
1

1

Foundations of the Semantic Web:
Ontology Engineering

Lecture 2
Building Ontologies & Knowledge Elicitation

Alan Rector & colleagues

2

Part I: Developing an Ontology
Start at the Beginning

• You now have all you need to implement simple
existential ontologies, so let’s go back to the
beginning

• The goal for the example ontology is to build an
ontology of animals to index a children’s book of
animals

• The goal for the lab ontology is for you to build an
ontology for the CS department and eventually for
the University

3

Steps in developing an Ontology

1. Establish the purpose
– Without purpose, no scope, requirements, evaluation,

2. Informal/Semiformal knowledge elicitation
– Collect the terms
– Organise terms informally
– Paraphrase and clarify terms to produce informal

concept definitions
– Diagram informally

3. Refine requirements & tests

4

Steps in implementing an Ontology

4. Implementation
– Paraphrase and comment at each stage before implementing
– Develop normalised schema and skeleton
– Implement prototype recording the intention as a paraphrase

• Keep track of what you meant to do so you can compare with what
happens
– Implementing logic-based ontologies is programming

– Scale up a bit
• Check performance

– Populate
• Possibly with help of text mining and language technology

5. Evaluate & quality assure
– Against goals
– Include tests for evolution and change management
– Design regression tests and “probes”

6. Monitor use and evolve
– Process not product!

2

5

Purpose & scope of the animals ontology

• To provide an ontology for an index of a
children’s book of animals including
– Where they live
– What they eat

• Carnivores, herbivores and omnivores
– How dangerous they are
– How big they are
– A bit of basic anatomy

• numbers of legs, wings, toes, etc.

6

Collect the concepts

• Card sorting is often the best way
– Write down each concept/idea on a card
– Organise them into piles
– Link the piles together
– Do it again, and again
– Works best in a small group

– In the lab we will provide you with some pre-printed
cards and many spare cards

• Work in pairs or triples

7

Example: Animals & Plants

• Dog
• Cat
• Cow
• Person
• Tree
• Grass
• Herbivore
• Male
• Female

• Dangerous
• Pet
• Domestic Animal
• Farm animal
• Draft animal
• Food animal
• Fish
• Carp
• Goldfish

• Carnivore
• Plant
• Animal
• Fur
• Child
• Parent
• Mother
• Father

8

Organise the concepts
Example: Animals & Plants

• Dog
• Cat
• Cow
• Person
• Tree
• Grass
• Herbivore
• Male
• Female

• Healthy
• Pet
• Domestic Animal
• Farm animal
• Draft animal
• Food animal
• Fish
• Carp
• Goldfish

• Carnivore
• Plant
• Animal
• Fur
• Child
• Parent
• Mother
• Father

3

9

Extend the concepts
“Laddering”

• Take a group of things and ask what they have in common
– Then what other ‘siblings’ there might be

• e.g.
– Plant, Animal  Living Thing

• Might add Bacteria and Fungi but not now
– Cat, Dog, Cow, Person  Mammal

• Others might be Goat, Sheep, Horse, Rabbit,…
– Cow, Goat, Sheep, Horse  Hoofed animal (“Ungulate”)

• What others are there? Do they divide amongst themselves?
– Wild, Domestic  Demoestication

• What other states – “Feral” (domestic returned to wild)

Vocabulary note:
“Sibling” = “brother or sister”

10

Choose some main axes

• Add abstractions where needed
– e.g. “Living thing”

• identify relations
– e.g. “eats”, “owns”, “parent of”

• Identify definable things
– e.g. “child”, “parent”, “Mother”, “Father”

• Things where you can say clearly what it means
– Try to define a dog precisely – very difficult

» A “natural kind”

• make names explicit

11

Choose some main axes
Add abstractions where needed; identify relations;

Identify definable things, make names explicit

• Living Thing
– Animal

• Mammal
– Cat
– Dog
– Cow
– Person

• Fish
– Carp
– Goldfish

– Plant
• Tree
• Grass
• Fruit

• Modifiers
– domestic

• pet
• Farmed

– Draft
– Food

– Wild
– Health

• healthy
• sick

– Sex
• Male
• Female

– Age
• Adult
• Child

 Definable
 Carinvore
 Herbivore
 Child
 Parent
 Mother
 Father
 Food Animal
 Draft Animal

 Relations
 eats
 owns
 parent-of
 …

12

Self_standing_entities

• Things that can exist on there own nouns
– People, animals, houses, actions, processes, …

• Roughly nouns

• Modifiers
– Things that modify (“inhere”) in other things

• Roughly adjectives and adverbs

4

13

Reorganise everything but “definable” things into pure
trees – these will be the “primitives”

• Self_standing
– Living Thing

• Animal
– Mammal

» Cat
» Dog
» Cow
» Person
» Pig

– Fish
» Carp

 Goldfish
• Plant

– Tree
– Grass
– Fruit

• Modifiers
– Domestication

• Domestic
• Wild

– Use
• Draft
• Food
• pet

– Risk
• Dangerous
• Safe

– Sex
• Male
• Female

– Age
• Adult
• Child

 Definables
 Carnivore
 Herbivore
 Child
 Parent
 Mother
 Father
 Food Animal
 Draft Animal

 Relations
 eats
 owns
 parent-of
 …

14

If anything needs clarifying,
add a text comment

• Self_standing
– Living Thing

• Animal
– Mammal

» Cat
» Dog
» Cow
» Person
» Pig

– Fish
» Carp

Goldfish
• Plant

– Tree
– Grass
– Fruit

– The abstract ancestor concept including all living
 things – restrict to plants and animals for now”

15

Identify the domain and range constraints for
properties

• Animal eats Living_thing
– eats domain: Animal;

 range: Living_thing

• Person owns Living_thing except person
– owns domain: Person

 range: Living_thing & not Person

• Living_thing parent_of Living_thing
– parent_of: domain: Animal

 range: Animal

16

If anything is used in a special way,
add a text comment

• Animal eats Living_thing
– eats domain: Animal;

 range: Living_thing

— ignore difference between
parts of living things
and living things
also derived from living
things

5

17

For definable things
• Paraphrase and formalise the definitions in terms of the

primitives, relations and other definables.

• Note any assumptions to be represented elsewhere.
– Add as comments when implementing

• “A ‘Parent’ is an animal that is the parent of some other
animal” (Ignore plants for now)
– Parent =

 Animal and parent_of some Animal

• “A ‘Herbivore’ is an animal that eats only plants”
(NB All animals eat some living thing)
– Herbivore=

 Animal and eats only Plant

• “An ‘omnivore’ is an animal that eats both plants and
animals”
– Omnivore=

 Animal and eats some Animal and eats some Plant 18

Paraphrases and Comments

• Write down the paraphrases and put them in the comment space.
– We can show you how to make the comment space bigger to make it easier.

• Without a paraphrase, we cannot tell if we disagree on
– What you meant to represent
– How you represented it

• Without a paraphrase we will mark down by at least half and give
no partial credit
– We will try to understand what you are doing, but we cannot read your minds.

19

Which properties can be filled in
at the class level now?

• What can we say about all members of a
class?
– eats

• All cows eat some plants
• All cats eat some animals
• All pigs eat some animals &

 eat some plants

20

Fill in the details
(can use property matrix wizard)

6

21

Check with classifier

• Cows should be Herbivores
– Are they? why not?

• What have we said?
– Cows are animals and, amongst other things,

 eat some grass and
 eat some leafy_plants

• What do we need to say:
Closure axiom

– Cows are animals and, amongst other things,
eat some plants and eat only plants

» (See “Vegetarian Pizzas” in OWL tutorial)
22

Closure Axiom

– Cows are animals and, amongst other things,
eat some plants and eat only plants

Closure
Axiom

23

In the tool

• Right mouse button
short cut for closure
axioms

– for any existential
restriction

adds closure
axiom

24

Open vs Closed World reasoning

• Open world reasoning
– Negation as contradiction

• Anything might be true unless it can be proven false
– Reasoning about any world consistent with this one

• Closed world reasoning
– Negation as failure

• Anything that cannot be found is false
– Reasoning about this world

• Ontologies are not databases

7

25

Normalisation and Untangling
Let the reasoner do multiple classification

• Tree
– Everything has just one parent

• A ‘strict hierarchy’

• Directed Acyclic Graph (DAG)
– Things can have multiple parents

• A ‘Polyhierarchy’

• Normalisation
– Separate primitives into disjoint trees
– Link the trees with definitions & restrictions

• Fill in the values
– Let the classifier produce the DAG

26

Tables are easier to manage than DAGs /
Polyhierarchies

…and get the benefit of inference:
Grass and Leafy_plants are both kinds of Plant

27

Remember to add any closure axioms

Closure
Axiom

Then let the reasoner do the work
28

Normalisation:
From Trees to DAGs

 Before classification
 A tree

 After classification
 A DAG

 Directed Acyclic Graph

8

29

Summary: Normalised Ontology Development

• Identify the self-standing primitives
– Comment any that are not self-evident

• Separate them into trees
– You may have to create some ‘roles’ or other auxiliary concepts to

do so

• Identify the relations
– Comment any that are not self evident

• Create the descriptions and definitions
– Provide a paraphrase for each

• Identify how key items should be classified –
– Define regression tests

• Use classifier to form a DAG
• Check if tests are satisfied

30

Part II – Useful Patterns
 (continued)

• Upper ontologies & Domain ontologies
• Building from trees and untangling
• Using a classifier
• Closure axioms & Open World Reasoning
• Specifying Values
• n-ary relations
• Classes as values – using the ontology

31

Examine the modifier list

• Identify modifiers that have mutually
exclusive values

– Domestication
– Risk
– Sex
– Age

• Make meaning precise
– Age  Age_group

• NB Uses are not mutually exclusive
– Can be both a draft (pulling) and a food

animal

 Modifiers
 Domestication

 Domestic
 Wild

 Use
 Draft
 Food

 Risk
 Dangerous
 Safe

 Sex
 Male
 Female

 Age
 Adult
 Child

32

Extend and complete lists of values

• Identify modifiers that have mutually
exclusive values

– Domestication
– Risk
– Sex
– Age

• Make meaning precise
– Age  Age_group

• NB Uses are not mutually exclusive
– Can be both a draft and a food animal

 Modifiers
 Domestication

 Domestic
 Wild
 Feral

 Risk
 Dangerous
 Risky
 Safe

 Sex
 Male
 Female

 Age
 Infant
 Toddler
 Child
 Adult
 Elderly

9

33

Note any hierarchies of values

• Identify modifiers that have mutually
exclusive values

– Domestication
– Risk
– Sex
– Age

• Make meaning precise
– Age  Age_group

• NB Uses are not mutually exclusive
– Can be both a draft and a food animal

 Modifiers
 Domestication

 Domestic
 Wild
 Feral

 Risk
 Dangerous
 Risky
 Safe

 Sex
 Male
 Female

 Age
 Child

 Infant
 Toddler

 Adult
 Elderly

34

Specify Values for each:
Two methods

• Value partitions
– Classes that partition a Quality

• The disjunction of the partition classes equals the
quality class

• Symbolic values
– Individuals that enumerate all states of a Quality

• The enumeration of the values equals the quality class

35

Method 1: Value Partitions-
example “Dangerousness”

• A parent quality – Dangerousness
• Subqualities for each degree

– Dangerous, Risky, Safe
• All subqualities disjoint
• Subqualities ‘cover’ parent quality

– Dangerousness = Dangerous OR Risky OR Safe
• A functional property has_dangerousness

– Range is parent quality, e.g. Dangerousness
– Domain must be specified separately

• Dangerous_animal =
 Animal and has_dangerousness some Dangerous

36

as created by Value Partition wizard

10

37

DangerousRisky

Safe

Leo’s
Danger

Dangerous
animal

Leo the
Lion

has_dangerousness

someValuesFrom

has_dangerousness

Value partitions
Diagram

Dangerousness

Animal

38

Dangerousness_
Value

Safe_
value

Risky_
value

Dangerous_
value

Animal

Dangerous
Animal

Leo the
Lion

Leo’s
Dangerousness

owl:unionOf

has_dangerousness

has_dangerousness
someValuesFrom

Value partitions UML style

39

Picture of subdivided value partition

 Adult_value Child_value

 Elderly_
 value

Infant_
 value

Toddler_
 value

Age_Group_value

40

Method 2: Value sets –
Example Sex

• There are only two sexes
– Can argue that they are things

• “Administrative sex” definitely a thing
• “Biological sex” is more complicated

11

41

Method 2: Value sets-
example “Sex”

• A parent quality – Sex_value
• Individuals for each value

– male, female
• Values all different (NOT assumed by OWL)

• Value type is enumeration of values
– Sex_value = {male, female}

• A functional property has_sex
– Range is parent quality, e.g. Sex_value
– Domain must be specified separately

• Male_animal =
 Animal and has_sex is male

42

Value sets UML style

Sex
Value

Person

Man

John

owl:oneOf

has_sex

has_sex

female male

43

Issues in specifying values

• Value Partitions
– Can be subdivided and specialised
– Fit with philosophical notion of a quality space
– Require interpretation to go in databases as values

• in theory but rarely considered in practice
– Work better with existing classifiers in OWL-DL

• Value Sets
– Cannot be subdivided
– Fit with intuitions
– More similar to data bases – no interpretation
– Work less well with existing classifiers

44

Value partitions – practical reasons for
subdivisions

• See also “Normality_status” in
http://www.cs.man.ac.uk/~rector/ontologies/mini-top-bio

– One can have complicated value partitions if needed.

 “All elderly are adults”
 “All infants are children”
 etc.

12

45

Summary of Specifying Values
• Principles

– Values distinct
• Disjoint if value partition/classes
• allDifferent if value sets/individuals

– Values “cover” type
• Covering axiom if value partition/classes

– Quality = VP1 OR VP2 OR VP3 OR…OR VPn

• Enumeration if value sets/individuals
– Quality = {v1 v2 v3 … vn}

– Property usually functional
• But can have multi-valued cases occasionally

• Practice
– In this module we recommend you use Value Partitions in all cases

for specifying values
• Works better with the reasoner
• We have a Wizard to make it quick 46

“Roles”

• To keep primitives in disjoint
– need to distinguish the roles things play in different

situations from what they are
– e.g. “pet”, “farm animal”, “draft animal”,
– “professor”, “student”, …
– “doctor”, “nurse”, “patient”

• Often need to distinguish qualifications from roles
– A person may be qualified as a doctor but playing the

role of a patient

47

Roles usually summarise relations

• “to play the role of pet” is to say that there is
somebody for whom the animal is a pet

• “to play the role of doctor” is to say that there is
somebody for whom the person is acting as the
“doctor” – or some “situation” in which they play
that role

But we often do not want to explain the situation or
relation completely

48

“Roles” and “Untangling”

• Animal
– Draft_animal

• Cow
• Horse
• Dog

– Food_animal
• Cow
• Horse

– Pet_animal
• Horse
• Dog

• Animal
– Mammal

• Cow
• Horse
• Dog

• Animal_use_role
– Food_role
– Pet_role
– Draft_role

Vocabulary note:
“Draft” means pulling – as in
pulling a cart or plough

Draft_animal =
Animal &
 has_role some Draft_role

Food_animal =
Animal &
has_role some Food_role

Pet_animal =
Animal &
has_role some Pet_role

13

49

Logical approximations for roles

• Cow plays_role some Draft_role
– Means all cows play some draft role

• Too strong a statement

• Solutions
– Ignore the problem for purposes of the ontology
– Replace has_role by may_have_role

• Still to strong but probably the a pragmatic answer

• If classifying instances need both
– All cows may have some draft role

Cow  may_have Draft_role
• Just those that actually do are known as Draft_cows

– Draft_Cow = Cow & has_role Draft_role

50

Example of language problems

• “DraftHorse” and “Draft_horse”
– Some breeds of horses were bred for draft work

• Known officialy as “Draft horses”
– The words have taken on a “idiomatic” meaning

» No longer mean what they say
» Other examples “Blue bird” vs “Bluebird”

 “Black berry” vs “Blackberry”
 …

• Horse  may_have_role some Draft_role
– DraftHorse rdf:comment “Draft breed horse”
– Draft_horse = Horse AND has_role some Draft_role

 rdf:comment: “Horse actually used for draft work”

51

Separate Language Labels from
Ontology

• OWL/RDF mechanisms weak
– rdf:label

• Allows a language or sublanguage tag, but merely an
annotation

• Better to be maximally explicit in internal names
for concepts
– Better to be not understood than to be misunderstood

• Change DraftHorse to Draft_breed_horse
– rdf:label “Draft horse”

52

Ontology engineering

• Provide paraphrases and comments for all classes
• Provide probe classes and testing framework

– Probe classes: extra classes that either should or should
not be satisfiable or classified in a particular place

• The tool lets you hide probe classes from user and delete them
from final export

– Can also put debugging information on other classes
• Testing framework will report violations

• This is still new software, so let us know if it
doesn’t work or how it could be improved.

14

53

Summary of Approach
Steps in developing an Ontology (1)

1. Establish the purpose
– Without purpose, no scope, requirements, evaluation,

2. Informal/Semiformal knowledge elicitation
– Collect the terms
– Organise terms informally
– Paraphrase and clarify terms to produce informal concept

definitions
– Diagram informally

3. Refine requirements & tests

54

Summary of Approach
Steps in implementing an Ontology (2)

4. Implementation
– Develop normalised schema and skeleton
– Implement prototype recording the intention as a paraphrase

• Keep track of what you meant to do so you can compare with what happens
– Implementing logic-based ontologies is programming

– Scale up a bit
• Check performance

– Populate
• Possibly with help of text mining and language technology

5. Evaluate & quality assure
– Against
– Include tests for evolution and change management
– Design regression tests and “probews”

6. Monitor use and evolve
– Process not product!

55

Lab Exercise
• Take cards for University ontology to produce an ontology

for the university including the personnel department’s
equal opportunities officer

• Group the cards and form initial hierarchies
– Separate likely primitives, modifiers, roles, defined concepts and

properties, classes and individuals
– Ladder up to provide abstractions as needed

• And fill in siblings
– Propose a normalised ontology

• Classify it to see that it works correctly
– Provide probe classes to check both classification and unsatisfiability

» One file to turn in
– Download the tangled ontology proposed by the personnel

department
• Untangle it

– A second file to turn in

