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Foundations of the Semantic Web:
Ontology Engineering

Lecture 2
Building Ontologies & Knowledge Elicitation

Alan Rector & colleagues
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Part I: Developing an Ontology
Start at the Beginning

• You now have all you need to implement simple
existential ontologies, so let’s go back to the
beginning

• The goal for the example ontology is to build an
ontology of animals to index a children’s book of
animals

• The goal for the lab ontology is for you to build an
ontology for the CS department and eventually for
the University
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Steps in developing an Ontology

1. Establish the purpose
– Without purpose, no scope, requirements, evaluation,

2. Informal/Semiformal knowledge elicitation
– Collect the terms
– Organise terms informally
– Paraphrase and clarify terms to produce informal

concept definitions
– Diagram informally

3. Refine requirements & tests
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Steps in implementing an Ontology

4. Implementation
– Paraphrase and comment at each stage before implementing
– Develop normalised schema and skeleton
– Implement prototype recording the intention as a paraphrase

• Keep track of what you meant to do so you can compare with what
happens
– Implementing logic-based ontologies is programming

– Scale up a bit
• Check performance

– Populate
• Possibly with help of text mining and language technology

5. Evaluate & quality assure
– Against goals
– Include tests for evolution and change management
– Design regression tests and “probes”

6. Monitor use and evolve
– Process not product!



2

5

Purpose & scope of the animals ontology

• To provide an ontology for an index of a
children’s book of animals including
– Where they live
– What they eat

• Carnivores, herbivores and omnivores
– How dangerous they are
– How big they are
– A bit of basic anatomy

• numbers of legs, wings, toes, etc.
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Collect the concepts

• Card sorting is often the best way
– Write down each concept/idea on a card
– Organise them into piles
– Link the piles together
– Do it again, and again
– Works best in a small group

– In the lab we will provide you with some pre-printed
cards and many spare cards

• Work in pairs or triples
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Example: Animals & Plants

• Dog
• Cat
• Cow
• Person
• Tree
• Grass
• Herbivore
• Male
• Female

• Dangerous
• Pet
• Domestic Animal
• Farm animal
• Draft animal
• Food animal
• Fish
• Carp
• Goldfish

• Carnivore
• Plant
• Animal
• Fur
• Child
• Parent
• Mother
• Father

8

Organise the concepts
Example: Animals & Plants

• Dog
• Cat
• Cow
• Person
• Tree
• Grass
• Herbivore
• Male
• Female

• Healthy
• Pet
• Domestic Animal
• Farm animal
• Draft animal
• Food animal
• Fish
• Carp
• Goldfish

• Carnivore
• Plant
• Animal
• Fur
• Child
• Parent
• Mother
• Father
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Extend the concepts
“Laddering”

• Take a group of things and ask what they have in common
– Then what other ‘siblings’ there might be

• e.g.
– Plant, Animal  Living Thing

• Might add Bacteria and Fungi but not now
– Cat, Dog, Cow, Person  Mammal

• Others might be Goat, Sheep, Horse, Rabbit,…
– Cow, Goat, Sheep, Horse  Hoofed animal (“Ungulate”)

• What others are there? Do they divide amongst themselves?
– Wild, Domestic  Demoestication

• What other states – “Feral” (domestic returned to wild)

Vocabulary note: 
“Sibling” = “brother or sister”
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Choose some main axes

• Add abstractions where needed
– e.g. “Living thing”

• identify relations
– e.g. “eats”, “owns”, “parent of”

•  Identify definable things
– e.g. “child”, “parent”, “Mother”, “Father”

• Things where you can say clearly what it means
– Try to define a dog precisely – very difficult

» A “natural kind”

•  make names explicit
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Choose some main axes
Add abstractions where needed; identify relations;

Identify definable things, make names explicit

• Living Thing
– Animal

• Mammal
– Cat
– Dog
– Cow
– Person

• Fish
– Carp
– Goldfish

– Plant
• Tree
• Grass
• Fruit

• Modifiers
– domestic

• pet
• Farmed

– Draft
– Food

– Wild
– Health

• healthy
• sick

– Sex
• Male
• Female

– Age
• Adult
• Child

 Definable
 Carinvore
 Herbivore
 Child
 Parent
 Mother
 Father
 Food Animal
 Draft Animal

 Relations
 eats
 owns
 parent-of
 …
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Self_standing_entities

• Things that can exist on there own nouns
– People, animals, houses, actions, processes, …

• Roughly nouns

• Modifiers
– Things that modify (“inhere”) in other things

• Roughly adjectives and adverbs
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Reorganise everything but “definable” things into pure
trees – these will be the “primitives”

• Self_standing
– Living Thing

• Animal
– Mammal

» Cat
» Dog
» Cow
» Person
» Pig

– Fish
» Carp

  Goldfish
• Plant

– Tree
– Grass
– Fruit

• Modifiers
– Domestication

• Domestic
• Wild

– Use
• Draft
• Food
• pet

– Risk
• Dangerous
• Safe

– Sex
• Male
• Female

– Age
• Adult
• Child

 Definables
 Carnivore
 Herbivore
 Child
 Parent
 Mother
 Father
 Food Animal
 Draft Animal

 Relations
 eats
 owns
 parent-of
 …
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If anything needs clarifying,
add a text comment

• Self_standing
– Living Thing

• Animal
– Mammal

» Cat
» Dog
» Cow
» Person
» Pig

– Fish
» Carp

Goldfish
• Plant

– Tree
– Grass
– Fruit

–   The abstract ancestor concept including all living
   things – restrict to plants and animals for now”
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Identify the domain and range constraints for
properties

• Animal eats Living_thing
– eats domain: Animal;

       range:    Living_thing

• Person owns Living_thing except person
– owns domain: Person

         range:    Living_thing & not Person

• Living_thing parent_of Living_thing
– parent_of: domain: Animal

                  range:   Animal
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If anything is used in a special way,
add a text comment

• Animal eats Living_thing
– eats domain: Animal;

       range:    Living_thing

— ignore difference between
parts of living things
and living things
also derived from living
things



5

17

For  definable things
• Paraphrase and formalise the definitions in terms of the

primitives, relations and other definables.

• Note any assumptions to be represented elsewhere.
– Add as comments when implementing

• “A ‘Parent’ is an animal that is the parent of some other
animal” (Ignore plants for now)
– Parent =

   Animal and parent_of some Animal

• “A ‘Herbivore’ is an animal that eats only plants”
(NB All animals eat some living thing)
– Herbivore=

   Animal and eats only Plant

• “An ‘omnivore’ is an animal that eats both plants and
animals”
–  Omnivore=

     Animal and eats some Animal and eats some Plant 18

Paraphrases and Comments

• Write down the paraphrases and put them in the comment space.
– We can show you how to make the comment space bigger to make it easier.

• Without a paraphrase, we cannot tell if we disagree on
– What you meant to represent
– How you represented it

• Without a paraphrase we will mark down by at least half and give
no partial credit
– We will try to understand what you are doing, but we cannot read your minds.

19

Which properties can be filled in
at the class level now?

• What can we say about all members of a
class?
– eats

• All cows eat some plants
• All cats eat some animals
• All pigs eat some animals &

              eat some plants

20

Fill in the details
(can use property matrix wizard)
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Check with classifier

• Cows should be Herbivores
– Are they? why not?

• What have we said?
– Cows are animals and, amongst other things,

   eat some grass and
   eat some leafy_plants

• What do we need to say:
Closure axiom

– Cows are animals and, amongst other things,
eat some plants and eat only plants

» (See  “Vegetarian Pizzas” in OWL tutorial)
22

Closure Axiom

– Cows are animals and, amongst other things,
eat some plants and eat only plants

Closure
Axiom
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In the tool

• Right mouse button
short cut for closure
axioms

– for any existential
restriction

adds closure 
axiom
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Open vs Closed World reasoning

• Open world reasoning
– Negation as contradiction

• Anything might be true unless it can be proven false
– Reasoning about any world consistent with this one

• Closed world reasoning
– Negation as failure

• Anything that cannot be found is false
– Reasoning about this world

• Ontologies are not databases
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Normalisation and Untangling
Let the reasoner do multiple classification

• Tree
– Everything  has just one parent

• A ‘strict hierarchy’

• Directed Acyclic Graph (DAG)
– Things can have multiple parents

• A ‘Polyhierarchy’

• Normalisation
– Separate primitives into disjoint trees
– Link the trees with definitions &  restrictions

• Fill in the values
– Let the classifier produce the DAG
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Tables are easier to manage than DAGs /
Polyhierarchies

…and get the benefit of inference:
Grass and Leafy_plants are both kinds of Plant
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Remember to add any closure axioms

Closure
Axiom

Then let the reasoner do the work
28

Normalisation:
From Trees to DAGs

 Before classification
 A tree

 After classification
 A DAG

 Directed Acyclic Graph
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Summary: Normalised Ontology Development

• Identify the self-standing primitives
– Comment any that are not self-evident

• Separate them into trees
– You may have to create some ‘roles’ or other auxiliary concepts to

do so

• Identify the relations
– Comment any that are not self evident

• Create the descriptions and definitions
– Provide a paraphrase for each

• Identify how key items should be classified –
–  Define regression tests

• Use classifier to form a DAG
• Check if tests are satisfied

30

Part II – Useful Patterns
              (continued)

• Upper ontologies & Domain ontologies
• Building from trees and untangling
• Using a classifier
• Closure axioms & Open World Reasoning
• Specifying Values
• n-ary relations
• Classes as values – using the ontology
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Examine the modifier list

• Identify modifiers that have mutually
exclusive values

– Domestication
– Risk
– Sex
– Age

• Make meaning precise
– Age  Age_group

• NB Uses are not mutually exclusive
– Can be both a draft (pulling) and a food

animal

 Modifiers
 Domestication

 Domestic
 Wild

 Use
 Draft
 Food

 Risk
 Dangerous
 Safe

 Sex
 Male
 Female

 Age
 Adult
 Child
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Extend and complete lists of values

• Identify modifiers that have mutually
exclusive values

– Domestication
– Risk
– Sex
– Age

• Make meaning precise
– Age  Age_group

• NB Uses are not mutually exclusive
– Can be both a draft and a food animal

 Modifiers
 Domestication

 Domestic
 Wild
 Feral

 Risk
 Dangerous
 Risky
 Safe

 Sex
 Male
 Female

 Age
 Infant
 Toddler
 Child
 Adult
 Elderly
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Note any hierarchies of values

• Identify modifiers that have mutually
exclusive values

– Domestication
– Risk
– Sex
– Age

• Make meaning precise
– Age  Age_group

• NB Uses are not mutually exclusive
– Can be both a draft and a food animal

 Modifiers
 Domestication

 Domestic
 Wild
 Feral

 Risk
 Dangerous
 Risky
 Safe

 Sex
 Male
 Female

 Age
 Child

 Infant
 Toddler

 Adult
 Elderly
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Specify Values for each:
Two methods

• Value partitions
– Classes that partition a Quality

• The disjunction of the partition classes equals the
quality class

• Symbolic values
– Individuals that enumerate all states of a Quality

• The enumeration of the values equals the quality class

35

Method 1: Value Partitions-
example “Dangerousness”

• A parent quality – Dangerousness
• Subqualities for each degree

– Dangerous, Risky, Safe
• All subqualities disjoint
• Subqualities ‘cover’ parent quality

– Dangerousness = Dangerous OR Risky OR Safe
• A functional property has_dangerousness

– Range is parent quality, e.g. Dangerousness
– Domain must be specified separately

• Dangerous_animal =
   Animal and has_dangerousness some Dangerous

36

as created by Value Partition wizard
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DangerousRisky

Safe

Leo’s
Danger

Dangerous
animal

Leo the
Lion

has_dangerousness

someValuesFrom

has_dangerousness

Value partitions
Diagram

Dangerousness

Animal

38

Dangerousness_
Value

Safe_
value

Risky_
value

Dangerous_
value

Animal

Dangerous
Animal

Leo the
Lion

Leo’s
Dangerousness

owl:unionOf

has_dangerousness

has_dangerousness
someValuesFrom

Value partitions UML style
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Picture of subdivided value partition

       Adult_value    Child_value

     Elderly_
        value

Infant_
              value

Toddler_
               value

Age_Group_value

40

Method 2: Value sets –
Example Sex

• There are only two sexes
– Can argue that they are things

• “Administrative sex” definitely a thing
• “Biological sex” is more complicated
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Method 2: Value sets-
example “Sex”

• A parent quality – Sex_value
• Individuals for each value

– male, female
• Values all different (NOT assumed by OWL)

• Value type is enumeration of values
– Sex_value = {male, female}

• A functional property has_sex
– Range is parent quality, e.g. Sex_value
– Domain must be specified separately

• Male_animal =
     Animal and has_sex is male

42

Value sets UML style

Sex
Value

Person

Man

John

owl:oneOf

has_sex

has_sex

female male
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Issues in specifying values

• Value Partitions
– Can be subdivided and specialised
– Fit with philosophical notion of a quality space
– Require interpretation to go in databases as values

• in theory but rarely considered in practice
– Work better with existing classifiers in OWL-DL

• Value Sets
– Cannot be subdivided
– Fit with intuitions
– More similar to data bases – no interpretation
– Work less well with existing classifiers

44

Value partitions – practical reasons for
subdivisions

• See also  “Normality_status” in
http://www.cs.man.ac.uk/~rector/ontologies/mini-top-bio

– One can have complicated value partitions if needed.

 “All elderly are adults”
 “All infants are children”
 etc.
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Summary of Specifying Values
• Principles

– Values distinct
• Disjoint if value partition/classes
• allDifferent if value sets/individuals

– Values “cover” type
• Covering axiom if value partition/classes

– Quality = VP1 OR VP2 OR VP3 OR…OR VPn

• Enumeration if value sets/individuals
– Quality = {v1 v2 v3 … vn}

– Property usually functional
• But can have multi-valued cases occasionally

• Practice
– In this module we recommend you use Value Partitions in all cases

for specifying values
• Works better with the reasoner
• We have a Wizard to make it quick 46

“Roles”

• To keep primitives in disjoint
– need to distinguish the roles things play in different

situations from what they are
– e.g. “pet”, “farm animal”, “draft animal”,
–        “professor”, “student”, …
–        “doctor”, “nurse”, “patient”

• Often need to distinguish qualifications from roles
– A person may be qualified as a doctor but playing the

role of a patient
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Roles usually summarise relations

• “to play the role of pet” is to say that there is
somebody for whom the animal is a pet

• “to play the role of doctor” is to say that there is
somebody for whom the person is acting as the
“doctor” – or some “situation” in which they play
that role

But we often do not want to explain the situation or
relation completely
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“Roles” and “Untangling”

• Animal
– Draft_animal

• Cow
• Horse
• Dog

– Food_animal
• Cow
• Horse

– Pet_animal
• Horse
• Dog

• Animal
– Mammal

• Cow
• Horse
• Dog

• Animal_use_role
– Food_role
– Pet_role
– Draft_role

Vocabulary note: 
“Draft” means pulling – as in
pulling a cart or plough

Draft_animal =
Animal &
 has_role some Draft_role

Food_animal =
Animal &
has_role some Food_role

Pet_animal =
Animal &
has_role some Pet_role
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Logical approximations for roles

• Cow plays_role some Draft_role
– Means all cows play some draft role

• Too strong a statement

• Solutions
– Ignore the problem for purposes of the ontology
– Replace has_role by may_have_role

• Still to strong but probably the a pragmatic answer

• If classifying instances need both
– All cows may have some draft role

Cow  may_have Draft_role
• Just those that actually do are known as  Draft_cows

– Draft_Cow = Cow & has_role Draft_role
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Example of language problems

• “DraftHorse” and “Draft_horse”
– Some breeds of horses were bred for draft work

• Known officialy as “Draft horses”
– The words have taken on a “idiomatic” meaning

» No longer mean what they say
» Other examples “Blue bird” vs “Bluebird”

                          “Black berry” vs “Blackberry”
                          …

• Horse  may_have_role some Draft_role
– DraftHorse rdf:comment “Draft breed horse”
– Draft_horse = Horse AND has_role some Draft_role

                       rdf:comment: “Horse actually used for draft work”
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Separate Language Labels from
Ontology

• OWL/RDF mechanisms weak
– rdf:label

• Allows a language or sublanguage tag, but merely an
annotation

• Better to be maximally explicit in internal names
for concepts
– Better  to be not understood than to be misunderstood

• Change DraftHorse to Draft_breed_horse
– rdf:label “Draft horse”
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Ontology engineering

• Provide paraphrases and comments for all classes
• Provide probe classes and testing framework

– Probe classes: extra classes that either should or should
not be satisfiable or classified in a particular place

• The tool lets you hide probe classes from user and delete them
from final export

– Can also put debugging information on other classes
• Testing framework will report violations

• This is still new software, so let us know if it
doesn’t work or how it could be improved.
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Summary of Approach
Steps in developing an Ontology (1)

1. Establish the purpose
– Without purpose, no scope, requirements, evaluation,

2. Informal/Semiformal knowledge elicitation
– Collect the terms
– Organise terms informally
– Paraphrase and clarify terms to produce informal concept

definitions
– Diagram informally

3. Refine requirements & tests
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Summary of Approach
Steps in implementing an Ontology (2)

4. Implementation
– Develop normalised schema and skeleton
– Implement prototype recording the intention as a paraphrase

• Keep track of what you meant to do so you can compare with what happens
– Implementing logic-based ontologies is programming

– Scale up a bit
• Check performance

– Populate
• Possibly with help of text mining and language technology

5. Evaluate & quality assure
– Against
– Include tests for evolution and change management
– Design regression tests and “probews”

6. Monitor use and evolve
– Process not product!
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Lab Exercise
• Take cards for University ontology to produce an ontology

for the university including the personnel department’s
equal opportunities officer

• Group the cards and form initial hierarchies
– Separate likely primitives, modifiers, roles, defined concepts and

properties, classes and individuals
– Ladder up to provide abstractions as needed

• And fill in siblings
– Propose a normalised ontology

• Classify it to see that it works correctly
– Provide probe classes to check both classification and unsatisfiability

» One file to turn in
– Download the tangled ontology proposed by the personnel

department
• Untangle it

– A second file to turn in


