# Foundations of the Semantic Web: Ontology Engineering

Lecture 2 Building Ontologies & Knowledge Elicitation Alan Rector & colleagues

1

3

### Steps in developing an Ontology

- 1. Establish the purpose
  - Without purpose, no scope, requirements, evaluation,

### 2. Informal/Semiformal knowledge elicitation

- Collect the terms
- Organise terms informally
- Paraphrase and clarify terms to produce informal concept definitions
- Diagram informally
- 3. Refine requirements & tests

# Part I: Developing an Ontology Start at the Beginning

- You now have all you need to implement simple existential ontologies, so let's go back to the beginning
- The goal for the example ontology is to build an ontology of animals to index a children's book of animals
- The goal for the lab ontology is for you to build an ontology for the CS department and eventually for the University

2

4

1

### Steps in implementing an Ontology

### 4. Implementation

- Paraphrase and comment at each stage <u>before</u> implementing
- Develop normalised schema and skeleton
- Implement prototype recording the intention as a paraphrase
  - Keep track of what you meant to do so you can compare with what happens
  - Implementing logic-based ontologies is programming
- Scale up a bit
- Check performance
- Populate
- Possibly with help of text mining and language technology

### 5. Evaluate & quality assure

- Against goals
- Include tests for evolution and change management
- Design regression tests and "probes"
- 6. Monitor use and evolve
  - **Process not product!**













#### Choose some main axes Add abstractions where needed; identify relations; Identify definable things, make names explicit Relations Modifiers Living Thing eats - domestic Animal owns pet Mammal Farmed parent-of - Cat Draft - Dog .... - Food - Cow - Wild Definable - Person - Health Carinvore Fish healthy Herbivore - Carp sick Child - Goldfish Sex - Plant Parent Male Mother Tree Female Grass Father Age Food Animal Fruit Adult Child Draft Animal



| Reorganise everyth                                                                                                                                                                         | ning but "definable                                                                                                                                                                                                                                                                | e" things into pure                                                                                                                                                                                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| trees – th                                                                                                                                                                                 | ese will be the "pri                                                                                                                                                                                                                                                               | imitives"                                                                                                                                                                                                                                                                                           |
| <ul> <li>Self_standing         <ul> <li>Living Thing</li> <li>Animal</li> <li>Mammal</li> <li>Cat</li> <li>Dog</li> <li>Cow</li> <li>Person</li> <li>Pig</li> <li>Fish</li></ul></li></ul> | <ul> <li>Modifiers         <ul> <li>Domestication</li> <li>Muld</li> <li>Use</li> <li>Draft</li> <li>Food</li> <li>pet</li> <li>Risk</li> <li>Dangerous</li> <li>Safe</li> <li>Sex</li> <li>Male</li> <li>Female</li> <li>Age</li> <li>Adult</li> <li>Child</li> </ul> </li> </ul> | <ul> <li>Relations <ul> <li>eats</li> <li>owns</li> <li>parent-of</li> <li></li> </ul> </li> <li>Definables <ul> <li>Carnivore</li> <li>Herbivore</li> <li>Herbivore</li> <li>Child</li> <li>Parent</li> <li>Mother</li> <li>Father</li> <li>Food Animal</li> <li>Draft Animal</li> </ul></li></ul> |

























# Tables are easier to manage than DAGs / Polyhierarchies

| Class  | eats          |  |
|--------|---------------|--|
| Cat    | C Animal      |  |
| Cow    | C Grass       |  |
|        | C Leafy_plant |  |
| Pig    | © Animal      |  |
|        | © Plant       |  |
| Person |               |  |
| Dog    | C Animal      |  |

...and get the benefit of inference: Grass and Leafy\_plants are both kinds of Plant







## Part II – Useful Patterns (continued)

- Upper ontologies & Domain ontologies
- Building from trees and untangling
- Using a classifier
- Closure axioms & Open World Reasoning
- Specifying Values
- n-ary relations
- Classes as values using the ontology

30





































## Example of language problems

- "DraftHorse" and "Draft horse"
  - Some breeds of horses were bred for draft workKnown officially as "Draft horses"
    - The words have taken on a "idiomatic" meaning
    - » No longer mean what they say
    - » Other examples "Blue bird" vs "Bluebird" "Black berry" vs "Blackberry"
    - ...
- Horse → *may\_have\_role* some Draft\_role
  - DraftHorse rdf:comment "Draft breed horse"
  - Draft\_horse = Horse AND *has\_role* some Draft\_role rdf:comment: "Horse actually used for draft work"

50

# Separate Language Labels from Ontology

- OWL/RDF mechanisms weak
  - rdf:label
    - Allows a language or sublanguage tag, but merely an annotation
- Better to be maximally explicit in internal names for concepts
  - Better to be *not understood* than to be *misunderstood*
- Change DraftHorse to Draft\_breed\_horse
  - rdf:label "Draft horse"

51



### **Summary of Approach** Steps in developing an Ontology (1)

1. Establish the purpose

- Without purpose, no scope, requirements, evaluation,
- 2. Informal/Semiformal knowledge elicitation
  - Collect the terms
  - Organise terms informally
  - Paraphrase and clarify terms to produce informal concept definitions
  - Diagram informally
- 3. Refine requirements & tests







