Foundations of the Semantic Web: Ontology Engineering

> Building Ontologies 1 Alan Rector & colleagues

> > 1

3

Goals for this module: for you

- Be able to implement an ontology representation in OWL-DL
 - Be able to elicit a conceptualisation
 - Be able to formulate an ontology representation
 - Be able to implement the ontology representation in OWL-DL
 - Or be able to say you can't
 - · To understand the limits of OWL-DL ontologies
 - Be able to test the resulting ontology implementation
 - Be ready to apply ontology representations in any of several use cases
 - In one week, we can't build the applications...
 - ...but to build an ontology is only a means to building applications – Without applications ontologies are pointless

2

4

Goals for this Module: For us

- Still experimental we need your feedback
 - Feedback
 - On tools we treat this as a User Centred Design experiment
 Please be patient
 - · The good news is they are getting better
 - On the course
 - · Did the content work for you?
 - · What other content would you like?
 - · Balance of labs and lecture
 - Content of labs
 - · For the Semantic Web Best Practice Working Group
 - · New ideas

Mechanics - reminder

- Assessment
 - 30% lab
 - 30% Mini project
 - 40% Exam
- All labs to be handed in by number electronically see lab handout
- Deadline 2 weeks after end of course

Ontologies and Ontology Representations (cont)

- Most of the time we will just say "concept" and "ontology" but whenever anybody starts getting religious, remember...
 - It is only a representation!
 - We are doing engineering, not philosophy although philosophy is an important guide
- There is no one way!
 - But there are consequences to different ways
 - · and there are wrong ways
 - and better or worse ways for a given purposes
 - The test of an engineering artefact is whether it is fit for purpose
 Ontology representations are engineering artefacts

6

8

		[Mil	ke Uschold, Boeing Corp]
	A seman	ntic continu	um
	Pump: "a device for moving a gas or liquid from one place or	(pump has (superclasses ())	
Shared	container to another	Semantics	Semantics
human	Text	hardwired;	processed and
consensus	descriptions	used at runtime	used at runtime
Implicit	Informal (explicit)	Formal (for humans)	Formal (for machines)
Further to •Less aml •More like functional •Better in) the right mean biguity ely to have corre lity ter-operation	s: •Less hard •More rob •More diff	dwiring ust to change icult

OWL The Web Ontology Language

- W3C standard
- Collision of DAML (frames) and Oil (DLs in Frame clothing)
- Three 'flavours'
 - OWL-Lite -simple but limited
 - OWL-DL complex but deliverable (real soon now)
 - OWL-Full fully expressive but serious logical/computational problems
 - Russel Paradox etc etc
 - All layered (awkwardly) on RDF Schema
- Still work in progress see Semantic Web Best Practices & Deployment Working Group (SWBP)

25

27

Description Logics

- Underneath:
 - computationally tractable subsets of first order logic
- Describes relations between Concepts/Classes
 - Individuals secondary
 - DL Ontologies are NOT databases!

- "Conceptual Lego" - define new concepts from old

Description Logics

· What the logicians made of Frames

· Compositional definitions

- Greater expressivity and semantic precision

Protégé OWL: New tools for ontologies • Transatlantic collaboration

 Implement robust OWL environment within PROTÉGÉ framework

- Version 4-A1pha complete rewrite
- You will be guinea pigs and we will have human facts folk seeing what problems you have
- New ideas for debugging, visualisation, ontology management, etc.

33

OWL-DL & Classification · Not all of OWL-DL can yet be implemented - We will deal mostly with what can be classified using Racer or FaCT++ - Not all of the things that are implemented scale successfully · All classifiers are worst-case exponential (or worse) FaCT++ - Classifier being developed here Dmitry Tsarkov/Ian Horrocks Pellet - Classifier from originally MindSwap (U Maryland) www.mindswap.org but now here Bijan Parsia · Best integrated with Protégé at the moment. · We will try to provide warnings of things which cannot be classified or do not scale - But you may discover new things on your own 34

Why it's hard (1)

Clash of intuitions

- Subject Matter Experts motivated by custom & practice
 Prototypes & Generalities
- Logicians motivated by logic & computational tractability
 Definitions and Universals
- Transparency & predictability vs Rigour & Completeness
- Neophytes (you?) caught in the muddled middle

37

Why it's hard (2) Conflation of Models Meaning: Correctness of Classification & retrieval Indexing: Task of discovery, search, or finding Use: Task of data entry, decision support, ... Acquisition: Task of capturing knowledge Assuring quality & managing change

- Quality assurance: Criteria for whether it is 'correct'
- Evolution Coping with change
- Regression testing Controlling changes & maintaining Quality

Why its hard (3)

- Confusion of terminology and usage
 - Religious wars over words and assumptions
- The intersection of
 - Linguistics
 - Cognitive science
 - Software engineering
 - Philosophy
 - Human Factors
- A jumble of syntaxes

39

Vocabulary "Class" ≈ "Concept" ≈ "Category" ≈ "Type"

38

40

- "Instance" ≈ "Individual"
- "Entity" ≈ "object", Class or individual
- "Property" ≈ "Slot" ≈ "Relation" ≈ "Relationtype" ≈
 "Attribute" ≈ Semantic link type" ≈ "Role"
 - but be careful about "role"
 - · Means "property" in DL-speak
 - Means "role played" in most ontologies
 - E.g. "doctor_role", "student role" ..

	Synta	axes	
Three official syntaxes	+ Protégé-OW	L syntax	
 Abstract syntax 	-Specific to O	WL	
- N3	-OWL & RDF		
	-used in all SW	BP documents	
 XML/RDF 	 very verbose, 	not for human consumption	
 "German DL" 	 very concise, 	symbolic	
 First order logic - 	 complete but 	more powerful than DL	
 Manchester Syntax 	Intuitive keyv	vords and infix notation	
· This tutorial uses simpl	ified abstract s	yntax	
$-$ someValuesFrom \rightarrow	some	Э	
− allValuesFrom \rightarrow	only	A	
− intersectionOf \rightarrow	AND	п	
– unionOf →	OR	L	
− complementOf \rightarrow	NOT	7	
 complete 	definition	necessary & sufficient	
 partial 	description	necessary	

- Object Oriented Design (Databases)
 - But data models are not ontologies either
 - Although UML is often a good starting point
 - Additional a-logical issues
 - » Difference between attributes and relations
 - » Issues of life cycle and handling of aggregation
 - » Notion of an instance
 - » Implicitly "closed world"
- Frame based systems, Semantic Nets,... Traditional AI
 Where it all started but real differences
- RDF(S), Topic Maps and other node-and-arc symbolisms
 - "What's in a link?"
 - The battles in standards committees continue

Why its hard (4)
Clash with vocabulary and practice of related software disciplines
Most OO analysis produces a set of templates
E.g. a Java Class is a template for a Java object
Nothing is permitted until there is a place for it in the template
OWL is a way of specifying constraints
The criteria for being a member of a class
Everything is permitted until ruled out by a constraint

- Summary of Approach Steps in developing an Ontology (1)
- 1. Establish the purpose
 - Without purpose, no scope, requirements, evaluation,
- 2. Informal/Semiformal knowledge elicitation
 - Collect the terms
 - Organise terms informally
 - Paraphrase and clarify terms to produce informal concept definitions
 - Diagram informally
- 3. Refine requirements & tests

43

44

