say that we cannot (or do not choose to) give it a complete definition but only choose to give it a ‘description’ by which it can be classified under other defined classes.

For defined classes, (SameClassAs button clicked) the class and Restriction panes give the complete meaning of the class. The reasoner will classify any class that meets this meaning as a subclass of this class. (i.e. the class and property panes give sufficient as well as necessary conditions for the class)

For primitive classes, (SubclassOf button clicked) the Subclass and Restriction panes describe the class only partially, i.e. they show only a necessary conditions. The reasoner can therefore only classify a primitive class as a subclass of another class. (Unless there are axioms or other constructs which we haven’t discussed yet.)

Put the knowledge base back to the correct settings.

Before you go on, throw out those results by pressing [image: image18.wmf] again and go back and be sure that BacterialPneumonia and PneumococcalPneumonia are all set to SameClassAs in the Properties pane.

2.2.4 Mixed Pneumonia: Multiple values and the meaning of has-class

(Be sure you have performed the last correction so that the knowledge base is correct)

Some Pneumonia has a mixture of viral and bacterial causes. Therefore let’s define a “mixed pneumonia” with both bacterial and viral causes.

First define ViralPneumonia

· Follow the same procedure to make ViralPneumonia as to make BacterialPneumonia only this time make the cause in the restriction Virus. Be sure to click the SameClassAs button.

· Then define MixedPneumonia
· Define a new subclass of Pneumonia as MixedPneumonia as before being sure to set the Properties pane to SameClassAs. This time make two Restrictions:

has-class hasCause Bacterium

has-class hasCause Virus
Then classify it

· Press the (button and then when classification is finished, double click on MixedPneumonia.

MixedPneumonia should appear in the Hierarchy window as a subclass of BacterialPneumonia but in the Supers pane there are now two supers, BacterialPneumonia and ViralPneumonia. You will also note that in the Hierarchy pane, ViralPneumonia has a plus beside it indicating that it can be expanded. If you click on the plus to expand ViralPneumonia the hierarchy and then select the second MixedPneumonia should appear as below with MixedPneumonia being in two places because it now is a subclass of two classes (“has two parents”). This is also indicated because both ViralPneumonia and BacterialPneumonia appear in the Supers subpane beneath the hierarchy when MixedPneumonia is selected..

This is correct because the restriction

has-class hasCause Bacteria
(17)

appears in both definitions
.

[image: image19.png][Class Hierarchy =lofx|
Hierarchy-

& Le) DomaLancept

RefringCancent

& [E] setfstandingConcept =
[E] ActionRole
[E] catlection

Physical
& [E] PhysicalPracess

rganicProcess

& [E] pisorder

& [E] Pneumonia

BacteriaPreumonia

MisecPneumonia
PreumococcalPneumania
ViralPneumonia

MiredPneumonia

[E] microOrganicProcess
PhysicalStructure
[E] Prysicalsubstance
MetaConcept |+

D

Supers

[E] viralPneumonia
[E] BacterialPneumonia

What it means:

“has some bacterium as its cause”
(18)

Nothing we have said up to this point prevents diseases from having more than one cause. The restriction does not indicate the cause, but a cause, possibly amongst many.

(There is a way to indicate that a property can only have one value, which is dealt with later)

Save at this point

This is another good point to save your work, and then create a new file to go on by doing a Save as to a new file, e.g. MyTutorial-04-01.

3. Creating new kinds of “Pneumonia”: ‘Self-standing concepts’,
‘Refining Concepts’ and ‘ValueTypes’

3.1 Extending the causes of pneumonia: Disjointness axioms

At this stage there is only one bacterium, “pneumococcus”. Obviously we would eventually want this to be a long list. For the time being we shall add just “staphylococcus” and “haemophilus” as primitive subclasses of Bacterium
Add the new subclasses for Staphylococcus, Haemophilus and Pneumococcus

· Select Bacterium in the Classes pane

· Choose add new subclass from the right mouse button menu

· Name the subclass Staphylococcus
· Leave the Properties as SubclassOf.
· Repeat for Haemophilus and Pneumococcus
· Double click on Bacterium and check the hierarchy to make sure you got it right
Make the different kinds of bacteria different (“disjoint”)

· Click on the Axioms tab in the OilEd window. There should be several axioms there already including one which says Disjoint(Virus | Bacterium)
· Put the cursor over the left hand Axioms pane, and use the right mouse button to select add disjoint. A new Disjoint() axiom skeleton will appear and the right Disjuncts pane will be blank.
· Click on the [image: image20.wmf]C

 icon below the Disjuncts window and then select Pneumococcus
· Repeat for Staphylococcus and Haemophilus.
The new axiom should now look like

 Disjoint(Pneumococcus | Staphylococcus | Haemophilus)

Note that you can go back and edit the axiom to add more disjuncts at any time. Any time you add a primitive subclass to Bacterium you should go back and edit the corresponding disjoint axiom to add the new class to the list of disjuncts.
Also note, this list of subclasses for Bacterium is not complete – the subclasses do not ‘cover’ the parent class Bacterium. This is in general true of ‘self-standing concepts’ – i.e. the things in the world like bacteria, people, bridges, diseases, etc. which have meaning on their own – be contrast to ‘refining concepts’ like ‘value types’ such as “severe” which modify other concepts and only take their meaning in combination with the thing modified
.

Summary

For self-standing concepts, the primitive subclasses of each primitive class should be disjoint but do not cover the parent class – i.e. they should be part of a disjoint axiom but not part of a subclass axiom.

3.2 Representing “Severe pneumonia”: Properties, Value types and subclass (covered..by) axioms

We want to represent the notion of a modifier or refining value for “pneumonia” to be able to say “Severe pneumonia”, “Mild pneumonia”, “Moderately severe pneumonia” etc. This will take several steps:

· Step 1: Create a new value type for “mild”, “medium” and “severe”. (We will use slightly pedantic names for the values “severityMild” etc. to avoid any possibility of ambiguity as the model develops later, and start them all with “severity” so that they group together alphabetically in the Classes pane list.

· Step 2: Create a new property for hasSeverity
· Step 3: Define a new kind of Pneumonia using the hasSeverity property and the filler SevereitySevere
In detail:

Step 1a: Create a new ValueType for severity

· In the Classes pane select ValueType and select add subclass from the right mouse button menu.

· Name the new subclass SeverityValueType and leave it SubclassOf
· Create three subtypes of SeverityValueType, SeverityMild, SeverityModerate, and SeveritySevere, leaving them all Primitive (i.e. leaving the SubclassOf button pressed)

Step 1b: Make the values mutually exclusive and exhaustive

For major “independent” concepts, the list of primitive subclasses is usually incomplete in principle. However, for ValueTypes the list is both complete and mutually exclusive. To provide for this requires additional axioms.

· Click the Axioms tab in the OilEd window.

· Put the cursor over the Axioms pane again and select add subclass

· When the Expression Editor window pops up, click [image: image21.wmf]C

 and select SeverityValuetype
· Click Ok. SeverityValueType will appear in the Subclass
 pane

· Click on [image: image22.wmf]C

 in the icon list at the bottom right of the Superclasses pane, and select SeverityMild; repeat for SeverityModerate and SeveritySevere
· Beneath the Superclasses pane in the Properties pane tick the Disjoint box. (This is a convenient shorthand. Exactly the same result would be obtained by creating a separate Disjoint axiom as in the example for types of bacterium)

What this means (Can be skipped on first reading)
What this means is that

 “SeverityValueType

is equivalent to

 ‘SeverityMild OR SeverityModerate OR SeveritySevere’ ”

or in more usual logical notation

SeverityValueType ((SeverityMild (SeverityModerate (SeveritySevere)

Or in other words that:
 the classes SeverityMild, SeverityModerate, and SeveritySevere “cover”
 SeverityValuetype.

Step 2: Create a new property for hasSeverity and set it to have only one value

· Click the [image: image23.wmf]S

 Properties tab just under the toolbar in the OilEd window.

· Select ModifierProperty (If ModifierProperty does not exist in your ontology select RefiningProperty).
· Use the right mouse button menu to select add subproperty
· Give the new property the name hasSeverity
· At the bottom tick the box marked Unique to indicate that this property is single-valued.

· Click the [image: image24.wmf]C

 Classes tab to go back to the Classes panel. (for the time being we shall ignore the other panes. We could make the Range of the property SeverityValueType but for the moment that tends to cause performance problems and has other side effects, so we will leave it aside)

Step 3: Create PneumoniaSevere and demonstrate the results

If the above has worked correctly, we should be able to create a PneumoniaSevere as a kind of Pneumonia and any attempt to have two different severities should be flagged as inconsistent.

· Click on the Classes tab to go back to the Classes panel.

· Select Pneumonia and create a new defined subclass PneumoniaSevere –don’t forget to click the SameClassAs button
· Click the + below the Restrictions pane to add a new property with property name hasSeverity and value SeveritySevere.

· Click the (button to run the classifier

· Double click on PneumoniaSevere

PneumoniaSevere should be classified under Pneumonia in the Hierarchy pane.

Now demonstrate that there can only be one severity because the property hasSeverity is has the property Functional

· Copy PneumoniaSevere and name the new class PneumoniaSevereXX . .To do this select PneumoniaSevere from the Classes pane and then select make copy from the right mouse button menu.

· Add a second restriction has-class hasSeverity SeverityMild
· Click the (button to run the classifier

PneumoniaSevereXX should turn red in the Classes pane indicating that it is ‘not satisfiable’ or ‘self-contradictory’.

(PneumoniaSevereXX may also appear not in red in the hierarchy pane under PneumoniaSevere but this is a bug/feature to be corrected in future versions)

One of the major outstanding problems in OilEd, and indeed in OIL generally, is explaining why a particular class is ‘unsatisfiable’ and turns red. For the time being, this is a matter of debugging. As a hint, anything which uses an ‘unsatisfiable’ class in its definition will itself be unsatisfiable, so if many classes turn red, look for one which is used in all of them and has somehow been made inconsistent.

At this point the windows should look as shown below. The red circle and print for PneumoniaSevereXX indicates that it is ‘unsatisfiable’ – i.e. inconsistent.

[image: image25.wmf]
3.3 Improving the definition of “Pneumonia”: Independent Value Types

When we first created Pneumonia it was a s a primitive class. All that is represented in the class is that it is a Disorder and hasLocation Lung. That might be enough for some applications, but for any very extensive ontology of diseases we will probably want them in categories.

The simple definition in a dictionary for “pneumonia” is an “Inflammation of the lung”
. There are many “inflammations” – of almost any organ – so that part of the definition seems worth capturing.

What about “inflammation” should that be primitive or defined. Depending on the dictionary, the definition will be something about a “morphology characterised by redness, heat, infiltration by leukocytes…” Nothing like as simple as “Inflammation of the Lung”.

In general, “inflammation” is probably best thought of as what philosophers call a ‘natural kind’ and left as a primitive. Any definition is likely to be inadequate. More importantly, the individual characteristics are almost never going to be used so the ontology will never need recognise an “inflammation”—in fact to do well requires quite different reasoning techniques. There are lots of other similar notions include “tumour”, “infection”, “fibrosis” “fracture” and almost all named anatomical structures – “lung”, “liver”, “heart” etc. By contrast, “Inflammation of the lung” is a simple definition which seems to mean what it says.

To implement this definition:

Make Inflammation, Infection, and Fibrosis
· Click on the Classes tab to go back to the classes window if you are not already there

· Select Disorder
· Select add subclass from the right mouse button menu

· Name the subclass Inflammation and leave it primitive

· Repeat for Infection and Fibrosis
Make the new subclasses disjoint

· Click on the Axioms tab

· Select add disjoint from the right mouse button menu for the left-hand (Axioms) pane

· Click on the [image: image26.wmf]C

 icon at the lower right below the Disjuncts pane

· Select Inflammation;
· Repeat for Infection, and Fibrosis
Note that this is not a complete list of disorders, so we don’t want a covering (Subclass) axiom, only a disjoint axiom. (You might also wonder if Infection and Inflammation should be disjoint, but conceptually these are two different processes. One can have an “infection” without “inflammation” and visa versa. It is true that “infection” often causes “inflammation”, but the two are distinct and represented as disjoint. For modelling, it works better to think of there being two different processes, an infection and an inflammation, than for there being a single joint process)

Edit the definition of Pneumonia

· Click on the Classes tab to go back to the Classes pane

· Click on Pneumonia
· Click on the SameClassAs button – this indicates a defined class rather than a primitive.
· Select Disorder from the Subclass window and delete it by choosing remove from the right mouse button menu or clicking the (icon.

· Click the Class[image: image27.wmf]C

 icon and select Inflammation
· Click the pencil (icon beside Documentation and type in something like “Any inflammation of the Lung”

Reclassify it to make sure the results are as expected

· Click the (button and then double click on Pneumonia

Summary

Primitive classes for self-standing concepts should form pure disjoint non-covering taxonomies.

Primitives classes for values within each ValueType should form disjoint covering taxonomies for each ValueType.

3.4 The principle of independent taxonomies and “normalising” ontologies

For self-standing concepts, it is very important for modularity that each primitive class have only one primitive superclass. The taxonomy of primitive classes forms the ‘skeleton’ or ‘backbone’ of the ontology. This is the principle discipline in creating “normalised” ontologies. See Rector 2002, 2003).

Keeping ontologies independent means that each one can be modified separately. For example, we can add new kinds of disorder or new kinds of micro-organism separately.

This is most easily seen in examples from either biology or organisations. Consider the example of. It seems most natural to make the primary primitive classification of organic substances on the basis of their structure: “steroid”, “protein”, “inorganic ion”, “peptide”, etc. However, functional roles cut across all of these, so that “testosterone” is a “steroid hormone” and “Insulin” a protein hormone. Another application might be more interested in which organs secreted which hormone.

It is extremely important that it be possible to modify the hierarchies for structure, role, and origin separately. The best way to achieve this is to keep separate taxonomies for ‘roleSpecifiers’ or ‘actionRoleSpecifiers’ (not to be confused with the use of the word “role” for semantic link in description logics”). Entire subtaxonomies of different roles can be built up and manipulated independently. For now we shall just create the minimum.

To illustrate this we shall create simplified classes for notions of Hormone, Neurotransmiter, Steroid, Protein, AminoAcid, and Testosterone, Insulin, and AcetylCholine.
Create RoleSpecifiers for Hormone and Neurotransmitter

· Select OrganicActionRole and make the two primitive subclasses HormoneActionRole and NeurotransmitterActionRole. (Where such roles go in the overall high level ontology is somewhat arbitrary, but for now it is convenient to think of them as a shorthand for more complex processes which we don’t want to specify in more detail)

· Make the two roles disjoint by adding a Disjoint axiom in the Axioms window (The same substance can have both roles, e.g. epinephrine, but the roles themselves are distinct)

(NB, do not make them covering (a Subclass axiom) because the list is obviously incomplete, and would probably, in principle, always be incomplete.)

Define Hormone and Neurotransmitter

· Select PhysicalSubstance from the Classes pain and create two defined subclasses using the property hasActionRole and the two OrganicActionRoles you have just created. (Note we create it at this level because there is no requirement that a hormone or neurotransmitter be an organic substance, even if its action is biological)

· Under OrganicSubstance create a subclass for Protein and under that a substance for Insulin, both primitive, and give insulin the ActionRole HormoneActionRole. Do analogously for Acetylcholine and NeurotransmitterActionRole.

· Run the classifier again to check that it comes out as you expect.

Principle: Untangling Taxonomies – Self-standing concepts and value types

Untangling taxonomies so that they are independent is equivalent to normalising databases. If the individual taxonomies of primitive concepts are not independent, then one is likely to introduce anomalies when updating the taxonomy or adapting it to a different purpose.

Typically existing classifications from other sources are tangled – i.e not normalised – and come with several different ‘axes’ mixed together in a single taxonomy – e.g. the axes “chemical structure”, “action”, and “use” are entangled in typical drug classifications and must be entangled to form a normalised logical ontology. Similarly, the axes “morphology”, “anatomy” and “aetiology” are entangled in typical disease classifications.

A major benefit of using a logic based classifier is that these tangled taxonomies can be untangled and then reconstructed as sets of definitions which the reasoner can maintain automatically. It is almost impossible to maintain large multiple taxonomies manually.

In untangling taxonomies, it is important to distinguish self-standing concepts from value types. Lists of independent primitive concepts are ‘open’, i.e incomplete, and so do not ‘cover’ the parent primitive concept. By contrast, lists of the values subsumed by a value type are (almost always) complete by definition. (However, the ValueTypes themselves need not be disjoint – e.g. a disease can be both serious and chronic. More on this point later)

Summary: Principles for Independent Taxonomies

For classes representing self-standing concepts:

No primitive class should have more than one primitive superclass (parent). (If there seems to be a need for a second primitive parent, create a type of ‘role specifier’ instead or reorganise the hierarchy in some other way.)

The primitive subclasses of a class should be disjoint but should not covering – i.e the list of primitive subclasses should be assumed incomplete.

For classes representing value types

The primitive subclasses should be both disjoint and covering – the lists are usually complete by definition.

In a designing large ontology project, selecting which axes will be primitive and which constructed from definitions is a key task. For some implementation purposes, it may be desirable to re-tangle the taxonomies just as may be appropriate to de-normalise a database for efficiency. But the ontology design should be untangled.

3.5 Knowledge is fractal: How much detail should be modelled?

All ontologies are approximations. Building an ontology involves many decisions such as deciding whether a concept such as “pneumonia” should be left as a primitive or defined? There is no simple rule. Knowledge is fractal –it is always possible to model in more detail, and modelling is seductive – it is always possible to model in more detail than necessary.

However, there are a few guidelines:

· Natural kinds – things that take a long time to define in a dictionary or are most easily pointed to or given by examples, usually single words, are likely to have to be modelled as primitives – species, parts of the body, basic disease processes “inflammation”, are all probably best treated as natural kinds. Most natural kinds are expressed by a single word, but sometimes it is a phrase or compound – the distinction between “black bird” and “blackbird”, or in biology between “artery serving the liver” and “hepatic artery” – the first describes a class of arteries; the second a specific named artery in that class.

· Broad categories such as “Disorders of the Lung” which will be used to query the knowledge base must be defined – because the reasoner can only classify things under defined classes. In fact, defined classes can be thought of as predefined queries. (The exceptions are broad categories which fall directly on one of the primary independent taxonomies, such as Inflammation in this example.)

· Things named by phrases such as “Pneumococcal pneumonia’ can almost certainly be defined if you choose to do so. If the phrase involves one of the axes which you have chosen as being critical to ‘normalising’ (‘untangling’) your taxonomy, then it should be defined.

· If the description does not involve axes which are critical to ‘normalising’ (‘untangling’) the taxonomies, then may be easier to model them as primitives and then consider later whether it is worth defining them as the design for the ontology develops.

There are two practical matters which cannot be discussed fully within the scope of this short tutorial but should be mentioned.

· Definitions are more expensive than primitives computationally because the reasoner has to consider what things should be classified under them as well as where they themselves should be classified. There may be practical reasons in large ontologies to leave some things primitive even though they could be defined.

· It is also harder, and more computationally expensive to add additional information to further describe a defined classes. For example, having an aortic valve as one of its parts is not part of the definition of the “Left Ventricle”, but it is one of the things that we would probably want to say about the “Left Ventricle”. This is discussed further in Error! Reference source not found.
Summary

Natural kinds should be represented as primitives
Other concepts may be expressed as primitives either because their definition is not needed in the applications or as a temporary expedient while the ontology is developed.

Part 2: More principles:
Some and All, Expressions, Parts and “Wholes”

4. Locations, Parts, and filler expressions

4.1 Lobar Pneumonia

The other important way to classify pneumonia is by where it appears in the lung. The goal of this section is

· To create the subdivisions of the lung into lobes

· To modify the definition of Pneumonia so that the classification works

Create the properties for subdivision

We want isSubdivisionOf to be transitive – subdivisions of subdivisions are subdivisions. Therefore we will create two roles, isSubdivisionOf and a child role isSubdivisionOfDirectly which is not transitive. (At the moment having the two roles has little benefit, but in more complex applications it is much easier to put constraints on the non-transitive child role and it is often useful to be able to ask the question – what are the immediate children of a thing along a particular axis.)

Create the properties for isSubdivisionOf and isSubdivisionOfDirectly

· Click on the Properties tab, select RelationProperty from the menu and add subproperty from the right mouse button menu.

· Name the new property isSubdivisisonOf and tick the Transitive box at the bottom.

· Add some documentation such as “e.g. the relation between lobes and organs, divisions and wholes, etc.”

· Select the new isSubdivisionOf property from the Properties list and make a new subproperty isSubdivisionOfDirectly.

· Do not tick the transitive box.

Summary

Transitive properties are always created in pairs, the parent transitive, the child non-transitive. In OpenGALEN the convention is to give the child property the suffix “Directly”.

Create the lobes of the lung

· Go back to the Classes window by clicking the Classes tab.

· Select OrganPart and create a new primitive subclass Lobe
· Select Lobe and create a new defined subclass LobeOfLung
· Add the restriction has-class isSubdivisionOfDirectly Lung
Define two different versions of “lobar pneumonia”

· Select Pneumonia and create a defined subclass of Pneumonia named LobarPneumoniaX which hasLocation LobeOfLung
· Select Inflammation and create a defined subclass of Inflammation named LobarPneumoniaY which haslocation LobeOfLung

· Run the classifier to see the results by clicking on the (
· Double click on each of LobarPneumoniaX and LobarPneumoniaY to see the results

LobarpneumoniaX is classified under Pneumonia because that was part of the definition. But look at LobarpneumoniaLobarpneumoniaY. Clearly it ought to fit the definition, it is an “inflammation of the lung”, but the problem is that it is of a part of the lung rather than the whole lung.

To fix this requires changing the definition of Pneumonia and making it an expression equivalent to “inflammation located in the lung or any of its subdivisions”. This requires the use of the expression editor which we will introduce here briefly by example.

Edit the definition of Pneumonia

· Select Pneumonia from the Classes pane

· Highlight the hasLocation Lung restriction, and select edit filler from the right mouse button menu.

· When the expression editor appears select the or symbol ((the and symbol is ()

· Select the “()” which appears after the (sign.

· From the right mouse button menu select + add argument and pull right to select the [image: image28.wmf]C

 class icon.

· Select Lung

· Select the (() again and from the right mouse button menu select [image: image29.wmf]frame option

· When the frame editor appears select click the + icon

· Select the property isSubdivisionOf. (This time we mean any subDivision connected by any number of isSubdivisionOfDirectlys, so we use the transitive version of the property)

· In the pop-up Filler window, click the [image: image30.wmf]C

 class icon and select Lung
The expression editor window should now look as shown below

[image: image31.png]v

(Lung or (isSubdivisionOf has-value Lungl})

© Lung
[E ([s3ubdhisionOf has-value Lungl)

ok || cancel

The complete expression is shown on the top line and it is expanded as a tree below. (Don't worry about the fact that the position of 'has-class' has moved, that is just an artefact of the editor environment)

To continue

· Click Ok.

· Click the (icon by Documentation and change the documentation to “Any inflammation of the lung or any of its subdivisions”

If you have a wide enough screen you can see that the filler is now

(Lung or {[isSubdivisionOf has-class Lung]}).

Don’t worry about the proliferation of brackets – the editor takes care of them.

This means

 “Some lung or some subdivision of some lung”
.

The total panel will now look like(if you adjust the width)
[image: image32.png]=lolx|

o

Log Reasoner Help Export

=

slgf [@lc]e]v]~]e

Classes

Clat | Name:

Preumania

roperties-

© Primitive ® Defined

-Documentation

ny inflammation of the lung or any of s subdivisions

12
ubciassof
nammaton
©f =] (&3] 2] o] X
ot Constrants
e ot] fier
hras-vaiue hasLocation

(Lung or ([sSubdivisionOf has-value Lungl})

rogram FilesiOIL Ed2lontologiesiTeaching expiSimpleTop-06-01

This means

“Pneumonia is any Inflammation which has some location either in the Lung or in some subdivision of the lung”
 i.e

“Pneumonia is any Inflammation which is located, possibly amongst other places, either in the Lung or in of its subdivisions

(This construction is adapted from Stefan Schulz and Udo Hahn’s work. They refer of the combination of the “thing itself”, the “parts of the things”, and the “thing or its parts” as an SEP triple.)

Continue

· Reclassify the ontology by clicking (
Both PneumoniaX and PneumoniaY should now classify under Pneumonia. (They will both show the other as one of the equivalent concepts in the Hierarchy window.)

5. More on the difference between Primitives and Definitions and the asymmetry of statements in OIL.

5.1 Asymmetry of statements and reciprocals

Go back to the LobeOfLung. It has the property of being a lobe of the lung. Making this definition says nothing about either lungs or lobes in general, just that there might be a class of things which were lobes of lungs.

All lungs have lobes, but not all lobes are lobes of lungs. We might want to add this to the description of lung, but of course not to the definition of Lobe. For this reason, statements in OIL are normally asymmetrical.

· Click the Properties tab

· Add a new property hasSubdivision
· In the inverses pane click the [image: image33.wmf]P

 icon and select isSubdivisionOf
· Tick the transitive box. Go back to the Properties pane and select isSubdivisionOf and add hasSubdivision to its inverse. (This should happen automatically, and the reasoner does do it, but this version of OilEd does not, so it is good housekeeping and documentation to do it manually)

· Do the same for hasSubDivisionDirectly and isSubdivisionOfDirectly except remember that neither should be transitive.

· Go back to the Classes tab and select Lung
· Add the restriction has-class hasSubdivisionDirectly Lobe
We will come back to the right and left lung eventually, but leave it at that for now.

5.2 Reciprocal Statements

All “hands” are subdivisions of “upper extremities”, and all “upper extremities” have a subdivision “hand” (barring some nasty problems with congenital abnormalities which we will leave aside for now). To show this requires a Restriction on both Hand and UpperExtremity.

Demonstrate the difference between
 UpperExtremity restriction has-class hasSubdivisisonDirectly Hand
and
 Hand restriction has-class isSubdivisionOfDirectly UpperExtremity
· Add a new restriction has-class hasSubdivisionDirectly Hand to UpperExtremity
· Create a new defined class (SameClassAs button pressed) for “BodyParts which are subdivisions of UpperExtremity” Note that in general in definitions we use the transitive parent isSubdivisisonOf rather than the non-transitive child isSubdivisionOfDirectly.)
· Classify the model and be sure that Hand is classified under the new defined class.
· Create a new defined class for “BodyParts which hasSubdivision Hand”
· Classify the model and see that nothing appears under the new concept
· Add a new restriction has-class isSubdivisionOfDirectly UpperExtremity to Hand
· Reclassify the model again and see that UpperExtremity is classified under the new concept.
5.3 Additional restrictions on defined concepts

So far we have been adding additional restrictions to the description of Primitive Concepts, i.e. the SubclassOf button has been pressed. As long as we are dealing with Primitive Concepts it is simply a matter of adding new restrictions to their description.

However, when we are dealing with Defined Concepts, i.e. when the SameClassAs button is pressed, we have to be more careful. Everything in the Classes pane and its subpanes becomes part of the definition. Consider what would happen if we want to say that “BacterialPneumonia” has a potential treatment “Antibiotic”. We don’t want the definition of BacterialPneumonia to include that it is potentially treatable by antibiotics. If we did, then BacterialPneumonia would be defined as

“An Inflammation which hasLocation Lung, hasCause Bacteria, hasPotentialTreatment Antibiotic”
In order to decide if something were BacterialPneumonia we would have to determine if it had the potential treatment of Antibiotic. But we probably want to find out if something is a bacterial pneumonia precisely to determine if it might be treatable by antibiotics.

In order to add additional information to a defined class without affecting the definition requires using an axiom instead of a restriction. We will show how to do this here, but discuss it in more detail later.

To define drug and antibiotic

· Select OrganicActionRole from the Classes list

· Create a new primitive subclass named DrugActionRole
· Create a primitive subclass of DrugActionRole name AntibioticActionRole
· Select PhysicalSubstance from the Classes list.

· Create a new Defined subclass named Antibiotic
· Add the restriction has-class hasActionRole AntibioticActionRole
· Repeat for Drug with DrugActionRole
To define a property for isPotentialTreatmentFor

· Click to Properties tab to go to the properties window

· Select RelationProperty
· Add a subproperty named isPotentialTreatmentFor (In a real ontology, this property would probably be part of a hierarchy of related properties, but we will keep it simple for now)

To add an axiom saying that BacterialPneumonia hasPotentialTreatment Antibiotic

· Go to the Axioms window by clicking the Axioms tab

· Select add subclass from the right mouse button over the Axioms pane

· When the Expression editor appears, click the [image: image34.wmf]C

 (class) icon and select BacterialPneumonia
· Click Ok.
· Beneath the superclasses pane click the [image: image35.wmf] (frame) icon.

· Click the + and enter the property hasPotentialTreatment

· When the Filler Type window appears click the [image: image36.wmf]C

 (class) icon and select Antibiotic.
· Click Ok on the various windows

What it means

“All bacterial pneumonias (as defined) have a potential treatment some antibiotic”.

This statement depends on the interpretation of “potential”, but such statements are highly useful in searching for potential treatments.

Test it out

· Create a defined subclass of Pneumponia which has a potential treatment by Antibiotic, named PneumoniaPotentiallyAntibioticTreatable, with the restriction
has-class hasPotentialTreatment Antibiotic

· Run the reasoner by clicking the (
· Check to make sure that BacterialPneumonia is classified under PneumoniaPotentiallyAntibioticTreatable
Enter the converse

So far we have said nothing about antibiotics, which is probably the more important thing to say.

· Repeat the above to produce the axioms to say that all antibiotics are potentially treatment for some pneumonia. (Again, don’t worry too much about the meaning of “potentially”.)

Test it out

· Create a defined subclass of PhysicalSubstance which is a potential treatment for Pneumonia, named PotentialPneumoniaTreatmentSubstance, with the restriction
has-class isPotentialTreatmentFor Pneumonia

· Run the reasoner by clicking the (
· Check to make sure that Antibiotic is classified under PotentialPneumoniaTreatmentSubstance
6. BacterialPneumoniaPure and Restrictions of type “to-class”

If we want to say that there is a kind of pneumonia which is caused by bacteria and only bacteria, then we have to add another constraint.

6.1.1 Make a copy of BacterialPneumonia

(This is a quick way to make a copy of a class, although there is a small problem with refreshing the display in OilEd v2.2a.)

· In the Classes pane of the OilEd window, select BacterialPneumonia.
· From the right mouse button menu select add copy.
· When the dialogue box asks for a name, edit BacterialPneumonia to give BacterialPneumoniaPure (We suggest putting the modifier on the end just to keep things together alphabetically in the Classes pane.)

· Click Ok and BacterialPneumoniaPure will appear selected in the Classes pane.

· Select anything else, e.g. BacterialPneumonia, and then select again BacterialPneumoniaPure in order to force the screen to refresh. When you do, you will see that the definition has been duplicated

6.1.2 Add a to-class (universal) constraint

(This is a useful shortcut for a common operation)

· In the Restrictions pane select the has-class hasCause Bacterium entry and choose the copy.
· Click the clipboard icon to the left of the + button.

· A copy of the property will appear

· Select the copied line. Use the right mouse button to select change type and pull right to select [image: image37.wmf]"

 to-class.
The Restrictions pane should now look like

	type
	property
	filler

	has-class
	hasCause
	Bacterium

	to-class
	hasCause
	Bacterium

This means
:

Some cause is a Bacterium” and
“The only causes are Bacteriums”

Or in otherwords

“Pneumonias which are caused by bacteria and only bacteria”

6.1.3 Classify it:

· By clicking the (button

· Double click on BacterialPneumoniaPure to see the classification.

The results should show BacterialPneumoniaPure classified under BacterialPneumonia and a sibling to MixedPneumonia and PneumococcalPneumonia.

6.1.4 Why both Restrictions are necessary

Both Restrictions are necessary. To see why:

· Throw away the results of the classification by clicking [image: image38.wmf]

· Make a copy of BacterialPneumoniaPure and name it BacterialPneumoniaPureXX (following the same procedure as for copying BacterialPneumonia to make BacterialPneumoniaPure)
· Select the has-class constraint and click the (icon at the bottom of the Restrictions pane

· Reclassify by clicking (in the tool bar

BacterialPneumoniaPureXX is not classified as a kind of BacterialPneumonia. And if you click on the + sign to open the tree you will see that BacterialPneumoniaPure is classified as a subclass of BacterialPneumoniaPureXX. Why?

Why BacterialPneumoniaPure is classified as a kind of BacterialPneumoniaPureXX is easy to answer. BacterialPneumoniaPure has the same constraints as BacterialPneumoniaPureXX plus one more; therefore anything that satisfies the constraints of BacterialPneumoniaPure must satisfy the constraints for BacterialPneumoniaPureXX. That is the definition of subclass.

Why BacterialPneumoniaPureXX is not classified as a kind of BacterialPneumonia is subtler but very important.

The restriction:

to-class hasCause Bacterium

means

“Causes are only Bacteriums”

However, that the causes are only bacteria merely means that there are no causes which are not bacteria. It does not imply that there are any causes at all. Therefore an “uncaused” pneumonia counts, trivially.

6.1.5 To-class constraints are very strong

A further question to think about. Why is PneumococcalPneumonia not classified under BacterialPneumoniaPure? Looking at the definition, the only cause given is Pneumococcus which clearly classified as a Bacterium. Why is that not sufficient to satisfy the definition?
Anyone used to dealing with database queries or logic languages such as Prolog may be particularly puzzled by this. The reason is that the negation in OIL really means “impossible” or “would cause an inconsistency” or “provably false”. Most database systems use a much weaker version of negation known as ‘negation as failure’. They assume that the database or knowledge base is a ‘closed world’; therefore if you can’t find it to be true, it must be false. OIL does not make the ‘closed world assumption’. Therefore, PneumococcalPneumonia subsumes any pneumonia which has Pneumococcus as one of its causes, just as BacterialPneumonia subsumes anything which has a bacteria as at least one of its causes, including MixedPneumonia.

6.1.6 Summary

has-class propertyName Value means:

 “Some propertyName has the value Value”

to-class propertyName Value means:

 “propertyName can only have the value Value”

 (but does not imply that propertyName has some value –
 i.e. if there are no values for a property, then they can’t
 violate the constraint that they be only of a particular
 type)

to-class Restrictions are very strong and more useful for ruling things out or inconsistent than for ruling them in. The usual pattern is to use a has-class constraints in definitions and to reserve to-class constraints for high level axioms about what is allowed in the model and for descriptions of primitive classes. (More about the use of such constraints later.)

6.1.7 Clean up and save your work

This is a good time to clean up by deleting BacterialPneumoniaXX (Select it from the Classes pane and choose remove class) and then save your work. Then close this model. The next phase will start from a new more extensive model to save you the time of creating much more infrastructure from scratch.

Part 3: Linking Micro and Macro Scales

7. Structures and Substances

Almost all languages and ontologies divide things in the world into two categories:

· Discrete countable things such as people, books, bodies, ideas, acts, etc. In linguistics the words for discrete things are called “count nouns”.
 Typically discrete things can have discrete parts and can be thought of as “structures” in some broad sense. Therefore, in the example ontology we have simply called them “PhysicalStructures” – in a more complete ontology there would be more abstract structures, but that would take us beyond this tutorial.

· Continuous substances or “stuff” which may be measured by not counted. In linguistics the words for continuous substances are called “mass nouns”. In this ontology we call them just PhysicalSubstance. PhysicalSubstances do not have parts – there are no discrete bits you can find – but they do have “portions” – the amount of one thing in another.

In general, we say that “Structures are made of substances” or more literally “Structures are made up in part of a given substance” – since almost no structure is made purely of a single substance. This is a very general relationship which runs across both abstract and physical reality and holds true within most scales of granularity.

So to a first approximation we can say that “Bones are made up in part of bone tissue”, “The liver is made up in part of liver parenchymal tissue”, etc.

“Tissues” are peculiar things – part way between our usual conceptions of structures and substances – they are treated as “mass” things, but they have structure. We shall keep it simple for the time being and treat them as substances.

Load a TutorialTop-2-01.daml

To save time close your current model and load the model TutorialTop-02. This ontology contains all of the properties and their inverses, transitive and intransitive variants, plus several others that we will need. (To keep the ontology small, it does not includes only enough of the previous work for these examples.)

· Throw away the results of the classification by clicking [image: image39.wmf]

· Close the current model from the File menu

· Open TutorialTop-02 from the File menu

· Reclassify by clicking (in the tool bar

· Click on the namespaces tab and the D to get rid of the irritating #1s

This model has a much more extensive property hierarchy than the previous. Since OilEd does not display the property hierarchy sensibly,the appendix contains a table of the hierarchy of part-whole relations below along with comments (click here).

7.1 Reciprocal relations (reminder and digression)

Restrictions about classes are not necessarily reciprocal, even when there are inverse relations. This is often true of parts and wholes are not reciprocal. It is important to be clear on the meaning of the two directions:

Meaning of reciprocal relations

A restriction has-class isPartOf B means “All As are part of some B”

B restriction has-class hasPart A means “All Bs have some A as a part”

These are independent statements. Neither implies the other.

Even though a property has an inverse, restrictions on classes are not reciprocal because the implied quantifiers are different.

By contrast, if I make a statement strictly about individuals,

e.g. #John hasSister #Mary, it follows immediately that #Mary isSisterOf #John

Either or both statements can be true independently. For example, “All knee joint have ligaments as a component” but “Not all ligaments are components of knee joints”. Conversely, “All nuclei are components of cells” but “Not all cells have nuclei as their components”

7.2 The relation of Tissues to Organs

7.2.1 Link BoneTissue to Bone and Lung to LungParenchyma
· Select Bone, note that it is a primitive so that restrictions can be added directly rather than via axioms, and add the restriction
has-class isMadeUpInPartBy BoneTissue

· Create LungParenchyma as a primitive kind of Tissue and add a parallel restriction for Lung

This means:

All bones are made up in part of bone tissue – there may be other things too. Likewise for Lungs and Lung parenchyma.

It does not say that all BoneTissue and all LungParenchyma are found in Bones or Lungs respectively.

If we want to represent the special relationship of BoneTissue to Bone and LungParenchyma to Lung we have to do that separately.

7.3 The relation of portions to substances – version 1

There is a different kind of relationship between substances and other substances. For example of water to plasma to blood.

7.3.1 Link Blood to Plasma to Water

· Select Blood, note that it is a primitive so that restrictions can be added directly rather than via axioms, add the restriction:
has-class hasPortionDirectly Plasma

· Now select Plasma and add a parallel restriction
has-class hasPortionDirectly Water

7.3.2 Link Epithelial tissue to LungParenchyma

There is now a question. Is LungParenchyma a kind of epithelial tissue? or is just part of it Epithelial? This is a question which requires reference to the Anatomist. For the time being we shall take the safe route and say that LungParenchyma is made up in part of Epithelial Tissue..

· Select LungParenchyma, note that it is a primitive so that restrictions can be added directly rather than via axioms, add the restriction:
has-class isMadeUpInPartDirectlyBy EpithelialTissue

(You might ask whether EpithelialTissue should be linked to LungParencyma by isPortionOf or makesUpInPart. We would recommend that it make up another step in the chain of scales, since would not normally talk about the “proportion of epithelial tissue in lung parenchyma”. However this entails an important ontological commitment. If we make this decision, and we want to be able to make the inference that the Lung isMadeUpInPartBy EpithelialTissue,
the isMadeUpInPartBy must be transitive. You might want to think of situations in which that might be the intended meaning . From such small decisions do large consequences flow! But before arguing about it, gather evidence of the consequences.)

8. Linking levels of granularity – Micro to Macro scale

A key power of logic based ontology languages such as OWL is that they allow independent ontologies to be linked cleanly. For Bioinformatics, a particularly important case is the linking of micro scale phenomena to macro scale phenomena.

Important part-whole attributes

isComponentOf – discrete components
 isComponentOfDirectly

9. Containment and part-whole relations – cells and their components

Containment and Partonomy cause much confusion. We separate them here rigorously, although a more specialised user-oriented environment would no doubt provide shortcuts to reduce the tedium.

contains indicates physical containment, as in “The contents are contained in the stomach”, “Heart is contained in the chest”, or the “Brain is contained in the skull”. Both substances and structures can be contained, but only in structures. A substance cannot contain another substance.

Part-whole properties – always indicates some notion of being part of a single whole. Some parts are contained in the whole, some are attached to the outside, etc. In this section we shall use isComponentOf and isComponentOfDirectly for all the part-whole examples.

When a part is contained in the whole both properties must be expressed separately, e.g. “The retina is contained in and is a component of the eye” or “The nucleus is contained in and is a component of the Cell.

However, by contrast, “The lateral ligaments are components of the knee joint but not contained in the knee joint”, “The cell wall is a component of the cell, but is not contained in the cell” (in fact quite the reverse); “The adrenal cortex is a component of the adrenal gland, but is not contained in it”, etc.

Remember that because partitive attributes are transitive, they always come with two variants

9.1 Some relations in Eukaryotic Cells

9.1.1 Check the status of the concepts to which information is to be added.

· Browse the hierarchy for Cell and CellularStructure by double clicking on one of those concepts

Note that all of the concepts are primitive. Therefore, new information can be added simply in the frame Restrictions pane.

9.1.2 Add the new information as new restrictions

We want to say that all cell nuclei are components of cells. We probably want to say that they are also contained in cells – we will leave out disruption, etc. for now in the interpretation.

(For reasons that will become obvious later, we will skip mitchondrion for now)

Add the information that:

· All CellNuclei are components of cells and contained in cells

· All CellWalls are components of cells (but not contained in cells)

· Click on CellNucleus and add the restrictions

has-class isComponentOf Cell and has-class isContainedIn Cell

· Click on CellWall and add the restriction has-class isComponentOf Cell

9.1.3 What is a “Eukaryotic cell” – version 1.

The obvious way to define a Eurkaryotic cell, is “A cell with a nucleus”. But what about red blood cells? What about Platelets – are they cells at all? What about muscle syncitia – are they cells and they certainly have many nuclei.

What can we say with certainty?

“All cells with nuclei are by definition Eukaryotic” so CellWithNucleus must be a kind of EukaryoticCell.

The simplest solution is to say that whether a cell is Eukaryotic or Prokaryotic is a special property of the cell independent of whether it has a nucleus, and then to add an axiom that all cells with nuclei and Eukaryotic.

This is the “normalised” solution which allows us to extend the kinds of cells and of nuclei independently. In this particular case it might seem like overkill, but experience has shown that the extra effort is almost always worth it in flexibility and extensibility in the end.
 Therefore, we first create a value type EukaryoticValueType with values Eukaryotic and Prokaryotic along with a single valued (unique) property hasKaryoticStatus. As always with value types, the values Eukaryotic and Prokaryotic appear in a disjoint subclass axiom with the value type EukaryoticValueType to indicate that they “cover” the value type.

Create EukaryoticCell
· Create EukaryoticValueType as a primitive kind of ValueType, and create two subclasses Eukaryotic and Prokaryotic
· Go to the axioms tab and create a subclass axiom. When the Expression Editor appears, select the class icon [image: image40.wmf]C

 and select EukaryoticValueType. EukaryoticValueType should now appear in the upper (Subclass) subpane.

· Go back to the Properties tab, select ModifierProperty and add a new subproperty hasKaryoticStatus and click the unique box in the lower right hand corner of the main subpane.

· Go back to the Classes tab and create EukaryoticCell as a defined subclass of Cell with the restriction has-class hasEukaryoticStatus Eukaryotic
(Be sure to click the SameClassAs button)

Create CellWithNucleus
· Create CellWithNucleus as a defined subclass of Cell with the two restrictions:
has-class hasComponentDirectly CellNucleus and has-class containsDirectly CellNucleus (Be sure to click the SameClassAs button)

Say that all CellWithNucleus are Eukaryotic

Since CellWithNucleus is a defined class, the extra restriction must be added as an axiom
.

· Go to the axioms tab

· Add a subclass axiom. When the Expression editor pops up select the class [image: image41.wmf]C

 icon and select CellWithNucleus, which should then appear in the upper (Subclass) subpane.

· In the superclass subpane click the frame [image: image42.wmf] icon. Click the + button and select the property hasKaryoticStatus with the filler Eukaryotic. Click OK.

· Create RedCell, and EpithelialCell as primitive kinds of Cell, and MatureRedCell as a primitive kind of RedCell.

Add EpithelialCell and RedCell and demonstrate that the inference works as intended

· Add the information that EpithelialCell directly contain and have a component CellNucleus (Where to add the information? Is EpithelialCell a primitive or defined classe. Information can be added to primitive classes in the Restrictions pane. Information must be added to defined classes as subclass axioms under the Axioms tab as for CellWithNucleus above.)

· Reclassify by clicking (in the tool bar

· Double click on EpithelialCell to display hierarchy

The hierarchy should now look roughly as shown below. Note that EpithelialCell has been classified as subsumed by EurkaryoticCell, but that RedCell has not. Nothing in the current knowledge base would support that inference.

[image: image43.wmf]
Make RedCell Eukaryotic
· Select RedCell in the class pane

· Add the restriction has-class hasKaryoticStatus Eukaryotic
· Click (to classify the result. RedCell should now be a EukaryoticCell but not a CellWithNucleus.

For a discussion of other ways to deal with this problem see What is a Eukaryotic Cell? Other Models
9.2 Linking Cells to Tissues

Ligament is part of the knee in a very different way to which a epithelial cell is part of the skin. For one thing we usually only speak of ‘Epithelial cells’ in the pleural. It seems odd to say that “This epithelial cell is a part of this piece of skin”.

Linking between scales requires different properties (semantic links). Collections of things at a small scale act as continuous things at a large scale – hence we say that bone is made of muscle tissue which is made (inter alia) of muscle cells. The properties that link different scales of partonomy are closer to the properties that link things to what they are made of than to the way in which discrete components are linked.

There are two families of solution. The first is simpler but less powerful and literal. The second is more powerful but slightly more awkward.

In the “direct linking method” (9.2.1) we use a special property to link two levels directly. In the “reified link method” (9.2.2) we use an additional class to represent the “portion” or “multiple” involved. For large ontologies we recommend the “reified link method” despite the extra work.

9.2.1 Direct linking method

We use a family of properties under makesUpInPart. The simplest solution is to use one of the subproperties of makesUpInPart to say that “Red cells are dispersed throughout the blood”

Make blood cells a part of blood

· Select Blood in the class pane

· Add the property has-class hasDispersedThroughout RedCell

The question remains as to whether we want to say that all RedCells are dispersed throughout blood. Clearly there are circumstances in which we isolate red cells. However, their source is normally blood. If the concern non-biological – e.g. red cells in test tubes or on slides -- this slightly looser interpretation seems more effective, although strictly speaking over general. If our concern is biological, that some red cells are in bone marrow rather than blood and we really want to distinguish, then we probably need to separate out some notion such as “normal constituent of” as a separate property of red cells. In either case we want to be able to represent the concept “Things which make up blood” and have it subsume RedCell.

For the purposes of the tutorial we shall take the simple way out and ignore the subtleties. We shall simply say that all red cells are found in blood. .

Make blood the source of red cells

· Select RedCell in the class pane
· Add the property has-class isDispersedThroughout Blood

To think about:

How does the question of whether or not to link red cells to blood relate to the question the portions of blood formed by water? by Plasma?

9.2.2 Reified link method

It is always possible to transform a single semantic link/restriction into a new linking entity. This process is known as “Reification”

We will use the notion of multiple as in a “Multiple of red cells”. “Multiples” are like flocks of geese – they have their own identity and changing a few members does not change their identity. (By contrast sets are defined purely in terms of their members.)

An alternative mechanism for linking red cells and blood is to say that “Blood hasDispersedThroughout a Multiple of RedCells”.

Note that the “multiple” is defined by being specifically, indeed only, of red cells. Therefore multiple and portions are normally linked by universal quantifiers (“only”/ “to-class”/ “onlyValuesFrom”) instead of existential quantifiers
.
Use the modified variant and include the information that the normal red cell count normal red cell count is 6Million (sadly in this version of OILed, numbers are not available – coming Real Soon Now.)

Edit the slot

 has-class hasDispersedThroughout RedCell
to
 has-class hasDispersedThroughout (Multiple restriction to-class isMultipleOf RedCell)

· Select RedCell in the class pane
· Select the property has-class isDispersedThroughout Blood

· Use the right mouse button to select Edit Filler

· When the Expression Editor pops up select RedCell

· When the Description pane pops up, click on the frame icon [image: image44.wmf]
· Click the class icon [image: image45.wmf]C

 in the Classes subpane and select Multiple

· Click the + icon in the Restrictions subpane and select isMultipleOf from the Property pop up
· In the Filler Type pop up click the class icon [image: image46.wmf]C

 and select RedCell

· Go back to the Description pane, right-click on has-class, select change-type, and then select [image: image47.wmf]"

to-class option.

A picture of the final layout appears below:
[image: image48.wmf]
· Click OK at all levels to complete
Say that the normal concentration of red cells in blood is 6 Million per ml

One could, but probably would not do this in an ontology. However, the information would hang off of the class which now exists
Multiple
 restriction to-class isMultipleOf RedCell
 restriction has-class isDistributedThroughout Blood

Most of the bits needed to do this are in the Top-02-03.daml ontology. Save your work and load that ontology if you want to work through this bit quickly.

We will keep the schema simple for now is

Blood hasDispersedThroughout some
 Multiple isMultipleOf only RedCell
 hasNormalValue some Concentration
 hasMagnitude some 6Million
 hasUnits some 6Million

· Select Blood in the Classes pane

· Select the restriction has-class hasDispersedThroughout Multiple…
· Right click and choose Edit Filler
· When the window pops up, right click on the Conjunction symbol at the top (and select add argument
· Select Frame [image: image49.wmf]
· When the window pops up click the + button and select the property hasNormalValue
· When the Filler Type box appears click the expression icon X
· Click the and (symbol

· Select the (which appears in the expression box, right click and select add argument
· Select the Class icon [image: image50.wmf]C

 and Concentration
· Select the (again and add a second argument. This type add a Frame [image: image51.wmf] and enter hasMagnitude and choose the filler class 6Million
· Repeat and add a third argument. Make it a Frame [image: image52.wmf] of the form hasUnits CountPerMl

· Click OK on all open panes in the expression editor. Classify to make sure you have the correct structure and it is consistent.

The above procedure suffers from two problems, both due to the current state of OilEd. Firstly, the lack of proper numeric values. (Do not be tempted to use the cardinality constraints as a substitute for numeric values. The computational implications are horrendous!) The second is that the editing process is long winded.

10. Context – Why normalisation matters: Extending the Red cell and Eukaryot Example

10.1 Cell types and Species

While mammalian red cells do not have nuclei, at least when mature, those of reptiles and birds do. A natural way to achieve this given our starting point is to extend the value type KaryoticValueType to have subkinds of Eukaryotes, including mammalian,. reptilian, yeast, etc. If we do this, the names EukaryoticValueType and hasEukaryoticStatus no longer fit the usage very well, so it is probably better to change them to something like “hasSpecies” or “originatesFromSpecies”. Such changes are part of the normal evolution of an ontology.

In this case we can add a necessary condition to

RedCell and restriction originatesFromSpecies someValuesFrom Reptilian

to indicate that it has a nucleus. Whereas we can either leave the issue open for mammals or close it off by saying explicitly that human red cells have no nucleus.

In either case, since we are dealing with a defined class “Reptilian Red Cell” or “Human Red Cell” respectively, this must be done with subclass axioms. To achieve this, follow the pattern in Section 5.3.

Part 4: Extras

11. What is a Eurkaryotic Cell ? – other models

There are alternative version for modelling EukaryoticCell would be to say that our interpretation of isComponentOf does not require the actual presence of the component. We use this often when we say things like the UpperExtremity hasComponent has-value Hand. In this case we provide a separate ‘presence/absence’ or similar construct to distinguish when the hand is actually attached or not. One might use containment for this purpose, but we recommend keeping the conceptual and the ‘accidental’ separate.

11.1 What is a EukaryoticCell, version 3

A cleaner notion of Eurkaryotic cell would be to say that cells have origins or come from cell lines. And to define a Eurkaryotic Cell a “Eukaryotic cell proper or any cell which arises from a Eukaryotic Cell”.

11.2 What is a Eukaryotic Cell, version 4

A final version is to say that red cells, like platelets, are really cell remnants rather than cells. The language an intermediate representation layer could then be used to hide this from the user. This is very much the view that would correspond to the Digital Anatomists’ strict view of Organs, for example. However, it would have the slightly surprising result that in the internal hierarchy a Red Cell was not a kind of blood cell, but of blood cell remnant.

12. Normal and Abnormal

NB This section refers to Tutorial-Top-01 rather than Tutorial-top-02.

One of the perennial problems in clinical ontologies, is what is meant by “Normal” and “Abnormal”. OpenGALEN takes a particular view on this which is easily seen in the Top-02 ontology.

We distinguish

1. normal/nonNormal – essentially whether or not something is noteworthy or not

2. pathological/nonPathological
 -- whether something requires clinical managemenet or not.

There is no point in becoming too philosophical about the exact interpretation, but having the two separate notions helps.

We think that it is safe to say:

pathological (nonNormal

There was much argument about this, but we haven’t seen a convincing counter-example

In addition we distinguish strong forms of pathological and non-normal – intrinsiciallyPathological and intrinsicallyNonNormal. These are reserved for things which are always nonNormal or always pathological. Note that in order to stick to our rules for normalised taxonomies we have defined hasIntrinsicStatus and intrinsic as modifiers for pathological and nonNormal. In fact we have put in the domain constraint that they apply only to kinds of nonNormal.

intrinsicallyPathological (pathological

intrinsicallyNonNormal (nonNormal

Browse the hierarchy of Normality value types

[image: image53.png]& [E] NormalitwalueType

nNormal
intrnsicalyNonorral
intrinsicalyPathological
& [E] pathological
intrinsicalyPathological
onPathological

normal

Note that by defining the implications for the pathological and non-normal concepts, and then defining normal and nonPathological as their negations relative to the value type, the classifier can infer the complete hierarchy. normal is stronger than nonPathological and implies it; hence it sits under it in the subsumption hierarchy. A bit of thought should convince you that this is the right way round. However, it is easy to get it wrong. This is a good example of where having a clear logical foundations makes it possible to settle what might otherwise be a long and confusing argument.

If you open normal you will find an inconsistent notion, intrinsicallyNormal – inconsistent because it violates the domain constraint on the property hasIntrinsicStatus.

Appendix 1:Hierarchy of Part Whole Properties

	Property
	inverse
	Trstv
	Usage

	RelationalProperty
	none
	y
	root

	 isPartOf
	hasPart
	y
	Most generic partonomic relation

	 isStructuralPartOf
	hasStructuralPart
	y
	Most generic relation for structures

	 isSubdivisisonOf
	hasSubdivision
	y
	Arbitrary subdivisions and self-similar regions e.g. hand-UpperExtremity, Chest-Body, Lobe-Lung

	 isSubdivisionOfDirectly
	hasSubdivisionDirectly
	n
	…Directly variant of hasSubdivision

	 isComponentOf
	hasComponent
	y
	Specific discrete and usually dissimilar parts, e.g. ligament-joint, ventricle-heart,

	 isComponentOfDirectly
	hasComponentDirectly
	n
	…Directly variant of isComponentOf

	
	
	
	

	 isPortionOf
	hasPortion
	y
	Relation between two substances or between a multiple of discrete items and a substance

	 isPortionOfDirectly
	hasPortionDirectly
	n
	…Directly variant

	
	
	
	

	
	
	
	

	 makesUpInPart
	isMadeUpInPartBy
	y
	Linking relation for substances to structures.

	 makesUpInPartDirectly
	isMadeUpInPartDirectlyBy
	
	…Directly variant

	 isDispersedThroughout
	hasDispersed through
	n
	Linking relation across scales between substances and (multiples of) micro

	
	
	
	

	 isContainedIn
	contains
	y
	The basic containment attribute. NB containment is NOT the same as partonomy. Contents-Stomach, Chest-heart, Skull-Brain, etc.

	 isContainedInDirectly
	containsDirectly
	n
	…Directly variant

	
	
	
	

	 (isBranchOf)
	(hasBranch)
	y
	RARELY USED Branches of tree links structures such as blood vessels, etc.
 NB. The transitive variants is rarely used

	 isBranchOfDirectly
	hasBranchDirectly
	n
	The usual construct in this case is the …Directly variant.

	
	
	
	

	 isOf
	participatesIn
	n
	Parent llink of reified relations linking portions and multiples

	 isMultipleOf
	 isSingletonOf
	n
	Link for discrete things at one granularity level to multiples at the next

	 hasSubstance
	 isSubstanceOf
	n
	Link within one granularity level between substances

Appendix 2: Table of Terminology from Different Versions and Sources

See also slides for further equivalences with other notations.

	DAML+OIL/OilEd
	Current Proposed OWL Abstract Syntax

	has-class
	someValuesFrom

	to-class
	allValuesFrom

	SubclassOf
	Partial

	SameClassAs
	Complete

� Using ‘camel back’ notation rather than ‘_’ for space has the advantage that it avoids confusing ‘-‘ in OIL keywords with ‘_’ in concept names and makes it easy to distinguish the keywords from concept names.

� In the tutorial I have preferred consistency with the actual class name over normal English usage. This occasionally leads to odd expressions such as “Bacteriums” when the formal name needs to be pluralised in text.

� (For historical reasons, both ‘descriptions’ represented by has-class statements and ‘constraints’ which we will describe later are called ‘restrictions’. In most frame based languages, has-class statements would simply be called ‘fillers’ and true constraints which limit what else can fill the property would be described separately. We will show how to do this in OilEd later.)

� Note also that MixedPneumonia and PneumoccocalPneumonia appear together as ‘siblings’. Such lists of mixed siblings occur naturally in logic based ontologies and can be hard to avoid for reasons we shall see later.

� OpenGALEN ontologies include several different sorts of refining value types besides ‘modifiers’, but this is irrelevant for this tutorial.

� Was previously “Add covering”.

� previously “Covered”

� Here’s why. The notation for “subclass” axioms is confusing and actually not quite correct in this version of OilEd. “A is a subclass of B” is the same as saying that “All As are Bs” or “A implies B”. Therefore the Subclass pane implies the Superclasses pane. What the pane labels don’t tell you is that it implies the disjunction (‘or-ing’) of the superclasses, rather than each superclass individually. That gives us:

	SeverityValueType ((SeverityMild (SeverityModerate (SeveritySevere)

However we already know that SeverityMild, SeverityModerate, and SeveritySevere are subclasses of SeverityValueType. Therefore, they each imply SeverityValueType, i.e.

SeverityMild (SeverityValueType�SeverityModerate(SeverityValueType�SeveritySevere (SeverityValueType

so � (SeverityMild (SeverityModerate (SeveritySevere) (SeverityValueType

so we have the arrows going in both directions which we can abbreviate

SeverityValueType ((SeverityMild (SeverityModerate (SeveritySevere)

� On the screen the ‘unsatisfiable’ circle is clearly red as opposed to the defined class pink. In print outs or screenshots, colour value may not bee as good.

� We will ignore any difference between “pneumonia” and “pneumonitis” for the purposes of the examples in this tutorial – a topic on which dictionaries disagree.

� If we were to carry this all the way through in more detail, we might want to make finer distinctions about ‘generalised inflammation or ‘inflammation of parenchymal tissue of lung, but we will keep it simple for now.

� Setting inverses, domains, and ranges can have serious effects on performance so will be postponed for this tutorial.

� This technique is due to Stefan Schulz and Udo Hahn and is sometimes known as SEP triples.

� If you are not already familiar with them, the symbols (and (are standard in logic. The (symbol is derived from the Latin “vel” which is the inclusive or. “A (B” means “either A or B or both”. The symbol (means “and”. You can think of the (symbol either as an upside down vel or as an “A” for “and” without the cross bar.

� “to-class” was previously called “value-type” – i.e. “the slot is restricted only to values of type…”

� or put another way—which is the reason for the notation—

“Some cause is a Bacterium” and

“All causes are Bacteriums”

 The use of “all” indicated by the logical symbol “(”, can be confusing in OIL and related representations. It is generally much easier to treat to-class constraints as meaning “only”

� or equivalently as often put in logic textbooks

“All causes are Bacteriums”

� Although as usual, the correspondence between language and concepts is not perfect. There are odd things you can do in language. However, note that the use of a plural for a noun that is usually a mass noun almost always signals an alternative meaning, e.g. “waters” or “bloods”. Alternatively, a plural of a mass noun can indicate kinds, e.g. “steels” or “oils”.

� The alternative would be to EukaryoticCell as a primitive and to provide an axiom that saying that all CellsWithNucleus were subsumed by EukaryoticCell. However, this would denormalise the ontology because the axiom would affect the classification of the primitive skeleton of the ontology. We confine subclass axioms in normalised ontologies only to have restrictions as the superclass.

� 	Remember that subclass implies superclass. The axiom editor is laid out this way with the subclass in the top subpane and the superclasses in the bottom subpane.

� Beware. The term “reification” is used in a number of ways in different fields. In particular, RDF(S) uses the term “reification” analogously to its use here; Topic Maps uses the term “reification” to refer to the process of linking a “subject” to a “resource” to form a “topic” which can have a URI and therefore be pointed to on the web.

� Note. In GRAIL you have to cheat and use a single-valued (functional) semantic-link. This works in practice but literally says that each multiple is characterised by some particular red cell. The OWL version is literally correct but occasionally causes scaling problems.

� in OpenGALEN “Physiological”

� The transitive variant is not even present in OpenGALEN to avoid confusion. The problem is that, for example, all arteries are, transitively, branches of the aorta. Furthermore, the branching of organic structures does not necessarily form an acyclic directed graph. There are cycles, which then introduce extremely nasty problems for the reasoner which are best avoided.

�

OILed Biomedical Ontology Tutoria-v8.doc
28/10/2002 12:28 © U Manchester
45

