
Building Systems with
Ontologies and

Problem-Solving Methods
BMI 210A / CS 270A

Mark A. Musen
Stanford Medical Informatics

Stanford University

Conceptual building blocks for intelligent
systems

� Domain ontologies
� Characterization of concepts and relationships in

an application area, providing a domain of
discourse

� Problem-solving methods
� Abstract algorithms for achieving solutions to

stereotypical tasks (e.g., constraint satisfaction,
classification, planning, Bayesian inference)

Common KADS
� Result of nearly 15 years of collaborative

research in the European Union
� Centered at University of Amsterdam, with

dozens of other partners
� Applies principled, software-engineering

approach to development of intelligent
systems

� De facto standard for building intelligent
systems in Europe

Conceptual models and design
models in CommonKADS

Conceptual
Model

Design
Model

CodeData

Analysis space Design space

System realization

A
bs

tr
ac

tio
n

Phases of system
development
� Conceptual modeling

� Conceiving what the system needs to do to meet
its requirements

� Design modeling
� Building an abstract design for the computer

system
� Implementation

� Choosing and programming software modules
that build the design

From conceptual model to
implemented system

Conceptual
model

Design
model

Implemented
system

Conceptual
Building Blocks

Software
Building blocks

When building systems from
ontologies and PSMS …

Conceptual
model

Design
model

Implemented
system

Conceptual
Building Blocks

Software
Building blocks

Software building blocks and
conceptual building blocks can be identical!

PSM

PSM

ontology

ontology

Modern, component-based
architectures
� Encode descriptions of application areas as

domain ontologies (e.g., elevator
components)

� Encode standard algorithms for solving tasks
as reusable problem-solving methods (e.g.,
propose-and-revise)

� Offer developers opportunities to construct
explicit models both of domain content
knowledge and of problem-solving behavior

Engineering VT
� VT (Vertical Transportation) was a

knowledge-based system developed by
Marcus and McDermott (CMU) to configure
elevators in new buildings

� VT used the Propose-and-Revise problem-
solving method
� As a generic, underlying reasoning strategy
� To ensure that, as designs are extended,

constraints are not violated:
– Available parts must work together
– Architectural requirements must be satisfied
– Building codes may not be violated

Propose and Revise
1. Select a procedure to extend a configuration and

identify constraints on the extension

2. Identify constraint violations; if none, go to Step 1.

3. Suggest potential fixes for the constraint violation.

4. Select the least costly fix not yet attempted.

5. Modify the configuration; identify constraints on
the fix.

6. Identify constraint violations due to the fix; if any,
go to Step 4.

7. Remove extensions incompatible with the revision.
8. If the configuration is incomplete, go to Step 1.

SALT Dialog
1. PROCEDURE Enter a procedure for a value
2. CONSTRAINT Enter constraints for a value
3. FIX Enter remedies for a constraint violation
4. EXIT Exit interviewer

Enter your command [EXIT]: 1

1. Name: HOIST-CABLE-QUANTITY
2. Precondition NONE
3. Procedure: DATABASE-LOOKUP
4. Table name: HOIST-CABLE
5. Column with value: QUANTITY
6. Parameter test: MAX-LOAD > CAR-WEIGHT
7. Parameter test: DONE
8. Ordering column: QUANTITY
9. Optimal: SMALLEST

10. Justification: THIS ESTIMATE IS THE SMALLEST HOIST CABLE
QUANTITY THAT CAN BE USED ON ANY JOB

Mapping domain ontologies
to problem-solving methods

Propose and
Revise

Domain Ontology
(e.g., building codes, architectural constraints,

available components)

Method
Input Ontology

(e.g., constraints
and fixes)

Method
Output Ontology (e.g., proposed design)

Reconstructing VT in an
ontology-oriented framework
� Propose-and-revise method recoded with an

explicit method ontology
� Domain ontology constructed from

description of elevator-configuration task
� Domain ontology instantiated with relevant

elevator-configuration knowledge
� Mappings defined between domain and

method ontologies

Component-based approach
� Allows an existing domain ontology

(e.g., elevator components) to be mapped to a
new PSM to solve a new task
(e.g., critiquing a completed elevator design)

� Allows a new domain ontology to be mapped to
an existing PSM (e.g., propose-and-revise) to
automate a new task that is unrelated to the
original application area

Reuse of the
propose-and-revise method
� Determination of

ribosome structure from
NMR data can be
construed as constraint
satisfaction

� Mapping propose-and-
revise to a new domain
ontology automates the
structure-determination
task

Ribosome Topology
Ontology

Location-file:
name
refObject
dateCreated
locPossible
locFound
list-of-locations

Violation-fix:
Object1
Object2

Constraints:
name
object1-xyz
object2-xyz
lower-bound
upper-bound
violation-fix

Representation:
Top
Bottom
Radius
Vander-radius

Objects:
name
objectType
geometric-rep
location-files
best-loc-file

Binary Constraints:
fromObject
toObject
name
constrainCount
constrainList

Ribosome structure ontology

Use of propose-and-revise to
solve the ribosome problem

Propose and
Revise

Domain Ontology
(e.g., data on atom locations,
distances between helices)

Method
Input Ontology

(e.g., constraints
and fixes)

Method
Output Ontology (e.g., proposed design)

Fix-constraint:
name
condition
expression
fixesList

Constraint:
label
lower-bound
upper-bound
obj1-name
obj1-xyz
obj2-name
obj2-xyz
violation-fix

Mapping constraints between
domain and method ontologies

Mapping-name:
Constraint-lower

Domain-class:
Constraint

Method-class:
Fix-constraint

“t”

<A very complex pattern>

“constraint-lower-*<.label>*”

<>

Ribosome KB:
Propose-and-Revise:

(renaming:)

(constant:)

(lexical:)

(lexical:)

(Ribo)
; [gen11] Apply increase fix: H8.locNumber from 1 to 2
; [gen15] Apply increase fix: H8.locNumber from 2 to 3
;; A number of similar adjustments to helix8… then
; [gen33] Apply increase fix: H8.locNumber from 8 to 9
; [gen35] Apply increase fix: H5.locNumber from 1 to 2

[gen35] Goal state reached.

;; Now, output solution values:
goal:
H5.locNumber (2)
H5.location ([RiboTopo69])
H8.locNumber (9)
H8.location ([RiboTopo387])
H7.locNumber (1)
H7.location ([RiboTopo42])

Output of Ribosome program

Yet another reuse of
propose-and-revise: ART
� Selection of antiretroviral therapy (ART) can

be construed as constraint satisfaction
� Maximizing drug synergies
� Avoiding use of redundant agents
� Avoiding drugs that exacerbate known toxicities

� Propose-and-revise can automate this task as
well

ART Ontology

toxicity:
name
documentation

therapy:
name
drugs
goodness
documentation

therapy-adj-rule:
name
drugs
toxicity-fixes
activity-fixes
documentation

drug:
short-name
full-name
trade-name
class
toxic-effects
documentation

patient-parameter:
name
default-value
is-input
is-output
documentation

Ontology for antiretroviral
therapy

(AntiretroviralTherapy)

> SOLVER ([s1])
> GOALP [s1]
>> DUPLICATE: Generate new state [gen2]
; [gen2] Adding a multi-fix, assign new-therapy d4T+ind
; in response to violation adj-AZT+ddI-toxicity-check
>> DUPLICATE: Generate new state [gen3]
; [gen3] Adding a multi-fix, assign new-therapy d4T+rit
; in response to violation adj-AZT+ddI-toxicity-check
;; Eventually, 7 alternatives pushed on stack (gen2 – gen9)
> GOALP [gen2]

; [gen2] Enable recomputation of new-therapy and dependents
; [gen2] Apply assign fix: new-therapy := d4T+ind

[gen2] Goal state reached.

Output of antiretroviral therapy
system

Reuse of propose-and-revise
� The same PSM can be applied to a variety of

parametric-design tasks:
1. Design of elevators
2. Determination of possible ribosomal structure
3. Selection of antiretroviral therapy
4. Management of patients on ventilators

� “Programming” of new systems becomes a
matter of identifying appropriate mappings
between domain ontology and PSM ontology

Ontology-oriented systems
� Encode descriptions of application areas as

domain ontologies
� Encode standard algorithms for solving tasks

as reusable problem-solving methods
� Offer developers opportunities to construct

explicit theories of
� domain content knowledge
� problem solving

Requirements of Component-
Based Software:
� Multiple applications will be developed

� Components behave predictably and make
consistent assumptions about the system in
which they operate

� Components can describe their requirements
explicitly

� Variations among applications can be
obtained by use of alternative components

� There exist tools to ease the selection and
assembly of the components

How can we make all this stuff
“real”?
� Common KADS: A special-purpose

software-engineering approach for
building intelligent systems

� Protégé: A set of computer-based tools
that help to automate the process of
building ontology-oriented systems

Organization
model

Task model Agent model

Communication
model

Knowledge
model

Design
model

Types of Models in
CommonKADS

CommonKADS conceptual
levels in a knowledge model
� Domain: What is the ontology of the

application area?
� Inference: What are the “canonical”

inferences?
� Task: What control knowledge can

coordinate inferences to solve tasks?

Combining a description at the inference layer
and the task layer effectively yields a

problem-solving method

What does
CommonKADS offer?
� A structured, principled design methodology
� Libraries of paper-based descriptions of

generic inference patterns and problem-
solving methods

� A methodology that encourages broad,
careful modeling across many dimensions

� A large user community with many years of
experience

What are the limitations of
Common KADS?
� Reuse is limited to conceptual models

for inference patterns and problem-
solving methods; there is no support for
reuse of operational software
components

� There are no robust CASE tools that
support CommonKADS

Protégé
� The result of about 16 years of research at

Stanford
� Heavily influenced by KADS work in Europe,

as well as McDermott’s work on reusable
PSMs (such as propose-and-revise)

� Emphasizes support for reuse of software
components over reuse of conceptual models

Knowledge-base development
with Protégé/2000
1. Build a domain ontology
2. Protégé generates a custom-tailored GUI for

acquisition of content knowledge
3. Elicit content knowledge from application

specialists
4. Map domain ontology to appropriate PSMs

for automation of particular tasks

Protégé supports knowledge
acquisition via “divide and conquer”

� Constructing scalable, robust ontologies
is a job best done by experienced
analysts in consultation with
application experts

� Describing instances of concepts
(“knowledge stuffing”) is a job that can
be done by application experts working
alone

Building knowledge bases:
The Protégé methodology

Protégé

Domain ontology
to provide domain
of discourse

Knowledge-acquisition tool
for entry of detailed content

Support for mapping
ontologies to PSMs
� Protégé-2000 has an ontology of mapping types

(e.g., class mappings, slot mappings)
� Each PSM has a method ontology defining its data

requirements
� Developers instantiate the generic mappings

ontology to create task-specific mappings that
relate elements of the domain ontology to
corresponding elements of the method ontology

EON: Components for
automation of clinical protocols

� Ontologies of protocol concepts
� Problem-solving methods to plan

patient therapy in accordance with
protocol requirements

� Problem-solving methods to match
patients to potentially applicable
protocols and guidelines

Protocol-Based Advisories

EON is “middleware”
� Software components designed for

� incorporation within other software systems (e.g.,
hospital information systems)

� reuse in different applications of protocol-based
care

� Our current application of EON (ATHENA)
embeds the components within VISTA, the
clinical information system developed by the
U.S. Department of Veterans Affairs

Protégé guides automation of
guideline-based care

Ontology of
guideline concepts

Custom-tailored
guideline-entry

tool

Protocol
knowledge base

Therapy-
planning

PSM

Eligibility-
determination

PSM

Knowledge-base
authors create protocol
descriptions

Clinicians
receive expert
advice

EON

Task #1: Protocol-based
patient management

Consider adding an ACE
Inhibitor because of a
compelling indication
(heart failure)

Patient Data

EON Decision-
Support System

Task #2: Matching patients to
appropriate clinical protocols

clinical
guideline

clinical
guideline

clinical
guideline

clinical
guideline

clinical
guideline

All knowledge is entered into
EON via Protégé-2000
� Knowledge-acquisition

tool generated from
protocol ontology

� Forms-based entry of
“static” protocol
descriptions

� Diagrammatic entry of
procedural
specifications

ob's Shared

The EON Architecture
comprises
� Problem-solving components that have

task-specific functions (e.g., planning,
classification)

� A central database system for queries of both
� Primitive patient data
� Temporal abstractions of patient data

� A shared knowledge base of protocols and
general medical concepts

EON 2.0
A Component-Based Architecture

Patient
Database

Guideline
Knowledge

Base

Clients Servers

Yenta
Eligibility

Server

Guideline
Advisory

Server

YentaYentaEligibility
Client

YentaYentaAdvisory
Client

YentaYentaProtégé
Client

YentaYentaKNAVE

Protégé

Tzolkin
Temporal
Mediator

WOZ
Explanation

Protégé-2000
� Allows developers

�To edit ontologies
�To generate KA tools from ontologies
�To enter content knowledge into KA tools
�To map domain ontologies to PSMs

� Demonstrates how “knowledge level”
components can be assembled to
construct intelligent systems

When building systems from
ontologies and PSMS …

Conceptual
model

Design
model

Implemented
system

Conceptual
Building Blocks

Software
Building blocks

Software building blocks and
conceptual building blocks can be identical!

PSM

PSM

ontology

ontology

The tension in conceptual
modeling
� Minimize bias during model

construction (e.g., using logic or
CommonKADS), but risk creating a task
model that cannot be made operational

� Use predefined operational models
(e.g., problem-solving methods) as a
foundation, but risk introducing
significant bias

Technical challenges for
component-based systems
� How do we establish the “correctness”

and “usefulness” of our domain
ontologies?

� How can we define the behaviors of
problem-solving methods in ways that
are understandable
� to people
� to machines

� How can we index and retrieve
components within large repositories?

Where is all this leading?
� Libraries of ontologies and PSMs to be reused

or adapted for building new systems
� Professional societies who will play an active

role in codifying knowledge as ontologies
� New tools to help developers locate, retrieve,

and assemble high-level building blocks from
Internet-based resources

