Building Systems with Ontologies and Problem-Solving Methods BMI 210A / CS 270A

> Mark A. Musen Stanford Medical Informatics Stanford University

Conceptual building blocks for intelligent systems

Domain ontologies

 Characterization of concepts and relationships in an application area, providing a domain of discourse

Problem-solving methods

 Abstract algorithms for achieving solutions to stereotypical tasks (e.g., constraint satisfaction, classification, planning, Bayesian inference)

Common KADS

- Result of nearly 15 years of collaborative research in the European Union
- Centered at University of Amsterdam, with dozens of other partners
- Applies principled, software-engineering approach to development of intelligent systems
- De facto standard for building intelligent systems in Europe

Phases of system development

Conceptual modeling

 Conceiving what the system needs to do to meet its requirements

Design modeling

 Building an abstract design for the computer system

Implementation

 Choosing and programming software modules that build the design

Modern, component-based architectures

- Encode descriptions of application areas as domain ontologies (e.g., elevator components)
- Encode standard algorithms for solving tasks as reusable problem-solving methods (e.g., propose-and-revise)
- Offer developers opportunities to construct explicit models both of domain content knowledge and of problem-solving behavior

Engineering VT

- VT (Vertical Transportation) was a knowledge-based system developed by Marcus and McDermott (CMU) to configure elevators in new buildings
- VT used the Propose-and-Revise problemsolving method
 - > As a generic, underlying reasoning strategy
 - To ensure that, as designs are extended, constraints are not violated:
 - Available parts must work together
 - Architectural requirements must be satisfied
 - Building codes may not be violated

Propose and Revise

- 1. Select a **procedure** to extend a configuration and identify **constraints** on the extension
- 2. Identify **constraint** violations; if none, go to <u>Step 1</u>.
- 3. Suggest potential **fixes** for the constraint violation.
- 4. Select the least costly **fix** not yet attempted.
- 5. Modify the configuration; identify **constraints** on the **fix**.
- 6. Identify **constraint** violations due to the **fix**; if any, go to <u>Step 4</u>.
- 7. Remove extensions incompatible with the revision.
- 8. If the configuration is incomplete, go to <u>Step 1</u>.

SALT Dialog

1. PROCEDURE Enter a procedure for a value

- 2. CONSTRAINT Enter constraints for a value
- 3. FIX Enter remedies for a constraint violation
- 4. EXIT Exit interviewer

Enter your command [EXIT]: 1

1. Name:	HOIST-CABLE-QUANTITY
2. Precondition	NONE
3. Procedure:	DATABASE-LOOKUP
4. Table name:	HOIST-CABLE
5. Column with value:	QUANTITY
6. Parameter test:	MAX-LOAD > CAR-WEIGHT
7. Parameter test:	DONE
8. Ordering column:	QUANTITY
9. Optimal:	SMALLEST
10. Justification:	THIS ESTIMATE IS THE SMALLEST HOIST CABL
	QUANTITY THAT CAN BE USED ON ANY JOB

Reconstructing VT in an ontology-oriented framework

- Propose-and-revise method recoded with an explicit method ontology
- Domain ontology constructed from description of elevator-configuration task
- Domain ontology instantiated with relevant elevator-configuration knowledge
- Mappings defined between domain and method ontologies

Component-based approach

- Allows an existing domain ontology (e.g., elevator components) to be mapped to a *new PSM* to solve a new task (e.g., critiquing a completed elevator design)
- Allows a *new domain ontology* to be mapped to an existing PSM (e.g., propose-and-revise) to automate a new task that is unrelated to the original application area

Reuse of the propose-and-revise method

- Determination of ribosome structure from NMR data can be construed as constraint satisfaction
- Mapping propose-andrevise to a new domain ontology automates the structure-determination task

Ribosome structure ontology Ribosome Topology Ontology Violation-fix: Representation: Object1 Тор Object2 Bottom Radius Vander-radius Constraints: name Location-file: object1-xyz name object2-xyz refObject lower-bound dateCreated upper-bound Objects: Binary Constraints: locPossible violation-fix locFound name fromObject list-of-locations objectType toObject geometric-rep name location-files constrainCount best-loc-file constrainList

Mapping constraints between domain and method ontologies

Output of Ribosome program

(Ribo)

- ; [gen11] Apply increase fix: H8.locNumber from 1 to 2
- ; [gen15] Apply increase fix: H8.locNumber from 2 to 3
- ;; A number of similar adjustments to helix8... then
- ; [gen33] Apply increase fix: H8.locNumber from 8 to 9
- ; [gen35] Apply increase fix: H5.locNumber from 1 to 2 [gen35] Goal state reached.

;; Now, output solution values: goal: H5.locNumber (2) H5.location ([RiboTopo69]) H8.locNumber (9) H8.location ([RiboTopo387]) H7.locNumber (1) H7.location ([RiboTopo42])

Yet another reuse of propose-and-revise: ART

- Selection of antiretroviral therapy (ART) can be construed as constraint satisfaction
 - Maximizing drug synergies
 - > Avoiding use of redundant agents
 - > Avoiding drugs that exacerbate known toxicities
- Propose-and-revise can automate this task as well

Output of antiretroviral therapy system

(AntiretroviralTherapy)

- > SOLVER ([s1])
- > GOALP [s1]
- >> DUPLICATE: Generate new state [gen2]
- ; [gen2] Adding a multi-fix, assign new-therapy d4T+ind
- ; in response to violation adj-AZT+ddl-toxicity-check
- >> DUPLICATE: Generate new state [gen3]
- ; [gen3] Adding a multi-fix, assign new-therapy d4T+rit
- ; in response to violation adj-AZT+ddl-toxicity-check
- ;; Eventually, 7 alternatives pushed on stack (gen2 gen9)
- > GOALP [gen2]
- ; [gen2] Enable recomputation of new-therapy and dependents
- ; [gen2] Apply assign fix: new-therapy := d4T+ind
- [gen2] Goal state reached.

Reuse of propose-and-revise

- The same PSM can be applied to a variety of parametric-design tasks:
 - 1. Design of elevators
 - 2. Determination of possible ribosomal structure
 - 3. Selection of antiretroviral therapy
 - 4. Management of patients on ventilators
- "Programming" of new systems becomes a matter of identifying appropriate mappings between domain ontology and PSM ontology

Ontology-oriented systems

- Encode descriptions of application areas as domain ontologies
- Encode standard algorithms for solving tasks as reusable problem-solving methods
- Offer developers opportunities to construct explicit theories of
 - > domain content knowledge
 - ➤ problem solving

Requirements of Component-Based Software:

- Multiple applications will be developed
- Components behave predictably and make consistent assumptions about the system in which they operate
- Components can describe their requirements explicitly
- Variations among applications can be obtained by use of alternative components
- There exist tools to ease the selection and assembly of the components

How can we make all this stuff "real"?

- Common KADS: A special-purpose software-engineering approach for building intelligent systems
- Protégé: A set of computer-based tools that help to automate the process of building ontology-oriented systems

CommonKADS conceptual levels in a knowledge model

- Domain: What is the ontology of the application area?
- Inference: What are the "canonical" inferences?
- Task: What control knowledge can coordinate inferences to solve tasks?

Combining a description at the inference layer and the task layer effectively yields a problem-solving method

What does CommonKADS offer?

- A structured, principled design methodology
- Libraries of paper-based descriptions of generic inference patterns and problemsolving methods
- A methodology that encourages broad, careful modeling across many dimensions
- A large user community with many years of experience

What are the limitations of Common KADS?

- Reuse is limited to conceptual models for inference patterns and problemsolving methods; there is no support for reuse of operational software components
- There are no robust CASE tools that support CommonKADS

Protégé

- The result of about 16 years of research at Stanford
- Heavily influenced by KADS work in Europe, as well as McDermott's work on reusable PSMs (such as propose-and-revise)
- Emphasizes support for reuse of software components over reuse of conceptual models

Knowledge-base development with Protégé/2000

- 1. Build a domain ontology
- 2. Protégé generates a custom-tailored GUI for acquisition of content knowledge
- 3. Elicit content knowledge from application specialists
- 4. Map domain ontology to appropriate PSMs for automation of particular tasks

Protégé supports knowledge acquisition via "divide and conquer"

- Constructing scalable, robust ontologies is a job best done by experienced analysts in consultation with application experts
- Describing *instances* of concepts ("knowledge stuffing") is a job that can be done by application experts working alone

Support for mapping ontologies to PSMs

- Protégé-2000 has an ontology of mapping types (e.g., class mappings, slot mappings)
- Each PSM has a *method ontology* defining its data requirements
- Developers instantiate the generic mappings ontology to create task-specific mappings that relate elements of the domain ontology to corresponding elements of the method ontology

EON: Components for automation of clinical protocols

- Ontologies of protocol concepts
- Problem-solving methods to plan patient therapy in accordance with protocol requirements
- Problem-solving methods to match patients to potentially applicable protocols and guidelines

Protocol-Based Advisories

List of Patients	Hypertension Guideline	
Patients List Summary Sheet	Advisory Eligibility	
Patient Summary	Hypertension Advisory	
Patient Name 100686 Clinic Provider	Patient Name Patient Summary	
Annointment 10.17.1999.12:00.008 Clinic V/A Clinic	DHCP BP 168.0/82.0 Date 12-11-1998	
Appointment 10-11-1333 12:00 Adv Chine VA Came	Today's BP Date 10-17-1999	
Vitals + - > ADRs / Allergies + - >	Typical BP Date 10-17-1999	
Name Value Dat Drug Symptom	Update Advisory	
Diastolic_BP 82.0 12-11-1		
height [cm] 170.0 4-23-19	Guideline Goal systolic BP < 140 and diastolic BP < 90	
	BP apparently not under control	
Active Hupertensives 2 + N Labs 2 + N		
Name Cin Name Value Dat	Consider the following management choices	
LISINOPRIL 10MG TAB T1 TAB PO GD 1 CHOLESTEROL 175 11-16-1	encourage lifestyle change	
HDL 30 11-16-1	check compliance	
	If modifying treatment, consider any one of the following drugs:	
	If Consider Because	
Related Comorbidities + - >	Adding Diuretics Relative indications [DM-Typ •	
ICD9 Code		
250.00 DIABETES MELLITUS W/U MENTION OF COMPLICATION, TYPE II (NIDDM	-	
	Your comments for the Guidelines Team (ontional)	
Other Problems 🛛 🔶 🛨 - 🍛		
ICD9 Code		
272.1 PURE HYPERGLYCERIDEMIA	Reviewed Not Reviewed	
272.4 OTHER AND UNSPECIFIED HYPERLIPIDEMIA		
	Complete clinical information may not be available through the computer system. Please use all the information that you have about the patient together with your	
Update Advisory	clinical judgment to decide on the best therapy for this patient.	

EON is "middleware"

- Software components designed for
 - incorporation within other software systems (e.g., hospital information systems)
 - reuse in different applications of protocol-based care
- Our current application of EON (ATHENA) embeds the components within VISTA, the clinical information system developed by the U.S. Department of Veterans Affairs

All knowledge is entered into EON via Protégé-2000

- Knowledge-acquisition tool generated from protocol ontology
- Forms-based entry of "static" protocol descriptions
- Diagrammatic entry of procedural specifications

The EON Architecture comprises

- Problem-solving components that have task-specific functions (e.g., planning, classification)
- A central database system for queries of both
 - » Primitive patient data
 - > Temporal abstractions of patient data
- A shared knowledge base of protocols and general medical concepts

Protégé-2000

- Allows developers
 - ➤ To edit ontologies
 - > To generate KA tools from ontologies
 - > To enter content knowledge into KA tools
 - » To map domain ontologies to PSMs
- Demonstrates how "knowledge level" components can be assembled to construct intelligent systems

The tension in conceptual modeling

- Minimize bias during model construction (e.g., using logic or CommonKADS), but risk creating a task model that cannot be made operational
- Use predefined operational models (e.g., problem-solving methods) as a foundation, but risk introducing significant bias

Technical challenges for component-based systems

- How do we establish the "correctness" and "usefulness" of our domain ontologies?
- How can we define the behaviors of problem-solving methods in ways that are understandable
 - ≻to people
 - to machines
- How can we index and retrieve components within large repositories?

Where is all this leading?

- Libraries of ontologies and PSMs to be reused or adapted for building new systems
- Professional societies who will play an active role in codifying knowledge as ontologies
- New tools to help developers locate, retrieve, and assemble high-level building blocks from Internet-based resources