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Knowledge Representation in Protégé –OWL
Please install from CDs or USB pens provided:

!http://www.co-ode.org/resources/tutorials/iswc2005

!Protégé 3.2 Beta – complete installation

!See instructions for other software on web site
! You will need
! At least one classifier - Racer, FaCT++ and/or Pellet
! Graphviz
! The example ontologies
! The CO-ODE plugins not bundled with 3.2 beta

(a single zip on web site)
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Part I: Ontologies & “Best
Practice”

! What are Ontologies & a review of
History

! Semantic Web
! OWL
! “Best Practice”

! Semantic Web Best Practice &
Deployment Working Group (SWBP)
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What Is An Ontology?

! Ontology (Socrates & Aristotle 400-360 BC)
! The study of being
! Word borrowed by computing for the

 explicit description of the conceptualisation of a domain:
! concepts
! properties and attributes of concepts
! constraints on properties and attributes
! Individuals (often, but not always)

! An ontology defines
! a common vocabulary
! a shared understanding

6

Why Develop an Ontology?

! To share common understanding of the
structure of descriptive information
! among people
! among software agents
! between people and software

! To enable reuse of domain knowledge
! to avoid “re-inventing the wheel”
! to introduce standards to allow interoperability
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Measure the world…quantitative models
(not ontologies)

! Quantitative
! Numerical data:

! 2mm, 2.4V, between 4 and 5 feet

! Unambiguous tokens
! Main problem is accuracy at initial capture
! Numerical analysis (e.g. statistics) well

understood

! Examples:
! How big is this breast lump?
! What is the average age of patients with

cancer ?
! How much time elapsed between original

referral and first appointment at the hospital ?
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describe the our understanding of
the world - ontologies

! Qualitative
! Descriptive data

! Cold, colder, blueish, not pink, drunk

! Ambiguous tokens
! What’s wrong with being drunk ?

! Ask a glass of water.

! Accuracy poorly defined
! Automated analysis or aggregation is a new science

! Examples
! Which animals are dangerous ?
! What is their coat like?
! What do animals eat ?
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More Reasons

! To make domain assumptions explicit

! easier to change domain assumptions (consider a
genetics knowledge base)

! easier to understand and update legacy data

! To separate domain knowledge from the
operational knowledge
! re-use domain and operational knowledge

separately (e.g., configuration based on
constraints)

! To manage the combinatorial explosion
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An Ontology should be just the
Beginning

Ontologies

Software

agents Problem-

solving

methods Domain-

independent

applications

DatabasesDeclare

structure

Knowledge

bases
Provide

domain

description

The

“Semantic

Web”

11

Outline

! What are Ontologies

! Semantic Web

! OWL

! Best Practice
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The semantic web

! Tim Berners-Lee’s dream of a computable
meaningful web
! Now critical to Web Services and Grid

computing

! Metadata with everything
! Machine understandable!

! Ontologies are one of the keys
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Understanding rather than text matching

! Mark Musen

! Alan Rector

! Google image results for
! Charlie Safran
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Ontology Examples

! Taxonomies on the Web
! Yahoo! categories

! Catalogs for on-line shopping
! Amazon.com product catalog

! Dublin Core and other standards for the Web

! Domain independent examples
! Ontoclean

! Sumo
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Ontology Technology

! “Ontology” covers a range of things
! Controlled vocabularies – e.g. MeSH

! Linguistic structures – e.g. WordNet

! Hierarchies (with bells and whistles) – e.g. Gene
Ontology

! Frame representations – e.g. FMA
! Description logic formalisms – Snomed-CT,

GALEN, OWL-DL based ontologies
! Philosophically inspired e.g. Ontoclean and SUMO
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Outline

! What are Ontologies

! Semantic Web

! OWL

! Best Practice
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OWL
The Web Ontology Language

! W3C standard
! Collision of DAML (frames) and Oil (DLs in Frame

clothing)
! Three ‘flavours’

! OWL-Lite –simple but limited
! OWL-DL – complex but deliverable (real soon now)
! OWL-Full – fully expressive but serious

logical/computational problems
! Russel Paradox etc etc

! All layered (awkwardly) on RDF Schema

! Still work in progress – see Semantic Web Best
Practices & Deployment Working Group (SWBP)
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Note on syntaxes for OWL
! Three official syntaxes + Protégé-OWL syntax

! Abstract syntax -Specific to OWL
! N3  -OWL & RDF

-used in all SWBP documents
! XML/RDF -very verbose
! Protégé-OWL -Compact, derived from DL syntax

! This tutorial uses simplified abstract syntax
! someValuesFrom " some

! allValuesFrom " only

! intersectionOf " AND
! unionOf " OR
! complementOf " not

! Protégé/OWL can generate all syntaxes
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A simple ontology: Animals

Living Thing

Grass

Animal

Plant

Tree

Body Part

Arm

Leg

Person

Cow

Carnivore

Herbivore
eats

eats

eats

has part
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Description Logics

! What the logicians made of Frames
! Greater expressivity and semantic precision

! Compositional definitions
! “Conceptual Lego” – define new concepts from old

! To allow automatic classification & consistency
checking
! The mathematics of classification is tricky

! Some seriously counter-intuitive results
! The basics are simple – devil in the detail
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Description Logics

! Underneath:
! computationally tractable subsets of first order logic

! Describes relations between Concepts/Classes
! Individuals secondary

!  DL Ontologies are NOT databases!
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Description Logics:
A brief history

! Informal Semantic Networks and Frames (pre 1980)
! Wood: What’s in a Link; Brachman What IS-A is and IS-A isn’t.

! First Formalisation (1980)
! Bobrow KRL, Brachman: KL-ONE

! All useful systems are intractable (1983)
! Brachman & Levesque: A fundamental tradeoff

! Hybrid systems: T-Box and A-Box

! All tractable systems are useless (1987-1990)
! Doyle and Patel: Two dogmas of Knowledge Representation
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A brief history of KR

! ‘Maverick’ incomplete/intractable logic systems (1985-90)
! GRAIL, LOOM, Cyc, Apelon, …, 

! Practical knowledge management systems based on frames
! Protégé

! The German School: Description Logics (1988-98)
! Complete decidable algorithms using tableaux methods (1991-1992)
! Detailed catalogue of complexity  of family – “alphabet soup of systems”

! Optimised systems for practical cases (1996-)

! Emergence of the Semantic Web
! Development of DAML (frames), OIL (DLs) " DAML+OIL " OWL

! Development of Protégé-OWL

! A dynamic field – constant new developments & possibilities
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Outline

! What are Ontologies
! Semantic Web
! OWL
! “Best Practice”

! Semantic Web Best Practice & Deployment
Working Group (SWBP)
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Why the
“Best Practice working Group”?
! There is no established “best practice”

! It is new; We are all learning
! A place to gather experience
! A catalogue of things that work –

Analogue of Software Patterns
! Some pitfalls to avoid

!…but there is no one way

! Learning to build ontologies
! Too many choices

! Need starting points for gaining experience

! Provide requirements for tool builders
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Contributing to “best practice”

! Please give us feedback
! Your questions and experience

! On the SW in general:
semanticweb@yahoogroups.com

! For specific feedback to SWBP
! Home & Mail Archive:

http://www.w3.org/2001/sw/BestPractices/
public-swbp-wg@w3.org
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Protégé OWL: New tools for
ontologies

! Transatlantic collaboration

! Implement robust OWL environment within
PROTÉGÉ framework

! Shared UI
components

! Enables hybrid
working
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Protégé-OWL & CO-ODE

! Joint work: Stanford & U Manchester +
                   Southampton & Epistemics
! Please give us feedback on tools – mailing lists & forums at:

! protege.stanford.edu

! www.co-ode.org

! Don’t beat your head against a brick wall!
! Look to see if others have had the same problem; If not…
! ASK!

! We are all learning.
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Part II – Creating an ontology
              Useful patterns

! Upper ontologies & Domain ontologies

! Building from trees and untangling
! Using a classifier
! Closure axioms
! Specifying Values
! n-ary relations
! Classes as values – using the ontology
! Part-whole relations
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 Upper Ontologies

! Ontology Schemas
! High level abstractions to constrain

construction
! e.g. There are “Objects” & “Processes”

! Highly controversial
! Sumo, Dolce, Onions, GALEN, SBU,…

! Needed when you work with many people
together

! NOT in this tutorial – a different tutorial
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Domain Ontologies

! Concepts specific to a field
! Diseases, animals, food, art work, languages, …
! The place to start

! Understand ontologies from the bottom up
! Or middle out

! Levels
! Top domain ontologies – the starting points for the field

! Living Things, Geographic Region, Geographic_feature
! Domain ontologies – the concepts in the field

! Cat, Country, Mountain
! Instances – the things in the world

! Felix the cat,  Japan,  Mt Fuji
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Part II – Useful Patterns
              (continued)

! Upper ontologies & Domain ontologies

! Building from trees and untangling

! Using a classifier

! Closure axioms & Open World Reasoning

! Specifying Values

! n-ary relations

! Classes as values – using the ontology
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Example: Animals & Plants

! Dog
! Cat
! Cow
! Person
! Tree
! Grass
! Herbivore
! Male
! Female

! Dangerous
! Pet
! Domestic Animal
! Farm animal
! Draft animal
! Food animal
! Fish
! Carp
! Goldfish

! Carnivore

! Plant

! Animal

! Fur

! Child

! Parent

! Mother

! Father
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Example: Animals & Plants

! Dog
! Cat
! Cow
! Person
! Tree
! Grass
! Herbivore
! Male
! Female

! Healthy
! Pet
! Domestic Animal
! Farm animal
! Draft animal
! Food animal
! Fish
! Carp
! Goldfish

! Carnivore

! Plant

! Animal

! Fur

! Child

! Parent

! Mother

! Father
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Choose some main axes
Add abstractions where needed; identify relations;
Identify definable things, make names explicit

! Living Thing
! Animal

! Mammal
! Cat

! Dog

! Cow

! Person

! Fish
! Carp

! Goldfish

! Plant
! Tree

! Grass

! Fruit

! Modifiers
! domestic

! pet
! Farmed

! Draft
! Food

! Wild
! Health

! healthy
! sick

! Sex
! Male
! Female

! Age
! Adult
! Child

! Definable
! Carinvore
! Herbivore
! Child
! Parent
! Mother
! Father
! Food

Animal
! Draft Animal

! Relations
! eats
! owns
! parent-of
! …
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Reorganise everything but “definable” things into
pure trees – these will be the “primitives”

! Primitives
! Living Thing

! Animal

! Mammal
! Cat

! Dog

! Cow

! Person

! Fish
! Carp

  Goldfish

! Plant

! Tree

! Grass

! Fruit

! Modifiers
! Domestication

! Domestic

! Wild

! Use
! Draft

! Food

! pet

! Risk

! Dangerous

! Safe

! Sex

! Male

! Female

! Age

! Adult

! Child

! Definables
! Carnivore
! Herbivore
! Child
! Parent
! Mother
! Father
! Food

Animal
! Draft Animal

! Relations
! eats
! owns
! parent-of
! …
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Set domain and range constraints
for properties

! Animal eats Living_thing
! eats domain: Animal;

       range:    Living_thing

! Person owns Living_thing except person
! owns domain: Person

         range:    Living_thing & not Person

! Living_thing parent_of Living_thing
! parent_of: domain: Animal

                  range:   Animal
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Define the things that are definable
from the primitives and relations

! Parent =
   Animal and parent_of some Animal

! Herbivore=
   Animal and eats only Plant

! Carnivore =
   Animal and eats only Animal
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Which properties can be filled in
at the class level now?

! What can we say about all members of a
class?
! eats

! All cows eat some plants

! All cats eat some animals

! All dogs eat some animals &
              eat some plants
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Fill in the details
(can use property matrix wizard)
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Check with classifier

! Cows should be Herbivores
! Are they? why not?

! What have we said?
! Cows are animals and, amongst other things,

   eat some grass and
   eat some leafy_plants

! What do we need to say:
Closure axiom

! Cows are animals and, amongst other things,

eat some plants and eat only plants
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Closure Axiom

! Cows are animals and, amongst other things,
eat some plants and eat only plants

Closure

Axiom
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In the tool

adds closure 

axiom

! Right mouse
button short cut
for closure axiom
! for any existential

restriction
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Open vs Closed World reasoning

! Open world reasoning
! Negation as contradiction

! Anything might be true unless it can be proven
false

! Reasoning about any world consistent with this one

! Closed world reasoning
! Negation as failure

! Anything that cannot be found is false
! Reasoning about this world
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Normalisation and Untangling
Let the reasoner do multiple classification

! Tree
! Everything has just one parent

! A ‘strict hierarchy’

! Directed Acyclic Graph (DAG)
! Things can have multiple parents

! A ‘Polyhierarchy’

! Normalisation
! Separate primitives into disjoint trees

! Link the trees with restrictions

! Fill in the values

46

Tables are easier to manage than
DAGs / Polyhierarchies

…and get the benefit of inference:
Grass and Leafy_plants are both kinds of Plant
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Remember to add any closure
axioms

Then let the reasoner do the work

Closure
Axiom
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Normalisation:
From Trees to DAGs

! Before classification
! A tree

! After classification
! A DAG

! Directed Acyclic Graph
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Part II – Useful Patterns
              (continued)

! Upper ontologies & Domain ontologies

! Building from trees and untangling

! Using a classifier

! Closure axioms & Open World Reasoning

! Specifying Values

! n-ary relations

! Classes as values – using the ontology
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Examine the modifier list

! Identify modifiers that have
mutually exclusive values
! Domestication
! Risk
! Sex
! Age

! Make meaning precise
! Age " Age_group

! NB Uses are not mutually
exclusive
! Can be both a draft (pulling) and

a food animal

! Modifiers
! Domestication

! Domestic

! Wild

! Use
! Draft

! Food

! Risk

! Dangerous

! Safe

! Sex

! Male

! Female

! Age

! Adult

! Child
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Extend and complete lists of
values

! Identify modifiers that have
mutually exclusive values
! Domestication
! Risk
! Sex
! Age

! Make meaning precise
! Age " Age_group

! NB Uses are not mutually
exclusive
! Can be both a draft and a food

animal

! Modifiers
! Domestication

! Domestic

! Wild

! Feral

! Risk

! Dangerous

! Risky

! Safe

! Sex

! Male

! Female

! Age

! Infant

! Toddler

! Child

! Adult

! Elderly
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Note any hierarchies of values

! Identify modifiers that have
mutually exclusive values
! Domestication
! Risk
! Sex
! Age

! Make meaning precise
! Age " Age_group

! NB Uses are not mutually
exclusive
! Can be both a draft and a food

animal

! Modifiers
! Domestication

! Domestic

! Wild

! Feral

! Risk

! Dangerous

! Risky

! Safe

! Sex

! Male

! Female

! Age

! Child

! Infant

! Toddler

! Adult

! Elderly
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Specify Values for each:
Two methods

! Value partitions
! Classes that partition a Quality

! The disjunction of the partition classes equals the
quality class

! Symbolic values
! Individuals that enumerate all states of a Quality

! The enumeration of the values equals the quality
class
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Method 1: Value Partitions-
example “Dangerousness”

! A parent quality – Dangerousness
! Subqualities for each degree

! Dangerous, Risky, Safe

! All subqualities disjoint
! Subqualities ‘cover’ parent quality

! Dangerousness = Dangerous OR Risky OR Safe

! A functional property has_dangerousness
! Range is parent quality, e.g. Dangerousness
! Domain must be specified separately

! Dangerous_animal =
   Animal and has_dangerousness some Dangerous
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as created by Value Partition
wizard

disjoints

partitions

covering axiomquality
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DangerousRisky

Safe

Leo’s

Danger

Dangerous

animal
Leo the

Lion

has_
dang

erou
snes

s

som
eVal

uesF
rom

has
_da
nge
rou
sne
ss

Value partitions
Diagram

Dangerousness

Animal
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Dangerousness_

Value

Safe_

value

Risky_

value

Dangerous_

value

Animal

Dangerous

Animal

Leo the

Lion

Leo’s

Dangerousness

owl:unionOf

has_dangerousness

has_dangerousness

someValuesFrom

Value partitions UML style
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Method 2: Value sets –
Example Sex

! There are only two sexes
! Can argue that they are things

! “Administrative sex” definitely a thing

! “Biological sex” is more complicated
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Method 2: Value sets-
example Sex

! A parent quality – Sex_value
! Individuals for each value

! male, female

! Values all different (NOT assumed by OWL)

! Value type is enumeration of values
! Sex_value = {male, female}

! A functional property has_sex
! Range is parent quality, e.g. Sex_value
! Domain must be specified separately

! Male_animal =
     Animal and has_sex is male 60

Value sets UML style

Sex

Value

Person

Man

John

owl:oneOf

has_sex

has_sex

female male
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Issues in specifying values

! Value Partitions
! Can be subdivided and specialised
! Fit with philosophical notion of a quality space
! Require interpretation to go in databases as values

! in theory but rarely considered in practice

! Work better with existing classifiers in OWL-DL

! Value Sets

! Cannot be subdivided
! Fit with intuitions
! More similar to data bases – no interpretation
! Work less well with existing classifiers
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Value partitions – practical
reasons for subdivisions

! See also  “Normality_status” in
http://www.cs.man.ac.uk/~rector/ontologies/mini-top-bio
! One can have complicated value partitions if needed.

! “All elderly are adults”

! “All infants are children”

! etc.
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Picture of subdivided value
partition

       Adult_value    Child_value

     Elderly_
        value

Infant_
              value

Toddler_
               value

Age_Group_value
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More defined kinds of animals

! Before classification, trees ! After classification, DAGs
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Part III – Hands On

! Be sure you have installed the software
! (See front page)

! Open Animals-tutorial-step-1
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Explore the interface
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Protégé - new abbreviated
abstract syntax

Numeric comparisons (coming
soon)

=, !, "

cardinalityexactly

maxCardinalitymax

minCardinalitymin

¬complementOf()not

!unionOf(…)…or…

"intersectionOf(…)…and…

∋hasValuehas

∀allValuesFromonly

∃someValuesFromsome
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Protégé Old (!v3.1) Syntax
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Explore the interface

Asserted
Hierarchy

New
Subclass
icon

Class
Description

Disjoint
Classes

70

Explore the interface

New

expression

New

restriction

Add

superclass

       Description
       “Necessary
         Conditions”
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Explore the interface

Definition
“Necessary
  &
Sufficient
Conditions”

“Defined class”
           has necessary & sufficient conditions

          (        ) 72

Explore the interface

Classify button
(racer must be
running*)

*Or some other DIG compliant classifier
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Exercise 1

! Create a new animal, an Elephant and an
Ape
! Make them disjoint from the other animals

! Make the ape an omnivore
! eats animals and eats plants

! Make the sheep a herbivore
! eats plants and only plants

74

Exercise 1b: Classification

! Check it with the classifier

! Is Sheep classified under Herbivore
! If not, have you forgot the closure axiom?

! Did it all turn red?
! Do you have too many disjoint axioms?
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Exercise 1c: checking disjoints –
make things that should be inconsistent

! Create a Probe_Sheep_and_Cow that is a
kind of both Sheep and Cow

! Create a Probe_Ape_and_Man that is a
kind of both Ape and Man

! Run the classifier

! Did both probes turn red?
! If not, check the disjoints
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Exercise 2: A new value partition

! Create a new value partition
! Size_partition

! Big
! Medium
! Small

! Describe
!  Lions, Cows, and Elephants asBig

 domestic_cat as Small
 the rest Medium



77

Exercise 2b

! Define Big_animal and Small_animal
! Does the classification work

! Extra
! Make a subdivision of Big for Huge and make

elephants Huge
! Do elephants still classify as “Big Animal
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Part IV – Patterns: n-ary relations

! Upper ontologies & Domain ontologies

! Building from trees and untangling

! Using a classifier

! Closure axioms & Open World Reasoning

! Specifying Values

! n-ary relations

! Classes as values – using the ontology

79

Saying something about a
restriction

! Not just
! that an a book is good but who said so
! And its price
! And where to buy it

! But can say nothing about properties
! except special thing

! Super and subproperties
! Functional, transitive, symmetric

N-ary Relations

Binary Relation

! According to whom?

"Lions:
Life in the Pride"

excellent
quality



Adding attributes to a  Relation

"Lions:
Life in the Pride"

excellent

NY Times
Book review

quality

Define a class for a relation:
Reification

"Lions:
Life in the Pride"

Description_1

Quality: Excellent

Source: NY Times Book review

quality
description

Class: Description

instance-of

A Relation Between Multiple
Participants

John buys “Lions:Life in the Pride” from books.com for $15

! Participants in this relation:
! John
! “Lions: Life in the Pride”
! books.com
! $15

! No clear “originator”

Network of Participants

John

Class: Purchase

NY Times
Book review

$15

"Lions:
Life in the Pride"

books.com

buyer
object seller

price



Considerations

! Choosing the right pattern: often
subjective
! Pattern 1: additional attributes for a relation

! Pattern 2: a network of participants

! Instances of reified relations usually don’t
have meaningful names

! Defining inverse relations is more tricky
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Part V – Patterns: Classes as
              values

! Upper ontologies & Domain ontologies
! Building from trees and untangling
! Using a classifier
! Closure axioms & Open World Reasoning
! Specifying Values
! n-ary relations
! Classes as values – using the ontology

! Part-whole relations
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Using Classes as Property Values

subject

dc:subject
Animal

African

Lion

Lion Tiger
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Using Classes Directly As Values

rdfs:subclassOf

Animal

African

Lion

Lion

rdfs:subclassOf
"Lions:

Life in the Pride"

”The African
Lion"

rdf:type

rdf:type

dc:subject

dc:subject

BookAboutAnimals
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Representation in Protégé

91

Approach 1: Considerations

! Compatible with OWL Full and RDF
Schema

! Outside OWL DL
! Because classes cannot be values in OWL-

DL
! Nothing can be both a class and and instance
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Approach 2: Hierarchy of
Subjects

"Lions:
Life in the Pride"

”The African
Lion"

rdf:type

rdf:type

dc:subject

dc:subject

AfricanLionSubject

LionSubject

rdf:type

rdf:type

Animal

African

Lion

Lion

rdfs:subclassOf

rdfs:subclassOf

BookAboutAnimals
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Hierarchy of Subjects:
Considerations

! Compatible with OWL DL
! Instances of class Lion are now

subjects
! No direct relation between

LionSubject and
AfricalLionSubject

! Maintenance penalty

Lion

LionSubject

rdf:type

African

Lion

AfricanLionSubject

rdf:type

rdfs:subclassOf
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Hierarchy of Subjects

"Lions:
Life in the Pride"

”The African
Lion"

rdf:type

rdf:type

dc:subject

dc:subject

AfricanLionSubject

LionSubject
rdf:type

rdf:type

Subject

rdfs:seeAlso

rdfs:seeAlso

Animal

African

Lion

Lion

rdfs:subclassOf

rdfs:subclassOf

BookAboutAnimals

parentSubject
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Hierarchy of Subjects:
Considerations

! Compatible with OWL DL

! Subject hierarchy
(terminology) is
independent of class
hierarchy (rdfs:seeAlso)

! Maintenance penalty

Lion

LionSubject

rdf:type

African

Lion

AfricanLionSubject

rdfs:subclassOf

Subject

parentSubjectrdfs:seeAlso
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Using members of a class as
values

Animal

African

Lion

Lion

rdfs:subclassOf

rdfs:subclassOf

BookAboutAnimals

"Lions:
Life in the Pride"

”The African
Lion"

rdf:type

rdf:type

rdf:type

rdf:type dc:subject

dc:subject

some

Unidentified Lion(s)

some Unidentified 

African Lion(s)



97

Representation in Protege

rdf:typ

e

Note: no subject value
98

Considerations

! Compatible with OWL DL

! Interpretation: the subject is one or more
specific lions, rather than the Lion class

! Can use a DL reasoner to classify specific
books
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Part VI – Patterns:
Part-whole relations

! Upper ontologies & Domain ontologies
! Building from trees and untangling
! Using a classifier
! Closure axioms & Open World Reasoning
! Specifying Values
! n-ary relations
! Classes as values – using the ontology
! Part-whole relations

100

Part-whole relations
One method: NOT a SWBP draft

! How to represent part-whole relations in
OWL is a commonly asked question

! SWBP will put out a draft.

! This is one approach that will be proposed
! It has been used in teaching

! It has no official standing

! It is presented for information only
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Part Whole relations

! OWL has no special constructs
! But provides (some of) the building blocks

! Transitive relations
! Finger is_part_of Hand

  Hand is_part_of Arm
     Arm is_part_of Body
! "

!  Finger is_part_of Body

102

Many kinds of part-whole
relations

! Physical parts
! hand-arm

! Geographic regions
! Hiroshima - Japan

! Functional parts
! cpu – computer

! See Winston & Odell
        Artale
        Rosse

103

Simple version

! One property is_part_of

! transitive

! Finger is_part_of some Hand
Hand is_part_of some Arm
Arm is_part_of some Body
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Get a simple list

! Probe_part_of_body =
  Domain_category
  is_part_of some Body ! Logically correct

! But may not be what
we want to see
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Injuries, Faults, Diseases, Etc.

! A hand is not a kind of a body
! … but an injury to a hand is a kind of injury to

     a body

! A motor is not a kind of automobile
! … but a fault in the motor is a kind of fault in

     the automobile

! And people often expect to see partonomy hierarchies
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Being more precise: “Adapted SEP
Triples”

! Body (‘as a whole’)
! Body

! The Body’s parts
! is_part_of some Body

! The Body and it’s parts
! Body OR is_part_of some Body

! Repeat for all parts
! Use ‘Clone class’ or
! NB: ‘JOT’ Python plugin is good for this
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Adapted SEP triples:
UML like view

Forearm

Arm
Part of

Arm

Hand

Arm OR part part of arm
has_locus

some
Injury to Arm

(or part of arm)

Injury to Hand has_locus

some
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Adapted SEP triples:
Venn style view

Arm or parts of Arm

Arm

Parts of Arm

Hand
Fore

Arm
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Resulting classification:
Ugly to look at, but correct
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Using part-whole relations:
Defining injuries or faults

! Injury_to_Hand =
  Injury has_locus some
Hand_or_part_of_hand

! Injury_to_Arm =
  Injury has_locus some Arm_or_part_of_Arm

! Injury_to_Body =
   Injury has_locus some
Body_or_part_of_Body

! The expected
hierarchy from
point of view of
anatomy
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Caution with part of

! Motor is_part_of some Car

! Means “All motors are part of some car”
! Obviously false!

! But convenient to get:
Car_part =
    is_part_of some Car
      subsumes
          Motor

! To be correct must use
“Car_motor =
        Motor and is_part_of some Car
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Geographical regions and
individuals

! Similar representation possible for
individuals but more difficult
! and less well explored
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Simplified view:
Geographical_regions

! Class: Geographical_region
! Include countries, cities, provinces, …

! A detailed ontology would break them down

! Geographical features
! Include Hotels, Mountains, Islands, etc.

! Properties:
! Geographical_region is_subregion_of Geographical_Region
! Geographical_feature has_location Geographical_Region

! Features located in subregions are located in the region.  
is_subregion_of is transitive
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Geographical regions & features
are represented as individuals

! Japan, Honshu, Hiroshima,
Hiroshima-ken,…

! Mt_Fuji, Hiroshima_Prince_Hotel, …
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Facts*

! Honshu is_subregion_of hasValue Japan
Hiroshima-ken is_subregion_of hasValue Honshu
Hiroshima is_subregion_of hasValue Hiroshima-ken

! Mt_Fuji has_location hasValue Honshu
Hiroshima_prince_hotel has_location hasValue Hiroshima-ken

*with apologies for any errors in Japanese geography
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Definitions
! Region_of_Japan =

    Geographical_region AND

    is_subregion_of hasValue Japan

! Feature_of_Japan =
    Geographical_feature AND
    ( hasLocation hasValue Japan OR
      hasLocation hasValue Region_of_Japan )
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In tools at this time

! Must ask from right mouse button menu in Individuals tab

! better integration under
development
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Warning:
Individuals and reasoners

! Individuals only partly implemented in reasoners
! If results do not work, ask someone if they should!

! Open World reasoning with individuals is very difficult to implement

! If it doesn’t work, try simulating individuals by classes

! Large sets of individuals better in “Instance Stores”, RDF
triple stores, databases, etc that are restricted or closed
world

! Ontologies are mainly about classes

! Ontologies are NOT databases
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Part-whole in OWL

! Note - the only aspect of the part whole
relation represented in OWL is transitivity
! “Mereologists” (those who study parts-whole

relations) define other axioms
! Antisymmetry (nothing can be part of itself)

! Reflexive (everything is a part of itself)

! Weak supplementation principle -
! When you take away a part (except the whole), you

leave something behind
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Qualified cardinality constraints

! Use with partonomy

! Use with n-ary relations
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Cardinality Restrictions

! “All mammals have four limbs”
! “All Persons have two legs and two arms”

! “(All mammals have two forelimbs and two
  hind limbs)”

122

What we would like to say:
Qualified cardinality constraints

! Mammal
has_part cardinality=4 Limb

! Mammal
     has_part cardinality = 2 Forelimb
     has_part cardinality = 2 Hindlimb

! Arm = Forelimb AND is_part_of some Person

Glossary: “Forelimb” = front leg or arm

                  “Hindlimb” = back leg
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What we have to say in OWL

! The property has_part has subproperties:
                        has_limb   
                           has_leg
                           has_arm
                           has_wing

! Mammal, Reptile, Bird has_limb cardinality=4
Person   has_leg cardinality=2
Cow, Dog, Pig… has_leg cardinality=4
Bird  has_leg cardinality=2

! Biped = Animal AND
has_leg cardinality=2
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Classification of bipeds and
quadrupeds

! Before
classification

! After
classificaiton
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Cardinality and n-ary relations

! Need to control cardinality of relations
represented as classes
! An animal can have just 1 “dangerousness”

! Requires a special subproperty of quality:
! has_dangerousness_quality cardinality=1
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Re-representing the property has_danger as
the class Risk

Animal Dangerous
has_danger

cardinality=1

‘functional’

Animal Risk
has_Quality

cardinality=1

Risk_type

Seriousness

Avoidance

ha
s_
ris
k_
ty
pe

ca
rd
in
al
ity
=1

has_seriousness

cardinality=1has_avoidance

cardinality=1
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In OWL must add subproperty for each quality
to control cardinality, e.g. has_risk_quality

! Leads to a proliferation of subproperties
! The issue of “Qualified Cardinality Constraints”

Animal Risk
has_Risk_Quality

cardinality=1

Risk_type

Seriousness

Avoidance

ha
s_
ris
k_
ty
pe

ca
rd
in
al
ity
=1

has_seriousness

cardinality=1has_avoidance

cardinality=1

special
subproperty of has_quality

128
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Part VII – Summary

! Upper ontologies & Domain ontologies
! Building from trees and untangling
! Using a classifier
! Closure axioms & Open World Reasoning
! Specifying Values
! n-ary relations
! Classes as values – using the ontology
! Part-whole relations

! Transitive properties
! Qualified cardinality restrictions
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End

! To find out more:
! http://www.co-ode.org

! Comprehensive tutorial and sample ontologiesxz
! http://protege.stanford.org

! Subscribe to mailing lists; participate in forums

! On the SW in general:
semanticweb@yahoogroups.com

! For specific feedback to SWBP
! Home & Mail Archive:

http://www.w3.org/2001/sw/BestPractices/
public-swbp-wg@w3.org
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Part VI – Hands On supplement

! Open Animals-tutorial-step-2
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Exercise 3: (Advanced supplement)

! Load Animals-Tutorial-complete.pprj

! Define a new kind of Limb – Wing

! Describe birds as having 2 wings

! Define a Two-Winged_animal

! Does bird classify under
Two-Winged_animal?


