
1

Knowledge Representation in Protégé –OWL
Please install from CDs or USB pens provided:

!http://www.co-ode.org/resources/tutorials/iswc2005

!Protégé 3.2 Beta – complete installation

!See instructions for other software on web site
! You will need
! At least one classifier - Racer, FaCT++ and/or Pellet
! Graphviz
! The example ontologies
! The CO-ODE plugins not bundled with 3.2 beta

(a single zip on web site)

2

Ontology Design Patterns and Problems:
Practical Ontology Engineering using

Protege-OWL

Alan Rector1, Natasha Noy2, Nick Drummond1,
 Mark Musen2

1University of Manchester
2Stanford University

rector@cs.man.ac.uk
{noy, holger}@smi.stanford.edu

musen@smi.stanford.edu

3

Program

I Ontologies and “Best Practice”

II Creating an ontology – useful patterns

III Hands on examples

IV Patterns: n-ary relations

V Patterns: classes as values

VI Patterns: part-whole relations

VII Summary

4

Part I: Ontologies & “Best
Practice”

! What are Ontologies & a review of
History

! Semantic Web
! OWL
! “Best Practice”

! Semantic Web Best Practice &
Deployment Working Group (SWBP)

5

What Is An Ontology?

! Ontology (Socrates & Aristotle 400-360 BC)
! The study of being
! Word borrowed by computing for the

 explicit description of the conceptualisation of a domain:
! concepts
! properties and attributes of concepts
! constraints on properties and attributes
! Individuals (often, but not always)

! An ontology defines
! a common vocabulary
! a shared understanding

6

Why Develop an Ontology?

! To share common understanding of the
structure of descriptive information
! among people
! among software agents
! between people and software

! To enable reuse of domain knowledge
! to avoid “re-inventing the wheel”
! to introduce standards to allow interoperability

7

Measure the world…quantitative models
(not ontologies)

! Quantitative
! Numerical data:

! 2mm, 2.4V, between 4 and 5 feet

! Unambiguous tokens
! Main problem is accuracy at initial capture
! Numerical analysis (e.g. statistics) well

understood

! Examples:
! How big is this breast lump?
! What is the average age of patients with

cancer ?
! How much time elapsed between original

referral and first appointment at the hospital ?

8

describe the our understanding of
the world - ontologies

! Qualitative
! Descriptive data

! Cold, colder, blueish, not pink, drunk

! Ambiguous tokens
! What’s wrong with being drunk ?

! Ask a glass of water.

! Accuracy poorly defined
! Automated analysis or aggregation is a new science

! Examples
! Which animals are dangerous ?
! What is their coat like?
! What do animals eat ?

9

More Reasons

! To make domain assumptions explicit

! easier to change domain assumptions (consider a
genetics knowledge base)

! easier to understand and update legacy data

! To separate domain knowledge from the
operational knowledge
! re-use domain and operational knowledge

separately (e.g., configuration based on
constraints)

! To manage the combinatorial explosion
10

An Ontology should be just the
Beginning

Ontologies

Software

agents Problem-

solving

methods Domain-

independent

applications

DatabasesDeclare

structure

Knowledge

bases
Provide

domain

description

The

“Semantic

Web”

11

Outline

! What are Ontologies

! Semantic Web

! OWL

! Best Practice

12

The semantic web

! Tim Berners-Lee’s dream of a computable
meaningful web
! Now critical to Web Services and Grid

computing

! Metadata with everything
! Machine understandable!

! Ontologies are one of the keys

13

Understanding rather than text matching

! Mark Musen

! Alan Rector

! Google image results for
! Charlie Safran

14

Ontology Examples

! Taxonomies on the Web
! Yahoo! categories

! Catalogs for on-line shopping
! Amazon.com product catalog

! Dublin Core and other standards for the Web

! Domain independent examples
! Ontoclean

! Sumo

15

Ontology Technology

! “Ontology” covers a range of things
! Controlled vocabularies – e.g. MeSH

! Linguistic structures – e.g. WordNet

! Hierarchies (with bells and whistles) – e.g. Gene
Ontology

! Frame representations – e.g. FMA
! Description logic formalisms – Snomed-CT,

GALEN, OWL-DL based ontologies
! Philosophically inspired e.g. Ontoclean and SUMO

16

Outline

! What are Ontologies

! Semantic Web

! OWL

! Best Practice

17

OWL
The Web Ontology Language

! W3C standard
! Collision of DAML (frames) and Oil (DLs in Frame

clothing)
! Three ‘flavours’

! OWL-Lite –simple but limited
! OWL-DL – complex but deliverable (real soon now)
! OWL-Full – fully expressive but serious

logical/computational problems
! Russel Paradox etc etc

! All layered (awkwardly) on RDF Schema

! Still work in progress – see Semantic Web Best
Practices & Deployment Working Group (SWBP)

18

Note on syntaxes for OWL
! Three official syntaxes + Protégé-OWL syntax

! Abstract syntax -Specific to OWL
! N3 -OWL & RDF

-used in all SWBP documents
! XML/RDF -very verbose
! Protégé-OWL -Compact, derived from DL syntax

! This tutorial uses simplified abstract syntax
! someValuesFrom " some

! allValuesFrom " only

! intersectionOf " AND
! unionOf " OR
! complementOf " not

! Protégé/OWL can generate all syntaxes

19

A simple ontology: Animals

Living Thing

Grass

Animal

Plant

Tree

Body Part

Arm

Leg

Person

Cow

Carnivore

Herbivore
eats

eats

eats

has part

20

Description Logics

! What the logicians made of Frames
! Greater expressivity and semantic precision

! Compositional definitions
! “Conceptual Lego” – define new concepts from old

! To allow automatic classification & consistency
checking
! The mathematics of classification is tricky

! Some seriously counter-intuitive results
! The basics are simple – devil in the detail

21

Description Logics

! Underneath:
! computationally tractable subsets of first order logic

! Describes relations between Concepts/Classes
! Individuals secondary

! DL Ontologies are NOT databases!

22

Description Logics:
A brief history

! Informal Semantic Networks and Frames (pre 1980)
! Wood: What’s in a Link; Brachman What IS-A is and IS-A isn’t.

! First Formalisation (1980)
! Bobrow KRL, Brachman: KL-ONE

! All useful systems are intractable (1983)
! Brachman & Levesque: A fundamental tradeoff

! Hybrid systems: T-Box and A-Box

! All tractable systems are useless (1987-1990)
! Doyle and Patel: Two dogmas of Knowledge Representation

23

A brief history of KR

! ‘Maverick’ incomplete/intractable logic systems (1985-90)
! GRAIL, LOOM, Cyc, Apelon, …,

! Practical knowledge management systems based on frames
! Protégé

! The German School: Description Logics (1988-98)
! Complete decidable algorithms using tableaux methods (1991-1992)
! Detailed catalogue of complexity of family – “alphabet soup of systems”

! Optimised systems for practical cases (1996-)

! Emergence of the Semantic Web
! Development of DAML (frames), OIL (DLs) " DAML+OIL " OWL

! Development of Protégé-OWL

! A dynamic field – constant new developments & possibilities

24

Outline

! What are Ontologies
! Semantic Web
! OWL
! “Best Practice”

! Semantic Web Best Practice & Deployment
Working Group (SWBP)

25

Why the
“Best Practice working Group”?
! There is no established “best practice”

! It is new; We are all learning
! A place to gather experience
! A catalogue of things that work –

Analogue of Software Patterns
! Some pitfalls to avoid

!…but there is no one way

! Learning to build ontologies
! Too many choices

! Need starting points for gaining experience

! Provide requirements for tool builders
26

Contributing to “best practice”

! Please give us feedback
! Your questions and experience

! On the SW in general:
semanticweb@yahoogroups.com

! For specific feedback to SWBP
! Home & Mail Archive:

http://www.w3.org/2001/sw/BestPractices/
public-swbp-wg@w3.org

27

Protégé OWL: New tools for
ontologies

! Transatlantic collaboration

! Implement robust OWL environment within
PROTÉGÉ framework

! Shared UI
components

! Enables hybrid
working

28

Protégé-OWL & CO-ODE

! Joint work: Stanford & U Manchester +
 Southampton & Epistemics
! Please give us feedback on tools – mailing lists & forums at:

! protege.stanford.edu

! www.co-ode.org

! Don’t beat your head against a brick wall!
! Look to see if others have had the same problem; If not…
! ASK!

! We are all learning.

29

Part II – Creating an ontology
 Useful patterns

! Upper ontologies & Domain ontologies

! Building from trees and untangling
! Using a classifier
! Closure axioms
! Specifying Values
! n-ary relations
! Classes as values – using the ontology
! Part-whole relations

30

 Upper Ontologies

! Ontology Schemas
! High level abstractions to constrain

construction
! e.g. There are “Objects” & “Processes”

! Highly controversial
! Sumo, Dolce, Onions, GALEN, SBU,…

! Needed when you work with many people
together

! NOT in this tutorial – a different tutorial

31

Domain Ontologies

! Concepts specific to a field
! Diseases, animals, food, art work, languages, …
! The place to start

! Understand ontologies from the bottom up
! Or middle out

! Levels
! Top domain ontologies – the starting points for the field

! Living Things, Geographic Region, Geographic_feature
! Domain ontologies – the concepts in the field

! Cat, Country, Mountain
! Instances – the things in the world

! Felix the cat, Japan, Mt Fuji

32

Part II – Useful Patterns
 (continued)

! Upper ontologies & Domain ontologies

! Building from trees and untangling

! Using a classifier

! Closure axioms & Open World Reasoning

! Specifying Values

! n-ary relations

! Classes as values – using the ontology

33

Example: Animals & Plants

! Dog
! Cat
! Cow
! Person
! Tree
! Grass
! Herbivore
! Male
! Female

! Dangerous
! Pet
! Domestic Animal
! Farm animal
! Draft animal
! Food animal
! Fish
! Carp
! Goldfish

! Carnivore

! Plant

! Animal

! Fur

! Child

! Parent

! Mother

! Father

34

Example: Animals & Plants

! Dog
! Cat
! Cow
! Person
! Tree
! Grass
! Herbivore
! Male
! Female

! Healthy
! Pet
! Domestic Animal
! Farm animal
! Draft animal
! Food animal
! Fish
! Carp
! Goldfish

! Carnivore

! Plant

! Animal

! Fur

! Child

! Parent

! Mother

! Father

35

Choose some main axes
Add abstractions where needed; identify relations;
Identify definable things, make names explicit

! Living Thing
! Animal

! Mammal
! Cat

! Dog

! Cow

! Person

! Fish
! Carp

! Goldfish

! Plant
! Tree

! Grass

! Fruit

! Modifiers
! domestic

! pet
! Farmed

! Draft
! Food

! Wild
! Health

! healthy
! sick

! Sex
! Male
! Female

! Age
! Adult
! Child

! Definable
! Carinvore
! Herbivore
! Child
! Parent
! Mother
! Father
! Food

Animal
! Draft Animal

! Relations
! eats
! owns
! parent-of
! …

36

Reorganise everything but “definable” things into
pure trees – these will be the “primitives”

! Primitives
! Living Thing

! Animal

! Mammal
! Cat

! Dog

! Cow

! Person

! Fish
! Carp

 Goldfish

! Plant

! Tree

! Grass

! Fruit

! Modifiers
! Domestication

! Domestic

! Wild

! Use
! Draft

! Food

! pet

! Risk

! Dangerous

! Safe

! Sex

! Male

! Female

! Age

! Adult

! Child

! Definables
! Carnivore
! Herbivore
! Child
! Parent
! Mother
! Father
! Food

Animal
! Draft Animal

! Relations
! eats
! owns
! parent-of
! …

37

Set domain and range constraints
for properties

! Animal eats Living_thing
! eats domain: Animal;

 range: Living_thing

! Person owns Living_thing except person
! owns domain: Person

 range: Living_thing & not Person

! Living_thing parent_of Living_thing
! parent_of: domain: Animal

 range: Animal

38

Define the things that are definable
from the primitives and relations

! Parent =
 Animal and parent_of some Animal

! Herbivore=
 Animal and eats only Plant

! Carnivore =
 Animal and eats only Animal

39

Which properties can be filled in
at the class level now?

! What can we say about all members of a
class?
! eats

! All cows eat some plants

! All cats eat some animals

! All dogs eat some animals &
 eat some plants

40

Fill in the details
(can use property matrix wizard)

41

Check with classifier

! Cows should be Herbivores
! Are they? why not?

! What have we said?
! Cows are animals and, amongst other things,

 eat some grass and
 eat some leafy_plants

! What do we need to say:
Closure axiom

! Cows are animals and, amongst other things,

eat some plants and eat only plants

42

Closure Axiom

! Cows are animals and, amongst other things,
eat some plants and eat only plants

Closure

Axiom

43

In the tool

adds closure

axiom

! Right mouse
button short cut
for closure axiom
! for any existential

restriction

44

Open vs Closed World reasoning

! Open world reasoning
! Negation as contradiction

! Anything might be true unless it can be proven
false

! Reasoning about any world consistent with this one

! Closed world reasoning
! Negation as failure

! Anything that cannot be found is false
! Reasoning about this world

45

Normalisation and Untangling
Let the reasoner do multiple classification

! Tree
! Everything has just one parent

! A ‘strict hierarchy’

! Directed Acyclic Graph (DAG)
! Things can have multiple parents

! A ‘Polyhierarchy’

! Normalisation
! Separate primitives into disjoint trees

! Link the trees with restrictions

! Fill in the values

46

Tables are easier to manage than
DAGs / Polyhierarchies

…and get the benefit of inference:
Grass and Leafy_plants are both kinds of Plant

47

Remember to add any closure
axioms

Then let the reasoner do the work

Closure
Axiom

48

Normalisation:
From Trees to DAGs

! Before classification
! A tree

! After classification
! A DAG

! Directed Acyclic Graph

49

Part II – Useful Patterns
 (continued)

! Upper ontologies & Domain ontologies

! Building from trees and untangling

! Using a classifier

! Closure axioms & Open World Reasoning

! Specifying Values

! n-ary relations

! Classes as values – using the ontology

50

Examine the modifier list

! Identify modifiers that have
mutually exclusive values
! Domestication
! Risk
! Sex
! Age

! Make meaning precise
! Age " Age_group

! NB Uses are not mutually
exclusive
! Can be both a draft (pulling) and

a food animal

! Modifiers
! Domestication

! Domestic

! Wild

! Use
! Draft

! Food

! Risk

! Dangerous

! Safe

! Sex

! Male

! Female

! Age

! Adult

! Child

51

Extend and complete lists of
values

! Identify modifiers that have
mutually exclusive values
! Domestication
! Risk
! Sex
! Age

! Make meaning precise
! Age " Age_group

! NB Uses are not mutually
exclusive
! Can be both a draft and a food

animal

! Modifiers
! Domestication

! Domestic

! Wild

! Feral

! Risk

! Dangerous

! Risky

! Safe

! Sex

! Male

! Female

! Age

! Infant

! Toddler

! Child

! Adult

! Elderly
52

Note any hierarchies of values

! Identify modifiers that have
mutually exclusive values
! Domestication
! Risk
! Sex
! Age

! Make meaning precise
! Age " Age_group

! NB Uses are not mutually
exclusive
! Can be both a draft and a food

animal

! Modifiers
! Domestication

! Domestic

! Wild

! Feral

! Risk

! Dangerous

! Risky

! Safe

! Sex

! Male

! Female

! Age

! Child

! Infant

! Toddler

! Adult

! Elderly

53

Specify Values for each:
Two methods

! Value partitions
! Classes that partition a Quality

! The disjunction of the partition classes equals the
quality class

! Symbolic values
! Individuals that enumerate all states of a Quality

! The enumeration of the values equals the quality
class

54

Method 1: Value Partitions-
example “Dangerousness”

! A parent quality – Dangerousness
! Subqualities for each degree

! Dangerous, Risky, Safe

! All subqualities disjoint
! Subqualities ‘cover’ parent quality

! Dangerousness = Dangerous OR Risky OR Safe

! A functional property has_dangerousness
! Range is parent quality, e.g. Dangerousness
! Domain must be specified separately

! Dangerous_animal =
 Animal and has_dangerousness some Dangerous

55

as created by Value Partition
wizard

disjoints

partitions

covering axiomquality

56

DangerousRisky

Safe

Leo’s

Danger

Dangerous

animal
Leo the

Lion

has_
dang

erou
snes

s

som
eVal

uesF
rom

has
_da
nge
rou
sne
ss

Value partitions
Diagram

Dangerousness

Animal

57

Dangerousness_

Value

Safe_

value

Risky_

value

Dangerous_

value

Animal

Dangerous

Animal

Leo the

Lion

Leo’s

Dangerousness

owl:unionOf

has_dangerousness

has_dangerousness

someValuesFrom

Value partitions UML style

58

Method 2: Value sets –
Example Sex

! There are only two sexes
! Can argue that they are things

! “Administrative sex” definitely a thing

! “Biological sex” is more complicated

59

Method 2: Value sets-
example Sex

! A parent quality – Sex_value
! Individuals for each value

! male, female

! Values all different (NOT assumed by OWL)

! Value type is enumeration of values
! Sex_value = {male, female}

! A functional property has_sex
! Range is parent quality, e.g. Sex_value
! Domain must be specified separately

! Male_animal =
 Animal and has_sex is male 60

Value sets UML style

Sex

Value

Person

Man

John

owl:oneOf

has_sex

has_sex

female male

61

Issues in specifying values

! Value Partitions
! Can be subdivided and specialised
! Fit with philosophical notion of a quality space
! Require interpretation to go in databases as values

! in theory but rarely considered in practice

! Work better with existing classifiers in OWL-DL

! Value Sets

! Cannot be subdivided
! Fit with intuitions
! More similar to data bases – no interpretation
! Work less well with existing classifiers

62

Value partitions – practical
reasons for subdivisions

! See also “Normality_status” in
http://www.cs.man.ac.uk/~rector/ontologies/mini-top-bio
! One can have complicated value partitions if needed.

! “All elderly are adults”

! “All infants are children”

! etc.

63

Picture of subdivided value
partition

 Adult_value Child_value

 Elderly_
 value

Infant_
 value

Toddler_
 value

Age_Group_value

64

More defined kinds of animals

! Before classification, trees ! After classification, DAGs

65

Part III – Hands On

! Be sure you have installed the software
! (See front page)

! Open Animals-tutorial-step-1

66

Explore the interface

67

Protégé - new abbreviated
abstract syntax

Numeric comparisons (coming
soon)

=, !, "

cardinalityexactly

maxCardinalitymax

minCardinalitymin

¬complementOf()not

!unionOf(…)…or…

"intersectionOf(…)…and…

∋hasValuehas

∀allValuesFromonly

∃someValuesFromsome

68

Protégé Old (!v3.1) Syntax

69

Explore the interface

Asserted
Hierarchy

New
Subclass
icon

Class
Description

Disjoint
Classes

70

Explore the interface

New

expression

New

restriction

Add

superclass

 Description
 “Necessary
 Conditions”

71

Explore the interface

Definition
“Necessary
 &
Sufficient
Conditions”

“Defined class”
 has necessary & sufficient conditions

 () 72

Explore the interface

Classify button
(racer must be
running*)

*Or some other DIG compliant classifier

73

Exercise 1

! Create a new animal, an Elephant and an
Ape
! Make them disjoint from the other animals

! Make the ape an omnivore
! eats animals and eats plants

! Make the sheep a herbivore
! eats plants and only plants

74

Exercise 1b: Classification

! Check it with the classifier

! Is Sheep classified under Herbivore
! If not, have you forgot the closure axiom?

! Did it all turn red?
! Do you have too many disjoint axioms?

75

Exercise 1c: checking disjoints –
make things that should be inconsistent

! Create a Probe_Sheep_and_Cow that is a
kind of both Sheep and Cow

! Create a Probe_Ape_and_Man that is a
kind of both Ape and Man

! Run the classifier

! Did both probes turn red?
! If not, check the disjoints

76

Exercise 2: A new value partition

! Create a new value partition
! Size_partition

! Big
! Medium
! Small

! Describe
! Lions, Cows, and Elephants asBig

 domestic_cat as Small
 the rest Medium

77

Exercise 2b

! Define Big_animal and Small_animal
! Does the classification work

! Extra
! Make a subdivision of Big for Huge and make

elephants Huge
! Do elephants still classify as “Big Animal

78

Part IV – Patterns: n-ary relations

! Upper ontologies & Domain ontologies

! Building from trees and untangling

! Using a classifier

! Closure axioms & Open World Reasoning

! Specifying Values

! n-ary relations

! Classes as values – using the ontology

79

Saying something about a
restriction

! Not just
! that an a book is good but who said so
! And its price
! And where to buy it

! But can say nothing about properties
! except special thing

! Super and subproperties
! Functional, transitive, symmetric

N-ary Relations

Binary Relation

! According to whom?

"Lions:
Life in the Pride"

excellent
quality

Adding attributes to a Relation

"Lions:
Life in the Pride"

excellent

NY Times
Book review

quality

Define a class for a relation:
Reification

"Lions:
Life in the Pride"

Description_1

Quality: Excellent

Source: NY Times Book review

quality
description

Class: Description

instance-of

A Relation Between Multiple
Participants

John buys “Lions:Life in the Pride” from books.com for $15

! Participants in this relation:
! John
! “Lions: Life in the Pride”
! books.com
! $15

! No clear “originator”

Network of Participants

John

Class: Purchase

NY Times
Book review

$15

"Lions:
Life in the Pride"

books.com

buyer
object seller

price

Considerations

! Choosing the right pattern: often
subjective
! Pattern 1: additional attributes for a relation

! Pattern 2: a network of participants

! Instances of reified relations usually don’t
have meaningful names

! Defining inverse relations is more tricky

86

87

Part V – Patterns: Classes as
 values

! Upper ontologies & Domain ontologies
! Building from trees and untangling
! Using a classifier
! Closure axioms & Open World Reasoning
! Specifying Values
! n-ary relations
! Classes as values – using the ontology

! Part-whole relations

88

Using Classes as Property Values

subject

dc:subject
Animal

African

Lion

Lion Tiger

89

Using Classes Directly As Values

rdfs:subclassOf

Animal

African

Lion

Lion

rdfs:subclassOf
"Lions:

Life in the Pride"

”The African
Lion"

rdf:type

rdf:type

dc:subject

dc:subject

BookAboutAnimals

90

Representation in Protégé

91

Approach 1: Considerations

! Compatible with OWL Full and RDF
Schema

! Outside OWL DL
! Because classes cannot be values in OWL-

DL
! Nothing can be both a class and and instance

92

Approach 2: Hierarchy of
Subjects

"Lions:
Life in the Pride"

”The African
Lion"

rdf:type

rdf:type

dc:subject

dc:subject

AfricanLionSubject

LionSubject

rdf:type

rdf:type

Animal

African

Lion

Lion

rdfs:subclassOf

rdfs:subclassOf

BookAboutAnimals

93

Hierarchy of Subjects:
Considerations

! Compatible with OWL DL
! Instances of class Lion are now

subjects
! No direct relation between

LionSubject and
AfricalLionSubject

! Maintenance penalty

Lion

LionSubject

rdf:type

African

Lion

AfricanLionSubject

rdf:type

rdfs:subclassOf

94

Hierarchy of Subjects

"Lions:
Life in the Pride"

”The African
Lion"

rdf:type

rdf:type

dc:subject

dc:subject

AfricanLionSubject

LionSubject
rdf:type

rdf:type

Subject

rdfs:seeAlso

rdfs:seeAlso

Animal

African

Lion

Lion

rdfs:subclassOf

rdfs:subclassOf

BookAboutAnimals

parentSubject

95

Hierarchy of Subjects:
Considerations

! Compatible with OWL DL

! Subject hierarchy
(terminology) is
independent of class
hierarchy (rdfs:seeAlso)

! Maintenance penalty

Lion

LionSubject

rdf:type

African

Lion

AfricanLionSubject

rdfs:subclassOf

Subject

parentSubjectrdfs:seeAlso

96

Using members of a class as
values

Animal

African

Lion

Lion

rdfs:subclassOf

rdfs:subclassOf

BookAboutAnimals

"Lions:
Life in the Pride"

”The African
Lion"

rdf:type

rdf:type

rdf:type

rdf:type dc:subject

dc:subject

some

Unidentified Lion(s)

some Unidentified

African Lion(s)

97

Representation in Protege

rdf:typ

e

Note: no subject value
98

Considerations

! Compatible with OWL DL

! Interpretation: the subject is one or more
specific lions, rather than the Lion class

! Can use a DL reasoner to classify specific
books

99

Part VI – Patterns:
Part-whole relations

! Upper ontologies & Domain ontologies
! Building from trees and untangling
! Using a classifier
! Closure axioms & Open World Reasoning
! Specifying Values
! n-ary relations
! Classes as values – using the ontology
! Part-whole relations

100

Part-whole relations
One method: NOT a SWBP draft

! How to represent part-whole relations in
OWL is a commonly asked question

! SWBP will put out a draft.

! This is one approach that will be proposed
! It has been used in teaching

! It has no official standing

! It is presented for information only

101

Part Whole relations

! OWL has no special constructs
! But provides (some of) the building blocks

! Transitive relations
! Finger is_part_of Hand

 Hand is_part_of Arm
 Arm is_part_of Body
! "

! Finger is_part_of Body

102

Many kinds of part-whole
relations

! Physical parts
! hand-arm

! Geographic regions
! Hiroshima - Japan

! Functional parts
! cpu – computer

! See Winston & Odell
 Artale
 Rosse

103

Simple version

! One property is_part_of

! transitive

! Finger is_part_of some Hand
Hand is_part_of some Arm
Arm is_part_of some Body

104

Get a simple list

! Probe_part_of_body =
 Domain_category
 is_part_of some Body ! Logically correct

! But may not be what
we want to see

105

Injuries, Faults, Diseases, Etc.

! A hand is not a kind of a body
! … but an injury to a hand is a kind of injury to

 a body

! A motor is not a kind of automobile
! … but a fault in the motor is a kind of fault in

 the automobile

! And people often expect to see partonomy hierarchies

106

Being more precise: “Adapted SEP
Triples”

! Body (‘as a whole’)
! Body

! The Body’s parts
! is_part_of some Body

! The Body and it’s parts
! Body OR is_part_of some Body

! Repeat for all parts
! Use ‘Clone class’ or
! NB: ‘JOT’ Python plugin is good for this

107

Adapted SEP triples:
UML like view

Forearm

Arm
Part of

Arm

Hand

Arm OR part part of arm
has_locus

some
Injury to Arm

(or part of arm)

Injury to Hand has_locus

some

108

Adapted SEP triples:
Venn style view

Arm or parts of Arm

Arm

Parts of Arm

Hand
Fore

Arm

109

Resulting classification:
Ugly to look at, but correct

110

Using part-whole relations:
Defining injuries or faults

! Injury_to_Hand =
 Injury has_locus some
Hand_or_part_of_hand

! Injury_to_Arm =
 Injury has_locus some Arm_or_part_of_Arm

! Injury_to_Body =
 Injury has_locus some
Body_or_part_of_Body

! The expected
hierarchy from
point of view of
anatomy

111

Caution with part of

! Motor is_part_of some Car

! Means “All motors are part of some car”
! Obviously false!

! But convenient to get:
Car_part =
 is_part_of some Car
 subsumes
 Motor

! To be correct must use
“Car_motor =
 Motor and is_part_of some Car

112

Geographical regions and
individuals

! Similar representation possible for
individuals but more difficult
! and less well explored

113

Simplified view:
Geographical_regions

! Class: Geographical_region
! Include countries, cities, provinces, …

! A detailed ontology would break them down

! Geographical features
! Include Hotels, Mountains, Islands, etc.

! Properties:
! Geographical_region is_subregion_of Geographical_Region
! Geographical_feature has_location Geographical_Region

! Features located in subregions are located in the region.
is_subregion_of is transitive

114

Geographical regions & features
are represented as individuals

! Japan, Honshu, Hiroshima,
Hiroshima-ken,…

! Mt_Fuji, Hiroshima_Prince_Hotel, …

115

Facts*

! Honshu is_subregion_of hasValue Japan
Hiroshima-ken is_subregion_of hasValue Honshu
Hiroshima is_subregion_of hasValue Hiroshima-ken

! Mt_Fuji has_location hasValue Honshu
Hiroshima_prince_hotel has_location hasValue Hiroshima-ken

*with apologies for any errors in Japanese geography
116

Definitions
! Region_of_Japan =

 Geographical_region AND

 is_subregion_of hasValue Japan

! Feature_of_Japan =
 Geographical_feature AND
 (hasLocation hasValue Japan OR
 hasLocation hasValue Region_of_Japan)

117

In tools at this time

! Must ask from right mouse button menu in Individuals tab

! better integration under
development

118

Warning:
Individuals and reasoners

! Individuals only partly implemented in reasoners
! If results do not work, ask someone if they should!

! Open World reasoning with individuals is very difficult to implement

! If it doesn’t work, try simulating individuals by classes

! Large sets of individuals better in “Instance Stores”, RDF
triple stores, databases, etc that are restricted or closed
world

! Ontologies are mainly about classes

! Ontologies are NOT databases

119

Part-whole in OWL

! Note - the only aspect of the part whole
relation represented in OWL is transitivity
! “Mereologists” (those who study parts-whole

relations) define other axioms
! Antisymmetry (nothing can be part of itself)

! Reflexive (everything is a part of itself)

! Weak supplementation principle -
! When you take away a part (except the whole), you

leave something behind

120

Qualified cardinality constraints

! Use with partonomy

! Use with n-ary relations

121

Cardinality Restrictions

! “All mammals have four limbs”
! “All Persons have two legs and two arms”

! “(All mammals have two forelimbs and two
 hind limbs)”

122

What we would like to say:
Qualified cardinality constraints

! Mammal
has_part cardinality=4 Limb

! Mammal
 has_part cardinality = 2 Forelimb
 has_part cardinality = 2 Hindlimb

! Arm = Forelimb AND is_part_of some Person

Glossary: “Forelimb” = front leg or arm

 “Hindlimb” = back leg

123

What we have to say in OWL

! The property has_part has subproperties:
 has_limb
 has_leg
 has_arm
 has_wing

! Mammal, Reptile, Bird has_limb cardinality=4
Person has_leg cardinality=2
Cow, Dog, Pig… has_leg cardinality=4
Bird has_leg cardinality=2

! Biped = Animal AND
has_leg cardinality=2

124

Classification of bipeds and
quadrupeds

! Before
classification

! After
classificaiton

125

Cardinality and n-ary relations

! Need to control cardinality of relations
represented as classes
! An animal can have just 1 “dangerousness”

! Requires a special subproperty of quality:
! has_dangerousness_quality cardinality=1

126

Re-representing the property has_danger as
the class Risk

Animal Dangerous
has_danger

cardinality=1

‘functional’

Animal Risk
has_Quality

cardinality=1

Risk_type

Seriousness

Avoidance

ha
s_
ris
k_
ty
pe

ca
rd
in
al
ity
=1

has_seriousness

cardinality=1has_avoidance

cardinality=1

127

In OWL must add subproperty for each quality
to control cardinality, e.g. has_risk_quality

! Leads to a proliferation of subproperties
! The issue of “Qualified Cardinality Constraints”

Animal Risk
has_Risk_Quality

cardinality=1

Risk_type

Seriousness

Avoidance

ha
s_
ris
k_
ty
pe

ca
rd
in
al
ity
=1

has_seriousness

cardinality=1has_avoidance

cardinality=1

special
subproperty of has_quality

128

129

Part VII – Summary

! Upper ontologies & Domain ontologies
! Building from trees and untangling
! Using a classifier
! Closure axioms & Open World Reasoning
! Specifying Values
! n-ary relations
! Classes as values – using the ontology
! Part-whole relations

! Transitive properties
! Qualified cardinality restrictions

130

End

! To find out more:
! http://www.co-ode.org

! Comprehensive tutorial and sample ontologiesxz
! http://protege.stanford.org

! Subscribe to mailing lists; participate in forums

! On the SW in general:
semanticweb@yahoogroups.com

! For specific feedback to SWBP
! Home & Mail Archive:

http://www.w3.org/2001/sw/BestPractices/
public-swbp-wg@w3.org

131

Part VI – Hands On supplement

! Open Animals-tutorial-step-2

132

Exercise 3: (Advanced supplement)

! Load Animals-Tutorial-complete.pprj

! Define a new kind of Limb – Wing

! Describe birds as having 2 wings

! Define a Two-Winged_animal

! Does bird classify under
Two-Winged_animal?

