Image formation in the scanning optical microscope

A Thesis submitted to the University of Manchester for the degree of Doctor of Philosophy in the Faculty of Science and Engineering 1997

Paul W. Nutter

The Manchester School of Engineering Division of Electrical Engineering

Contents

Abstract	10
Declaration	11
Copyright and ownership of intellectual property rights	11
Acknowledgements	13
List of abbreviations	14
Chapter 1 Introduction	15
1.1 The scanning optical microscope	15
1.2 The magneto-optic effects	19
1.2.1 The polarised optical field	20
Linear polarisation	21
Circular polarisation	21
Elliptical polarisation	22
1.2.2 Phenomenological description of the magneto-optic effects	23
1.3 Optical storage systems and the resolution limit	25
1.4 The spatial frequency response of the scanning optical microscope	26
1.5 Summary and Objectives	28
Chapter 2 Fourier imaging	30
2.1 Propagation of the optical field	30
2.2 Scalar diffraction theory and the Fourier transform	33
2.3 Diffraction due to finite sized apertures	34

Diffraction due to a circular aperture - the Airy disc		
Diffraction due to a rectangular aperture		
Diffraction due to an annular aperture		
2.4 The Gaussian field distribution	38	
2.5 The thin lens	40	
Chapter 3 Mathematical analysis of the ordinary reflectance	e 44	
scanning microscope		
3.1 The ordinary reflectance scanning microscope	44	
Optical configuration	44	
Image calculation	46	
3.1.1 The coherent optical channel	49	
Step response	49	
3.1.2 The incoherent optical channel	50	
Step response	51	
The incoherent transfer function	52	
3.1.3 Coherence ratio	56	
3.2 The Type 1 reflectance scanning microscope	57	
Transfer function representation	58	
The Type 1 PCTF	59	
3.3 The Type 2, or confocal, reflectance scanning microscope	61	
Optical configurations	61	
Image calculation	63	
Transfer function representation	68	

Chapter 4	4 Mathematical analysis of the magneto-optic	72
	scanning microscope	
4.1 The	e single detector MO scanning microscope	73
4.1.1	The Type 1 system	73
	Optical configuration	73
	Image calculation	74
	Transfer function representation	77
4.1.2	The confocal system	79
	Optical configuration	79
	Image calculation	80
	Transfer function representation	83
4.2 The	e differential detector MO scanning microscope	84
4.2.1	The Type 1 system	84
	Optical configuration	85
	Image calculation	86
	Transfer function representation	89
4.2.2	The confocal system	90
	Optical configuration	90
	Image calculation	91
	Transfer function representation	94
Chapter 5	5 The direct calculation approach	96
5.1 Mo	delling the Type 1 reflectance scanning microscope	98

	Computational procedure				
	The direct calculation algorithm				
	Step response	103			
	Two-dimensional imaging	105			
5.2	Modelling the single detector MO scanning microscope	107			
	Computational procedure	107			
	The direct calculation algorithm	111			
	Step response	113			
	Two-dimensional imaging	114			
5.3 Modelling the differential detector MO scanning microscope					
Computational procedure					
The direct calculation algorithm					
Step response					
	Two-dimensional imaging	122			
Chapt	ter 6 The transfer function approach	124			
6.1	Calculation of the partially coherent transfer function	125			
6.	1.1 Generation of the Type 1 PCTF	125			
	The Type 1 PCTF algorithm	127			
	The Type 1 PCTF	129			
6.	1.2 Generation of the confocal PCTF	131			
	The confocal PCTF algorithm	131			
	The confocal PCTF	133			
6.2	Modelling the ordinary reflectance microscope	135			
6.	2.1 The Type 1 system	135			

	Computational procedure		
	The transfer function algorithm		
	Step response	140	
6.2.2	The confocal system	141	
	Step response	142	
	Impulse response	143	
6.2.3	Pinhole size and resolution issues in the confocal reflectance	144	
	scanning microscope		
6.3 Mo	delling the single detector MO scanning microscope	146	
6.3.1	The Type 1 system		
	The transfer function algorithm	146	
	Step response	148	
	Impulse response	150	
6.3.2	The confocal system	151	
	Impulse response	151	
6.3.3	Analyser misalignment in the MO single detector scanning	152	
	microscope		
6.4 Mo	delling the differential detector MO scanning microscope	154	
6.4.1	The Type 1 system	155	
	The transfer function algorithm	155	
	Step response	157	
	Impulse response	159	
6.4.2	The confocal system	160	
	Impulse response	160	

6.4.3 Pinhole size and resolution issues in the confocal differential	162
detector scanning microscope	
6.4.4 Half wave-plate misalignment in the differential detector MO	163
scanning microscope	
Chapter 7 Applications of the models to optical storage	166
systems	
7.1 Introduction to optical storage formats	166
7.2 The CD-ROM optical system	168
7.2.1 The DVD-ROM system	174
7.3 Phase-Change optical systems	175
7.3.1 The DVD-RAM system	176
7.3.2 The effect of finite bit width	177
7.4 Magneto-optic systems	179
7.4.1 The effect of finite bit width	182
7.4 Analysis of channel optimisation techniques	183
7.4.1 Super-resolution techniques	185
Apodisation using rectangular shading bands	187
Apodisation using annular apertures	190
7.4.2 Optical equalisation - partial response signalling	191
	107
Chapter 8 Aberrations	197
8.1 The origins of aberrations	198
8.2 Aberrations in optical storage systems	200
8.2.1 Defocus	200

	The defocused point spread function	204	
	The defocused Type 1 PCTF	206	
	The step response of the defocused optical system		
8.2.2	Spherical aberration	208	
	The point spread function with spherical aberration	209	
	The Type 1 PCTF with spherical aberration	210	
	The step response of the optical system with spherical aberration	211	
8.2.3	Astigmatism : substrate birefringence	212	
	The point spread function with astigmatism	214	
	The Type 1 PCTF with astigmatism	215	
	The step response of the optical system with astigmatism	216	
8.2.4	8.2.4 Additional aberrations		
Chapter 9	• Experimental studies	219	
9.1 The	e x-y scanning laser microscope, SLM	219	
9.2 Comparison of the experimental and theoretical step responses of the			
refl	ectance scanning microscope		
9.3 Comparison of the experimental and theoretical step responses of the			
diff	Ferential detector MO scanning microscope		
Chapter 1	10 Summary and conclusions	238	
References 2			
Appendix		256	
Appendix	A Publications and conference presentations	257	

Appendix B	Pseudocode	292
Appendix C	Program user guide	294

Abstract

A complete, scalar diffraction based, mathematical analysis is presented for evaluating the response of the ordinary reflectance, single detector MO and differential detector MO, Type 1 and Type 2 (confocal), scanning optical microscopes. Expressions are developed that represent the signal generated when imaging both one-dimensional and two-dimensional, reflectance and MO, samples. Two modelling approaches are described and applied, these are called the 'direct calculation' and 'transfer function' approaches which produce theoretical responses that agree exactly. In the direct calculation approach the form of the optical field is calculated through the optical system, as the sample is scanned beneath the focused spot. The direct calculation approach is shown to be particularly beneficial for generating two dimensional images of samples. In the transfer function approach the signal from the scanning optical microscopes is expressed in a form where the spatial frequency properties of the optical systems are distinct from the properties of the sample, thus enabling the quantitative comparison of the imaging performance of various optical configurations. The models have been implemented in computer code. Theoretical responses generated using the ordinary reflectance scanning optical microscope models are shown to produce results which agree with the published work of others. It is also demonstrated that the single detector MO scanning microscope exhibits imaging characteristics identical to that of the reflectance case and that the differential detector MO scanning microscope exhibits imaging characteristics identical to that of the incoherent optical channel, providing the MO sample is of uniform reflectance. The role of confocal pinhole size in the imaging process is investigated. A particularly interesting result shows that the confocal differential detector MO scanning microscope does not exhibit the enhanced lateral resolution characteristics evident in the confocal reflectance system. The application of the optical models to the signal generation process in optical storage systems is presented. In particular, the readout process in CD-ROM, Phase Change and MO optical systems, as well as future generation optical storage systems, such as digital versatile disk (DVD), are discussed. The effects of super-resolution on the response of the imaging systems using optical filtering techniques is discussed. As a result a novel approach is presented for performing partial response equalisation in the optical domain, thus removing the need for electronic equalisation. Experimental studies are presented which have been generated using an existing scanning laser microscope that may be configured to image using a variety of contrast techniques. The step responses of the reflectance and differential detector MO scanning microscopes are investigated. In particular, the effect of the confocal pinhole size on the response is compared with theoretical predictions and is shown to confirm the validity of the responses generated using the mathematical models developed.

Declaration

No portion of the work referred to in this thesis has been submitted in support of an application for another degree or qualification of this or any other university or other institute of learning.

Copyright and ownership of intellectual property rights

- (1) Copyright in text of this thesis rests with the Author. Copies (by any process) either in full, or of extracts, may be made **only** in accordance with instructions given by the Author and lodged in the John Rylands University Library of Manchester. Details may be obtained from the Librarian. This page must form part of any such copies made. Further copies (by any process) of copies made in accordance with such instructions may not be made without the permission (in writing) of the Author.
- (2) The ownership of any intellectual property rights which may be described in this thesis is vested in the University of Manchester, subject to any prior agreement to the contrary, and may not be made available for use by third parties without the written permission of the University, which will prescribe the terms and conditions of any such agreement.

Further information on the conditions under which disclosures and exploitation may take place is available from the Head of the Department of Electrical Engineering.

For Mum, Dad and Julie

Acknowledgements

I would like to express my gratitude to Dr. David Wright for his suggestions and supervision during the course of the work presented in this thesis. I offer thanks to Dr. Philip Filbrandt for his assistance during the development of the mathematical models and Dr. Nick Heyes for his help in generating the experimental results. I extend my gratitude to present and past members of the Information Storage Research Group and colleagues in the Division of Electrical Engineering for their support during the course of my studies.

I note that the mathematical analysis leading to the description of the signal generation process in the differential detector MO scanning microscope, as presented in chapter 4, was developed jointly by Philip Filbrandt ^[1] and myself.

List of abbreviations

SLM	:	scanning laser microscope
Illum	:	incident illumination
Obj	:	objective lens
Col	:	collector lens
Det	:	photo-detector
Aux	:	auxiliary lens
Pinhole Det	:	pinhole photo-detector
a	:	radius of a circular aperture