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Chapter 6

The transfer function approach

The analysis presented in chapters 3 and 4 illustrated how the signal from the

reflectance and magneto-optic scanning microscopes can be expressed in a transfer

function form, where the properties of the optical system are distinct from the

properties of the sample.  It was illustrated that the signal, from all the detection

strategies discussed, can be expressed in the same characteristic form, as given by eq.

(3.32), i.e.
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where the function C x y x y( , ; , )ν ν ν ν′ ′  is the partially coherent transfer function,

PCTF, and M x y x y( , ; , )ν ν ν ν′ ′  is the medium function. The form of the PCTF

depends upon whether the detection system is Type 1, where the PCTF is given by eq.

(3.38), i.e.

( ) ( ) ( )
( )

C p x f y f p x f y f

p x y dx dy

x y x y x y x yν ν ν ν ν λ ν λ ν λ ν λ, ; , , * ,

,

′ ′ = + + + ′ + ′

⋅

∫∫
−∞

∞

1 1

2

2

    

                                                              

 (3.38)

or confocal, where the PCTF is given by eq. (3.73), i.e.
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where the symbols have their usual meaning. The form of the medium function

depends upon whether the detection technique is reflectance, where it is given by eq.

(3.33), i.e.

( ) ( ) ( )M x y x y x y x yν ν ν ν ν ν ν ν, ; , , * ,′ ′ = ′ ′Γ Γ                          (3.33)
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single detector MO, where it is given by eq. (4.15), i.e.
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or differential detector MO, where it is given by eq. (4.42), i.e.
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where all symbols have their usual meaning. Hence, it can be seen that the same

computational procedure can be adopted to model all the detection techniques

discussed, where the PCTFs and medium functions are used interchangeably

depending upon the scanning microscope configuration being investigated.

In the following chapter the transfer function approach is used to model the response

of the detection strategies discussed previously, and illustrates the usefulness of the

transfer function approach for comparing the imaging characteristics of scanning

microscopes.

6.1  Calculation of the partially coherent transfer function

The following section describes how to generate the Type 1 and confocal PCTFs by

the application of eq. (3.38) and eq. (3.73) respectively in computer code.

6.1.1  Generation of the Type 1 PCTF

Comparing eq. (3.38) with eq. (3.22) it can be seen that the process for generating the

Type 1 PCTF is similar to that used for generating the incoherent OTF. However, the

generation of the Type 1 PCTF is somewhat more complicated, in so much that the

convolution process is a function of the objective aperture pupil function, its complex

conjugate and the square magnitude of the collector aperture pupil function.

Assuming clear, aberration free, circular apertures of equal diameter, under uniform

incident illumination, for a particular set of spatial frequencies νx, νy, νx′ and νy′, the

Type 1 PCTF is represented by the area of overlap between three circles representing
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p1 centred on ( , )ν λ ν λx yf f and p1* centred on ( , )ν λ ν λx yf f′ ′ which also falls within

the circle defined by | |p2
2 centred on ( )0 0, , and is illustrated in Fig. (6.1) [4,5,7,20,34,46].

Figure 6.1 : Generation of the Type 1 PCTF by the calculation of the area of

overlap of the objective aperture pupil function, its complex conjugate, and the

square magnitude of the collector aperture pupil function.

The general form of the PCTF is a four dimensional function (of νx, νy, νx′, νy′). Due

to the complexities of generating a four dimensional transfer function, the PCTF is

often restricted to imaging objects which are a function of a single direction. In which

case the analysis is simplified significantly, and the Type 1 PCTF is reduced to a

function of two variables, i.e.
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Assuming clear, aberration free, circular apertures of equal diameter under uniform

illumination, for a particular pair of spatial frequencies νx and νx′, the PCTF is now

represented by the area of overlap between three circles representing p1 centred on

( , )ν λx f 0 and p1* centred on ( , )0 ν λx f′ that also falls within the circle defined by

| |p2
2 centred on ( )0 0, , and is illustrated in Fig. (6.2).

Area of overlap
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Figure 6.2 : Generation of the Type 1 PCTF by the calculation of the area of

overlap of the objective aperture pupil function, its complex conjugate, and the

square magnitude of the collector aperture pupil function, when imaging in a single

direction, i.e. x.

The Type 1 PCTF algorithm

The following algorithm, written in pseudocode (see Appendix B), illustrates the

computational procedure for calculating the Type 1 PCTF (for a one-dimensional

object) following eq. (6.1) and Fig. (6.2).

Step 1 Input
data

Matrix containing the objective aperture pupil function, po, which
is of dimensions adim × adim.
Matrix containing the complex conjugate of the objective
aperture pupil function, po*, which is of dimensions adim × adim.
Matrix containing the collector aperture pupil function, pc, which
is of dimensions adim × adim.
Temporary matrix, temp, of dimensions adim × (3∗adim), used
during the convolution process.

Output
data

Matrix containing the Type 1 PCTF which is of dimensions tdim
× tdim, where tdim = (2×adim)+1.

Step 2 FOR h = 0…(2×adim) DO Step 3 to Step 7. #1

Step 3         FOR g = 0…(2×adim) DO Step 4 to Step 7. #2

Area of overlap
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Step 4                 FOR y = 1…adim
                        FOR x = 1…adim
                                Set temp(y, x + adim) = |pc(y, x)|2 #3;
                                Set temp(y, x) = 0 #4;
                                Set temp(y, x) = 0 #4;
                        END;
                END.

Step 5                 FOR y = 1…adim
                        FOR x = 1…adim
                                Set temp(y, x + g) = temp(y, x + g)× po(y, x); #5

                        END;
                END;
                FOR y = 1…adim
                        FOR x = 1…g                           
                                Set temp(y, x) = 0 #4;
                        END;
                END;
                FOR y = 1…adim
                        FOR x = (g+adim)…(3×adim)
                                Set temp(y, x) = 0 #4;
                        END;
                END.

Step 6                 FOR y = 1…adim
                        FOR x = 1…adim
                                Set temp(y, x + h) = temp(y, x + h) × po*(y, x); #6

                        END;
                END;
                FOR y = 1…adim
                        FOR x = 1…h                           
                                Set temp(y, x) = 0 #4;
                        END;
                END;                                                     

                FOR y = 1…adim
                        FOR x = (h+adim)…(3×adim)
                                Set temp(y, x) = 0 #4;
                        END;
                END.

Step 7
               Set C(h, g) = ( )

y

y

x

x

y x
=

=

=

=

∑ ∑
1 1

adim tdim

temp , ;

        END;
END;
STOP.

#1 h = 0 corresponds to a displacement of the complex conjugate of the objective
aperture pupil function by ν λx f′ = −adim , and h = 2×adim corresponds to
ν λx f = +adim .
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#2 g = 0 corresponds to a displacement of the objective aperture pupil function by,
ν λx f = −adim  and g = 2×adim corresponds to ν λx f′ = +adim .
#3 Centre |pc|

2 inside the temp matrix.
#4 Areas which do not overlap are set to zero.
#5 Multiply the matrix temp, by the objective aperture pupil function displaced by g -
νxλf.
#6 Multiply the matrix temp, by the complex conjugate of the objective aperture pupil
function displaced by h - νx′λf.

It should be noted that the algorithm illustrated above is not optimised for speed of

execution or memory usage, and only illustrates the general convolution process.

The Type 1 PCTF

Figure 6.3 illustrates the Type 1 PCTF for clear, aberration free, circular apertures of

equal diameter under uniform incident illumination, generated using the algorithm

described above.
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Figure 6.3 : The Type 1 PCTF for clear, aberration free, circular apertures of equal

diameter under uniform incident illumination.

It should be noted that although νx and νx′ are plotted in orthogonal directions, they

do in fact represent spatial frequencies in the same direction, x.
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Figure 6.4 illustrates the Type 1 PCTF for clear, aberration free, circular apertures of

equal diameter under Gaussian ( w
e− =2  a/2) incident illumination.

-2

0

2

-2

0

2
0

0.5

1

νx - NA/λ

Normalised transfer
function

νx - NA/λ′

Figure 6.4 : The Type 1 PCTF,  for clear, aberration free, circular apertures of

equal diameter under Gaussian incident illumination ( w
e− =2 a/2).

The partially coherent transfer function has a characteristic cut-off of 2NA λ , which

corresponds to the resolution limit of the imaging system. Figures 6.3 and 6.4

illustrate that, as seen previously in Fig. 5.3, the form of the incident illumination

affects the shape of the Type 1 PCTF and hence, the imaging characteristics of the

Type 1 scanning microscope.

Under uniform illumination the spatial frequency response of the Type 1 system is

approximately linear with change in spatial frequency. However, under Gaussian

illumination the high spatial frequency components are attenuated and the low

frequency components are boosted, much like for the incoherent system described

previously in sec. 3.1.2.
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6.1.2  Generation of the confocal PCTF

When imaging objects which are restricted to detail in a single direction only, i.e. x,

the confocal PCTF reduces to
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where the symbols have their usual meaning. The generation of the confocal PCTF is

a somewhat more complicated procedure compared with the Type 1 PCTF, and

involves a convolution process which is a function of four variables.

The confocal PCTF algorithm

The following algorithm, written in pseudocode (see Appendix B), illustrates the

computational procedure for calculating the confocal PCTF (for a one-dimensional

object) following eq. (6.2).

Step 1 Input
data

Matrix containing the objective aperture pupil function, po, which
is of dimensions adim × adim.
Matrix containing the complex conjugate of the objective
aperture pupil function, po*, which is of dimensions adim × adim.
Matrix containing the collector aperture pupil function, pc, which
is of dimensions adim × adim.
Matrix containing the complex conjugate of the collector
aperture pupil function, pc,* which is of dimensions adim × adim.
Matrix containing the FFT of the pinhole aperture pupil function,
G, which is of dimensions tdim × tdim.
Temporary matrices, temp1 and temp2, of dimensions adim ×
(3×adim), used during the convolution process.

Output
data

Matrix containing the confocal PCTF which is of dimensions tdim
× tdim, where tdim = (2×adim)-3.

Step 2 FOR h = 0…(2×adim) DO Step 3 to Step 11. #1

Step 3         FOR g = 0 …(2×adim) DO Step 4 to Step 11. #2

Step 4                FOR y = 1…adim DO
                       FOR x = 1… adim DO
                               Set temp1(y, x+adim ) = pc(y, x); #3

                               Set temp1(n, m) = 0; #4

                               Set temp1(n, m+2×adim) = 0; #4
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                       END;
               END.

Step 5                FOR y = 1…adim DO Step 6 to Step 9.
Step 6                        FOR x = 1… adim DO Step 7 to Step 9.
Step 7                                FOR n = 1…adim

                                        FOR m = 1…adim
                                                Set temp2(n, m+adim) = pc*(n, m)
                                                                  × G(y - n, x - m); #5

                                                Set temp2(n, m) = 0; #4

                                                Set temp2(n, m+2×adim) = 0; #4

                                        END;
                                END.

Step 8                                 FOR n = 1…adim
                                        FOR m = 1…adim
                                              Set  temp2(n, m+h) = temp2(n, m+h)
                                                                 × po*(n, m); #6

                                        END;
                                END;
                                FOR n = 1…adim
                                        FOR m = 1…h
                                               Set temp2(n, m) = 0; #4

                                        END;
                                END;
                                FOR n = 1…adim
                                        FOR m = (h+adim)…(3×adim)
                                               Set temp2(n, m) = 0; #4

                                        END;
                                END.

Step 9                                 Set temp1(y+adim, x+adim) =

                                temp1(y+adim, x+adim) × ( )
n

n

m

m

=

=

=

=

∑ ∑
1 1

adim tdim

temp2 n,m ; #7

                        END;
               END.

Step 10                FOR y = 1…adim
                       FOR x = 1…adim
                               Set temp1(y, x+g) = temp1(y, x+g)× po(y, x+g); #8

                       END;
               END;
               FOR y = 1…adim
                       FOR x = 1…h
                               Set temp1(y, x) = 0; #4

                       END;
               END;
               FOR y = 1…adim
                        FOR y = (g+adim)…(3×adim)
                                 Set temp1(y, x) = 0; #4

                        END;
               END.
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Step 11
               Set C(h, g) = ( )

y

y

x

x

y x
=

=

=

=

∑ ∑
1 1

adim tdim

temp1 , ;

        END;
END;
STOP.

#1 h = 0 corresponds to a displacement of the complex conjugate of the objective
aperture pupil function by ν λx f′ = −adim , and h = 2×adim corresponds to
ν λx f = +adim .
#2 g = 0 corresponds to a displacement of the objective aperture pupil function by,
ν λx f = −adim  and g = 2×adim corresponds to ν λx f′ = +adim .
#3 Centre pc inside the temp1 matrix.
#4 Areas which do not overlap are set to zero.
#5 Centre pc* inside the temp2 matrix, multiplied by the shifted FFT of the pinhole
aperture pupil function.
#6 Multiply the matrix temp2, by the complex conjugate of the objective aperture pupil
function displaced by h - νx′λf.
#7 Sum the matrix temp2 over all {m, n} space.
#8 Multiply the matrix temp1, by the objective aperture pupil function displaced by g-
νxλf.

It should be noted that the algorithm above is not optimised for speed of execution or

memory usage and only illustrates the general convolution process.

The confocal PCTF

Figure 6.5 illustrates the confocal PCTF for clear, aberration free, circular apertures

of equal diameter under uniform incident illumination, employing an infinitesimally

small pinhole (ideal confocal), generated using the algorithm described above.

Figure 6.6 illustrates the confocal PCTF for clear, aberration free, circular apertures

of equal diameter under uniform incident illumination, employing a finite sized pinhole

of radius 0.75λ/NA.

Comparing Fig. 6.5 with Fig 6.3 illustrates that the ideal confocal PCTF is very

different in shape to the Type  1 PCTF. As the size of the confocal pinhole increases,

then the shape of the confocal PCTF changes and the confocal PCTF begins to

resemble the Type 1 PCTF. Such a result was illustrated in sec. 3.3 where the analysis
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indicated that the expression representing the signal from the confocal reflectance

scanning microscope reverted to that of the Type 1 system for large pinhole sizes.
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Figure 6.5 :  The ideal confocal PCTF, for clear, aberration free, circular apertures

under uniform incident illumination, generated using the confocal PCTF algorithm.
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Figure 6.6 : The confocal PCTF for a finite sized pinhole, of radius 0.75λ/NA, for

clear aberration free, circular apertures of equal diameter under uniform incident

illumination.
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6.2 Modelling the ordinary reflectance scanning microscope

In this section the imaging process in the reflectance scanning microscope is discussed

using the transfer function approach. The signal from the reflectance scanning

microscope can be expressed in the characteristic form of eq. (3.32) where the PCTF

depends upon whether the detection channel is Type 1 or confocal, and the medium

function is given by eq. (3.33). Considering objects which contain information in a

single direction only, x, then the medium function may be recast in the simplified form

( ) ( ) ( )M x x x xν ν ν ν; *′ = ′Γ Γ                                       (6.3)

and the characteristic equation, eq. (3.32) reduces to the form

( ) ( ) ( ) { }[ ] { }I x C M j x d j x ds x x x x x s x x s x

x xs s

= ′ ′ − ′ ′ ′∫∫
−∞

∞

′=

ν ν ν ν π ν ν π ν ν; ; exp exp    2 2

(6.4)

where the PCTF is generated using the analysis presented in the previous section. Eq.

(6.4) illustrates that the response of the Type 1 reflectance scanning microscope to a

simple one-dimensional object can be generated very easily using Fourier transform

techniques.

6.2.1  The Type 1 system

The computational procedure for generating the Type 1 PCTF has been described in

detail in sec. 6.1. The cut-off spatial frequency of the matrix representing the PCTF

governs the resolution of the output signal. Using the properties of the discrete

Fourier transform [42], the spatial resolution, ∆x , is given by

∆x
c

=
1

2( )ν
                                                    (6.5)

where νc  is the cut-off spatial frequency of the PCTF matrix. If the cut-off remains at

2NA λ , then the output resolution will be given by 0 25. λ NA . For a wavelength of

514nm and NA of 0.5 this gives an output resolution of 0.25µm. Hence, to improve

the resolution of the output signal the PCTF matrix should be centred in a much larger

matrix of size mdim mdim× , where mdim  is a function of tdim  (the dimension of the
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matrix representing the PCTF), i.e. mdim tdim= ×c , where c is a integer, such that

the cut-off spatial frequency of the larger matrix is given by

ν
λc

cNA
=

2
  .                                                 (6.6)

In which case, using the properties of the discrete Fourier transform, the output

resolution is given by

∆x
cNAc

= =
1

2 4ν
λ

 .                                             (6.7)

For example, if the cut-off frequency of the larger matrix is 16NA λ , i.e. c=8 and

mdim tdim= ×8 , then the resolution of the output signal will be 0 03125. λ NA ,

which corresponds to a resolution of 0.03µm for a wavelength of 514nm and an NA

of 0.5.

Computational procedure

Figure 6.7 illustrates the signal generation process, using the transfer function

approach, for the Type 1 reflectance system when imaging a simple one-dimensional

object, and is described in detail as follows.

Step 1 • Generate a matrix containing the objective aperture pupil function, po,

which is  of dimensions adim adim× .

• Generate a matrix containing the collector aperture pupil function, pc,

which is of dimensions adim adim× .

• Generate a vector representing the reflectance characteristics of the

sample, r, which is of length mdim.

The resolution of the sample vector depends upon the value of mdim, and is

determined using the analysis described in the previous section.

Step 2 Generate the Type 1 PCTF which is contained in a matrix of dimensions

tdim tdim× , where tdim adim= ×2 , using the computational procedure

described in sec. 6.1.1.
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Type 1 PCTF algorithm
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Figure 6.7 : The signal generation process in the Type 1 reflectance scanning

microscope, using the transfer function approach.
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Step 3 Centre the matrix containing the Type 1 PCTF inside a larger matrix, P, of

dimensions mdim mdim× , to give an output signal resolution of λ / 2cNA .

Step 4 Generate a vector representing the samples spatial frequency spectrum, Γ,

by taking the one-dimensional Fast Fourier Transform (FFT) of the vector

r.

Step 5 Calculate a vector , Γ*, containing the  complex conjugate of the vector Γ.

Step 6 Form a matrix, M, representing the medium function by copying the vector

Γ, representing the sample spatial frequency spectrum into the rows of M,

and array multiplying the columns by the vector, Γ*, representing the

complex conjugate of the sample spatial frequency spectrum.

Step 7 Array multiply the matrix representing the PCTF , P, by the matrix

representing the medium function, M.

Step 8 Take the FFT along the rows of the resulting matrix.

Step 9 Take the  inverse FFT along the columns of the resulting matrix.

Step 10 The signal, I, which is an intensity signal, is calculated by forming a vector,

of length mdim, containing the values along the diagonal of the resulting

matrix, i.e. ( )x xs s= ′  .

The transfer function algorithm

The following algorithm, written in pseudocode (see Appendix B), illustrates the

computational procedure for calculating the response of the Type 1 reflectance

scanning microscope using the transfer function approach, when imaging simple one-

dimensional objects.
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Step 1 Input
data.

Matrix containing the objective aperture pupil function - po, of
dimensions adim × adim
Matrix containing the collector aperture pupil function - pc, of
dimensions adim × adim
Vector containing the sample reflectance characteristics - r, of
length mdim (one-dimensional reflectance object).
Matrix to contain the PCTF - P, of dimensions mdim × mdim.
Matrix to contain the medium function - M, of dimensions mdim
× mdim.
Vector to contain the reflectance spectrum of the object - Γ, of
length mdim.
Temporary vectors - dummy and temp, of length mdim.

Output
data.

Vector containing the signal from the scanning microscope - I, of
length mdim.

Step 2 Generate a matrix representing the Type 1 PCTF, PCTF,  using the
algorithm presented in sec. 6.1, which is of dimensions tdim × tdim, where
tdim = 2×adim.

Step 3 FOR y = 1…mdim
        FOR x = 1…mdim
                Set P(y, x) = 0;
        END;
END;
FOR y = 1…tdim
        FOR x = 1…tdim
               Set P(y + ((mdim-tdim)/2), x + ((mdim-tdim)/2)) =
                                                     PCTF(y, x);#1

        END;
END.

Step 4 Set Γ = Fast Fourier Transform ( r ). #2

Step 5 FOR x = 1…mdim
        Set ℜ ( Γ*( x ) ) =   ℜ ( Γ( x ) ); #3

        Set ℑ ( Γ*( x ) ) =  - ℑ ( Γ( x ) );
END.

Step 6 FOR y = 1…mdim
        FOR x = 1…mdim
                Set M(y, x) = Γ( x );
        END;
END;
FOR y = 1…mdim
        FOR x = 1…mdim
                Set M(y, x) = M(y, x) × Γ*( y );
        END;
END.

Step 7 FOR y = 1…mdim
        FOR x = 1…mdim
                Set P(y, x) = P(y, x) × M(y, x);
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        END;
END.

Step 8 FOR y = 1…mdim
        FOR x = 1…mdim
                Set dummy(x ) = P(y, x);
       END;
       Set dummy = Fast Fourier Transform (dummy); #2

       FOR x = 1…mdim
               Set temp(y, x) = P(x );
       END;
END.

Step 9 FOR y = 1…mdim
        FOR x = 1…mdim
                Set dummy(x ) = P(x, y);
       END;
       Set dummy = Inverse Fast Fourier Transform (dummy); #4

       FOR x = 1…mdim
               Set P(x, y) = dummy(x );
       END;
END.

Step 10 FOR x = 1…mdim
        Set I (x ) = P(x, x);
END;
STOP.

#1 Centre the PCTF inside the larger temp matrix of dimensions mdim × mdim.
#2 Fast Fourier Transform algorithm is described in reference 6.
#3 ℜ - represents the real component, ℑ - represents the imaginary component.
#4 Inverse Fast Fourier Transform algorithm is described in reference 6.

Step response

Figure 6.8 illustrates the step response of the Type 1 reflectance scanning microscope

generated using the transfer function algorithm described above. The responses were

generated using clear, aberration free, circular apertures of equal diameter, under

uniform and Gaussian ( w
e− =2 a/2) incident illumination. The responses illustrated in

Fig. 6.8 have been generated using the Type 1 PCTFs illustrated in Fig. 6.3 and Fig.

6.4.

Comparison of Fig. 5.3 and Fig. 6.8 illustrates that the two approaches to modelling

the imaging process in the Type 1 reflectance scanning microscope, the direct

calculation and transfer function approaches, produce exactly the same results when
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imaging simple one-dimensional objects. This gives great confidence in the validity

and accuracy of both methods.
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Figure 6.8 : The step response of the Type 1 reflectance scanning microscope, for

clear, aberration free, circular apertures under uniform (solid dashed line) and

Gaussian ( w
e− =2 a/2) (dotted line) incident illumination. Solid line represents the

edge of the step.

The disadvantage with the transfer function approach, is it is computationally

demanding to produce two-dimensional images, due to the complexities of generating

a four-dimensional transfer function. Hence, use of the transfer function approach in

this thesis is limited to one-dimensional imaging only.

6.2.2 The confocal system

The computational procedure for calculating the response of the confocal reflectance

scanning microscope, using the transfer function approach, follows directly from the

algorithm described in detail in sec. 6.2.1. However, when calculating the response of

the confocal configuration, the Type 1 PCTF should be replaced by the confocal

PCTF, and then the same procedure for calculating the output signal can be applied.

The computational procedure for generating the confocal PCTF has been described in

detail in sec. 6.1. The procedure for increasing the resolution of the output signal in
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the Type 1 system, described in sec 6.2.1 can be applied in the confocal case. Hence,

the resolution of output signal from the confocal system can be increased by centring

the confocal PCTF in a much larger matrix of dimensions mdim mdim× , where

mdim  is a function of tdim , i.e. mdim tdim= ×c , where c is a integer.

Step response

Figure 6.9 illustrates the step response of the confocal reflectance scanning

microscope generated using the transfer function algorithm with the confocal PCTF.

The response was generated using clear, aberration free, circular apertures of equal

diameter, under uniform incident illumination, with an infinitesimally small confocal

pinhole (ideal case). Also illustrated in Fig 6.9 is the step response of the Type 1

configuration under the same conditions.
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Figure 6.9 : The step response of the ideal confocal reflectance scanning

microscope, for clear, aberration free, circular apertures under uniform incident

illumination, (solid line), and the step response of the Type 1 reflectance scanning

microscope for the same conditions (dotted line).

Figure 6.9 illustrates that the response of the confocal reflectance system is sharper as

compared to the Type 1 system. This implies that the confocal system exhibits an

improvement in resolution over the Type 1 case, as observed by other workers
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[4,5,69,71,72,73]. The level of resolution improvement is perhaps illustrated more clearly by

considering the impulse response.

Impulse response

Figure 6.10 illustrates the response of the confocal reflectance scanning microscope to

a 1-D line of impulses (extending in the y direction). This is usually called the line

spread function but here, since only 1-D objects are being dealt with, it will also be

referred to as the impulse response. The response illustrated in Fig. 6.10 has been

generated using clear, aberration free, circular apertures of equal diameter, under

uniform incident illumination for the case of an ideal infinitesimally small pinhole,

generated using the transfer function algorithm. Also illustrated is the corresponding

impulse response of the Type 1 configuration, and the impulse response of the

confocal system with a finite sized confocal pinhole.
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Figure 6.10 : Plots of impulse response for the ideal confocal (dotted line), the

confocal with finite sized pinhole (dashed line), and the Type 1 (solid

line),reflectance scanning microscopes, for clear, aberration free, circular apertures

of equal diameter under uniform incident illumination.
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Figure 6.10 clearly illustrates the resolution advantages of the confocal reflectance

scanning microscope. The response of the confocal imaging system is narrower than

that of the Type 1 optical system, which agrees with results produced by other

researchers [4,5,53,70], and it is because of this that confocal systems are said to have

improved lateral resolution. Another important observation is that the effect of the

sidelobes due to the Airy disc focused spot is suppressed in the confocal case. It

should be pointed out that the resolution improvement in the confocal optical system

is not true super-resolution, since the confocal PCTF exhibits the same cut-off spatial

frequency as the Type 1 optical system (2NA/λ). The effective improvement of the

resolution of the confocal system can be explained by non-linear effects introduced at

the optical detector, where diffraction orders are brought to interference in the

detector plane, even when they do not overlap in the collector plane. However, as the

size of the confocal pinhole increases these non-linear effects disappear [71].

6.2.3  Pinhole size and resolution issues in the confocal reflectance scanning

microscope

It is instructive to investigate the effects which a finite sized pinhole has upon the

resolution and imaging properties of the confocal reflectance scanning microscope.

An infinitesimally small pinhole is an idealistic aperture which cannot be implemented

in real systems. Hence, the optimum pinhole size must be chosen which will produce

the best improvement in lateral resolution compared with the Type 1 configuration.

Figure 6.11 illustrates a plot of full width at half maximum (FWHM) of the impulse

response of the confocal reflectance scanning microscope as a function of pinhole

radius. The responses were generated using the transfer function approach described

previously with clear, aberration free, circular apertures of equal diameter, under

uniform illumination. Also shown is a plot of published data [53,72,73]. The agreement is

good.
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For a pinhole radius less than 0.75λ/NA, the impulse response begin to narrow,

leading to improved lateral resolution. If the pinhole radius is greater than 1.5λ/NA

then no significant resolution improvement is observed over the Type 1 configuration.
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Figure 6.11 : Plot of FWHM of the impulse response of the confocal reflectance

scanning microscope as a function of pinhole size (solid line). Also illustrated is a

plot of published data (circles).

The optimum size of the pinhole depends largely on the wavelength of the illumination

and the numerical aperture of the auxiliary lens. Results produced by Braat [71]

illustrate that for a pinhole diameter less than 0.4λ/NA the signal from the confocal

system is comparable with that of the ideal confocal system, and this agrees very well

with the results outlined in Fig. 6.11. For a wavelength of 514nm, an auxiliary lens

NA of 0.05 (realistic values) then the optimum pinhole diameter will be 10µm.

It should be noted that for very small pinhole radii the magnitude of the step response

decreases rapidly since the reduced pinhole size restricts the amount light which

reaches the photo-detector.
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6.3  Modelling the single detector MO scanning microscope

In this section the imaging process in the single detector MO scanning microscope is

discussed, using the transfer function approach. The signal from the single detector

MO scanning microscope can be expressed in the characteristic form of eq. (3.32),

where the PCTF depends upon whether the detection channel is Type 1 or confocal,

and the medium function is given by eq. (4.15). Considering objects which contain

information in a single direction only, x, then the medium function may be recast in

the simplified form

( ) ( ) ( )( ) ( ) ( )( )M x x x x x xν ν ν β ν β ν β ν β; * cos * sin cos sin′ = ′ + ′ ⋅ +Γ Λ Γ Λ     (6.8)

and the characteristic equation, eq. (3.32), can be expressed in the form of eq. (6.4).

The following analysis is directed to calculating the form of the readout signal  for

both the Type 1 and confocal configurations, when imaging simple one-dimensional

objects.

6.3.1  The Type 1 system

The computational procedure for calculating the response from the Type 1 single

detector MO scanning microscope follows directly from the procedure described in

sec. 6.2.1. However, the medium function in the single detector MO scanning

microscope, eq. (6.8), is different to that of the reflectance scanning microscope. The

computational procedure for calculating the Type 1 PCTF has been described in detail

in sec. 6.1. The procedure for increasing the resolution of the output signal in the

Type 1 reflectance scanning microscope, described in sec 6.2.1 can also be applied in

the single detector MO system.

The transfer function algorithm

The algorithm for generating the response from the Type 1 single detector MO

scanning microscope to a simple one-dimensional MO object is a modified version of

that presented in sec. 6.2.1, and  is illustrated below.



Chapter 6 The transfer function approach

147

Step 1 Input
data.

Matrix containing the objective aperture pupil function - po, of
dimensions adim × adim
Matrix containing the collector aperture pupil function - pc, of
dimensions adim × adim
Vector containing the sample reflectance characteristics - r, of
length mdim (one-dimensional MO object)
Vector containing the sample phase characteristics - φ, of length
mdim (one-dimensional MO object)
Vector containing the sample Kerr rotation characteristics - k, of
length mdim (one-dimensional MO object)
The angle of the analyser transmission axis - β.
Matrix to contain the PCTF - P, of dimensions mdim × mdim.
Matrix to contain the medium function - M, of dimensions mdim
× mdim.
Vector to contain the MO spectrum of the object - Λ, of length
mdim.
Vector to contain the reflectance spectrum of the object - Γ, of
length mdim.
Temporary vectors - dummy and temp, of length mdim.

Output
data.

Vector containing the signal from the scanning microscope - I, of
length mdim.

Step 2 Generate a matrix representing the Type 1 PCTF, PCTF,  using the
algorithm presented in sec. 6.1, which is of dimensions tdim × tdim, where
tdim = 2×adim.

Step 3 FOR y = 1…mdim
        FOR x = 1…mdim
                Set P(y, x) = 0;
        END;
END;
FOR y = 1…tdim
        FOR x = 1…tdim
               Set P(y + ((mdim-tdim)/2), x + ((mdim-tdim)/2)) =
                                                     PCTF(y, x);#1

        END;
END.

Step 4 Set Γ = Fast Fourier Transform ( r ); #2

Set Λ = Fast Fourier Transform (r .× φ  .× tan(k )). #3

Step 5 FOR x = 1…mdim
        Set ℜ ( Γ*( x ) ) =   ℜ ( Γ( x ) ); #4

        Set ℑ ( Γ*( x ) ) =  - ℑ ( Γ( x ) );
END;
FOR x = 1…mdim
        Set ℜ ( Λ*( x ) ) =   ℜ ( Λ( x ) ); #4

        Set ℑ ( Λ*( x ) ) =  - ℑ ( Λ( x ) );
END.
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Step 6 FOR y = 1…mdim
        FOR x = 1…mdim
                Set M(y, x) = ( Γ( x )cosβ + Λ( x )sinβ )
                                   × ( Γ*( y )cosβ + Λ*( y )sinβ );
        END;
END.

Step 7 FOR y = 1…mdim
        FOR x = 1…mdim
                Set P(y, x) = P(y, x) × M(y, x);
        END;
END.

Step 8 FOR y = 1…mdim
        FOR x = 1…mdim
                Set dummy(x ) = P(y, x);
       END;
       Set dummy = Fast Fourier Transform (dummy); #5

       FOR x = 1…mdim
               Set temp(y, x) = P(x );
       END;
END.

Step 9 FOR y = 1…mdim
        FOR x = 1…mdim
                Set dummy(x ) = P(x, y);
       END;
       Set dummy = Inverse Fast Fourier Transform (dummy); #4

       FOR x = 1…mdim
               Set P(x, y) = dummy(x );
       END;
END.

Step 10 FOR x = 1…mdim
        Set I (x ) = P(x, x);
END;
STOP.

#1 Centre the PCTF inside the larger temp matrix of dimensions mdim × mdim.
#2 Fast Fourier Transform algorithm is described in reference 6.
#3 .× indicates array multiplication.
#4 ℜ - represents the real component, ℑ - represents the imaginary component.
#5 Inverse Fast Fourier Transform algorithm is described in reference 6.

Step response

It is common to employ the single detector MO scanning microscope with the

analyser transmission axis aligned at 8° to the extinction position [20], i.e. β ≈ °82 ,

where the optimum signal-to-noise ratio is observed in the output signal. Figure 6.12
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illustrates step responses of the single detector MO scanning microscope, generated

using the transfer function algorithm, for analyser orientations of β = °90  and

β = °82 . The responses were generated using clear, aberration free, circular apertures

of equal diameter, under uniform incident illumination, using a MO sample of uniform

ordinary reflectance (rx equal to unity) and zero phase.
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Figure 6.12 : The step response of the Type 1 single detector  MO  scanning

microscope for clear, aberration free, circular apertures of equal diameter under

uniform incident illumination,  for an analyser orientation of β=90°(solid line), and

β=82° (dashed line) to the angle of incident polarisation.

Again, comparison of Fig. 6.12 and Fig. 5.9 illustrates that the two approaches to

modelling the imaging process in the Type 1 single detector MO scanning microscope,

the direct calculation and transfer function approaches, produce exactly the same

results when imaging simple one-dimensional objects.

An interesting result of Fig. 6.12 is that in the case of an analyser misalignment of 8°,

the step response clearly follows the change in polarity of the step object, a result that

is observed experimentally [20].
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Impulse response

Figure 6.13 illustrates the impulse response of the Type 1 single detector MO system

generated using the transfer function algorithm. The response was generated using

clear, aberration free, circular apertures of equal diameter under uniform incident

illumination, for a MO sample of uniform ordinary reflectance (equal to unity) and

zero phase, with an analyser orientation of β=90°  (the extinction position). Also

illustrated is the impulse response of the Type 1 reflectance system under the same

conditions.
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Figure 6.13 : The impulse response of the Type 1 single detector  MO  scanning

microscope for clear, aberration free, circular apertures of equal diameter under

uniform incident illumination (solid line), for an analyser orientation of β=90° to the

angle of incident polarisation. Also illustrated is the impulse response of the Type 1

reflectance system (bold dashed line).

An interesting result is that the impulse response on the Type 1 single detector MO

system, i.e. the response for tan( ( )) ( )a x x= δ , is exactly the same as the impulse

response of the Type 1 reflectance system for an object which is an impulse in

reflectance, i.e. r x x( ) ( )= δ . Hence, it can be deduced that the Type 1 single detector

MO system exhibits imaging characteristics similar to that of the Type 1 reflectance
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system described previously, providing the MO sample is of uniform ordinary

reflectance and that the analyser is set to extinction.

6.3.2  The confocal system

The computational procedure, using the transfer function approach, for calculating the

response of the confocal single detector MO scanning microscope follows directly

from the algorithm described in detail in sec. 6.3.1. However, when calculating the

response of the confocal configuration, the Type 1 PCTF should be replaced by the

confocal PCTF. The procedure for generating the confocal PCTF has been described

in detail in sec. 6.1. The procedure for increasing the resolution of the output signal in

the Type 1 reflectance scanning microscope, described in sec 6.2.1 can be applied in

the single detector MO system.
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Figure 6.14 : The impulse response of the ideal confocal single detector  MO

scanning microscope (solid line). Also illustrated is the impulse response of the Type

1 reflectance system (bold dashed line).
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Figure 6.14 illustrates the impulse response of the ideal confocal single detector MO

system, i.e. an infinitesimally small pinhole, generated using the transfer function

algorithm with clear, aberration free, circular apertures of equal diameter under

uniform incident illumination, for an analyser orientation of β=90° to the angle of

incident polarisation. Also illustrated is the impulse response of the confocal

reflectance system under the same conditions.

Figure 6.14 illustrates that as in the Type 1 configuration, the impulse response of the

confocal single detector MO scanning microscope is identical to that of the confocal

reflectance scanning microscope offering similar improved resolution characteristics,

for an analyser set to extinction.

6.3.3  Analyser misalignment in the MO single detector scanning microscope

If it is assumed that the MO sample is of uniform reflectance, such that Γ( ) ( )ν δ νx x=

and Γ *( ) ( )ν δ νx x′ = ′ , then the medium function for the single detector MO scanning

microscope, eq. (4.15), reduces to the form

( ) ( ) ( )( ) ( ) ( )( )M x x x x x xν ν δ ν β ν β δ ν β ν β; cos * sin cos sin′ = ′ + ′ +Λ Λ    (6.9)

which by substituting into eq. (6.4) and rearranging gives

( ) ( ) ( ) ( ) ( ) ( )
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∞
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ν ν δ ν δ ν β δ ν ν β

δ ν ν β ν ν β

π ν ν ν ν
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sin * sin
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2
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2

Λ

Λ Λ Λ       (6.10)

which by further simplification gives

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

           

  

I x C C d

C d C d d

s x x x

x x x x x x x x x
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∞
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∞

0 0 0

0

2

2

; cos ; * sin

; sin ; * sin

β ν ν β ν

ν ν β ν ν ν ν ν β ν ν

Λ

Λ Λ Λ

. (6.11)

It can be seen from eq. (6.11) that for analyser orientation of β° to the plane of the

incident polarisation, the signal for the photo-detector comprises a dc term, which is a
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function of the PCTF at the origin, terms which depend upon the product of the axial

values of the PCTF and the spectra of the MO information, and a term which depends

upon the product of the PCTF and the spectra of the MO information over all

( ; )ν νx x ′ space. Thus, it can be seen that for any analyser misalignment from the

extinction position, β = °90 , the signal will contain an undesirable dc offset. If the

analyser is aligned so as to minimise the dc offset, i.e. β = °90 , then the signal from

the photo-detector reduces to the form

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

                   

  

I x y C d

C d C d d

s s x x x

x x x x x x x x x

, ; *

; ; *

= ′ ′ ′

+ + ′ ′ ′

∫
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−∞

∞

−∞

∞

−∞

∞

0

0

ν ν ν

ν ν ν ν ν ν ν ν ν

Λ

Λ Λ Λ

   .        (6.12)

The dc term in eq. (6.11) arises due to the propagation of the x-component of

polarisation, which contains no MO information, through the analyser when it is

aligned away from the optimum position. As the angle of the misalignment increases

then more of the x-component, and less of the y-component containing the MO

information, propagates through the analyser and contributes to an increased dc level

from the photo-detector. Figure 6.15 illustrates the dc offset and the magnitude of the

impulse response of the signal from the single detector MO system, as a function of

analyser orientation (in degrees). The responses were generated using the transfer

function approach with clear, aberration free, circular apertures of equal diameter

under uniform illumination. The MO sample was of uniform reflectance (equal to

unity) and zero phase. The plot of dc level has been normalised to the maximum

value, which is observed when β = °0 , and the plot of the magnitude of the impulse

response has been normalised to the maximum value, which is observed when

β = °45 . It should be noted that for an analyser orientation above β = °90  the

impulse response is in fact a negative pulse superimposed on the positive dc level.

Figure 6.15 clearly illustrates that misalignment of the analyser transmission axis

introduces an extremely large dc level into the signal from the photo-detector. Even

though the maximum magnitude of the impulse response occurs at β = ± °45 , not at

the optimum position, β = °90 . However, at β = ± °45  the signal is swamped by a
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large dc level. Hence, it can be seen that the orientation of the analyser transmission

axis needs to be aligned so as to maximise the Kerr signal obtained from the photo-

detector and remove the dc level. It should be noted that a similar trend is observed in

the confocal mode of operation.
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Figure 6.15 : Plot of dc offset (dashed line) and the magnitude of the impulse

response (solid line) of the signal from the Type 1 single detector MO system, as a

function of analyser alignment, for a MO sample of uniform reflectance and zero

phase.

It has been previously mentioned that typically the analyser is aligned at 8° to the

extinction position. This can be seen to increase the magnitude of the response whilst

at the same time introducing very little dc offset.

6.4  Modelling the differential detector MO scanning microscope

In this section the imaging process in the differential detector MO scanning

microscope is discussed, using the transfer function approach. The signal from the

differential detector MO scanning microscope can be expressed in the characteristic

form of eq. (3.32), where the PCTF depends upon whether the detection channel is

Type 1 or confocal, and the medium function is given by eq. (4.42). Considering



Chapter 6 The transfer function approach

155

objects which contain information in a single direction only, x, then the medium

function may be recast in the simplified form

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

M x x x x x x

x x x x

ν ν ν ν ν ν θ

ν ν ν ν θ

; * * cos

* * sin

′ = ′ − ′

+ + ′

Γ Γ Λ Λ

Γ Λ Γ Λ

4

4                  
                   (6.13)

and the characteristic equation, eq. (3.32), can be expressed in the form of eq. (6.4).

The following analysis will be directed to calculating the form of the readout signal

for both the Type 1 and confocal differential configurations, when imaging simple

one-dimensional objects.

6.4.1  The Type 1 system

The computational procedure for calculating the response from the Type 1 differential

detector MO scanning microscope follows directly from the procedure described in

sec. 6.3.1. However, the medium function in the differential detector MO scanning

microscope, eq. (6.13), is different to that of the single detector MO scanning

microscope and so the computational procedure for calculating the response differs

slightly from that illustrated in sec. 6.3.1.

The transfer function algorithm

The algorithm illustrated below, written in pseudocode (see Appendix B), for

generating the response from the Type 1 differential detector MO scanning

microscope to a simple one-dimensional MO object, is modified from the algorithm

presented in sec. 6.3.1.

Step 1 Input
data.

Matrix containing the objective aperture pupil function - po, of
dimensions adim × adim
Matrix containing the collector aperture pupil function - pc, of
dimensions adim × adim
Vector containing the sample reflectance characteristics - r, of
length mdim (one-dimensional MO object)
Vector containing the sample phase characteristics - φ, of length
mdim (one-dimensional MO object)
Vector containing the sample Kerr rotation characteristics - k, of
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length mdim (one-dimensional MO object)
The angle of the half wave plate fast axis - θ.
Matrix to contain the PCTF - P, of dimensions mdim × mdim.
Matrix to contain the medium function - M, of dimensions mdim
× mdim.
Vector to contain the MO spectrum of the object - Λ, of length
mdim.
Vector to contain the reflectance spectrum of the object - Γ, of
length mdim.
Temporary vectors - dummy and temp, of length mdim.

Output
data.

Vector containing the signal from the scanning microscope - I, of
length mdim.

Step 2 Generate a matrix representing the Type 1 PCTF, PCTF,  using the
algorithm presented in sec. 6.1, which is of dimensions tdim × tdim, where
tdim = 2×adim.

Step 3 FOR y = 1…mdim
        FOR x = 1…mdim
                Set P(y, x) = 0;
        END;
END;
FOR y = 1…tdim
        FOR x = 1…tdim
               Set P(y + ((mdim-tdim)/2), x + ((mdim-tdim)/2)) =
                                                     PCTF(y, x);#1

        END;
END.

Step 4 Set Γ = Fast Fourier Transform ( r ); #2

Set Λ = Fast Fourier Transform (r .× φ  .× tan(k )). #3

Step 5 FOR x = 1…mdim
        Set ℜ ( Γ*( x ) ) =   ℜ ( Γ( x ) ); #4

        Set ℑ ( Γ*( x ) ) =  - ℑ ( Γ( x ) );
END;
FOR x = 1…mdim
        Set ℜ ( Λ*( x ) ) =   ℜ ( Λ( x ) ); #4

        Set ℑ ( Λ*( x ) ) =  - ℑ ( Λ( x ) );
END.

Step 6 FOR y = 1…mdim
        FOR x = 1…mdim
                Set M(y, x) = ( Γ( x )× Γ*( y )-Λ( x ) × Λ*( y ) )cos4θ
                                   +( Γ( x )× Λ*( y )+Λ( x ) × Γ*( y ) )sin4θ;
        END;
END.

Step 7 FOR y = 1…mdim
        FOR x = 1…mdim
                Set P(y, x) = P(y, x) × M(y, x);
        END;
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END.
Step 8 FOR y = 1…mdim

        FOR x = 1…mdim
                Set dummy(x ) = P(y, x);
       END;
       Set dummy = Fast Fourier Transform (dummy); #5

       FOR x = 1…mdim
               Set temp(y, x) = P(x );
       END;
END.

Step 9 FOR y = 1…mdim
        FOR x = 1…mdim
                Set dummy(x ) = P(x, y);
       END;
       Set dummy = Inverse Fast Fourier Transform (dummy); #4

       FOR x = 1…mdim
               Set P(x, y) = dummy(x );
       END;
END.

Step 10 FOR x = 1…mdim
        Set I (x ) = P(x, x);
END;
STOP.

#1 Centre the PCTF inside the larger temp matrix of dimensions mdim × mdim.
#2 Fast Fourier Transform algorithm is described in reference 6.
#3 .× indicates array multiplication.
#4 ℜ - represents the real component, ℑ - represents the imaginary component.
#5 Inverse Fast Fourier Transform algorithm is described in reference 6.

Step response

For an object with information in a single direction only, x, and a half wave plate

orientation of θ = 22.5°, the medium function, eq. (6.13), simplifies to give

( ) ( ) ( ) ( ) ( )( )M x x x x x xν ν ν ν ν ν; * *′ = ′ ′Γ Λ Γ Λ+  .                      (6.14)

Assuming the MO sample has uniform ordinary reflectance, such that r xx o( ) = 1and

hence Γ( ) ( )ν δ νx x= , substituting into the eq. (6.4) allows the signal from the Type 1

differential detector MO system to be expressed in the form

( ) ( ) ( ) ( ){ } ( ) ( ) ( ){ }I x C j x d C j x ds x x x s x x x x s x= ′ ′ − ′ ′+∫ ∫
−∞

∞

−∞

∞

0 2 0 2; * exp ; expν ν π ν ν ν ν π ν νΛ Λ

(6.15)
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and it can be seen that the signal is now a function of the MO sample spectrum,

Λ( )νx , and the form of the Type 1 PCTF, ( )C x xν ν; ′ , along the ν x = 0  and

νx ′ = 0 axes.

The signal generation process in the Type 1 differential detector MO system is subtly

different from that of the reflectance  and single detector MO scanning microscopes

where generally the signal depends on the form of the PCTF over all ( ; )ν νx x ′  space.

Thus, in the case of an optimally aligned half wave plate, and a sample of uniform

reflectance (rx), the response of the differential detection MO case can be calculated

by straightforward Fourier transforms of the product of the MO object spectra and

the axial values of the Type 1 PCTF.

Figure 6.16 illustrates the step response of the Type 1 differential detector MO

scanning microscope, generated using the transfer function algorithm, with the half

wave plate fast axis aligned at 22.5°.
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Figure 6.16 : The step response of the Type 1 differential detector MO system for

clear, aberration free, circular apertures of equal diameter under uniform incident

illumination, generated using the transfer function approach.
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Comparison of Fig. 6.16 with Fig. 5.14 illustrates that the two approaches to

modelling the imaging process in the Type 1 differential detector MO scanning

microscope, the direct calculation and transfer function approaches, produce exactly

the same results when imaging simple one-dimensional objects.

Impulse response

Consider the impulse response of a MO sample of uniform reflectance (rx equal to

unity), and an impulse in the tangent of Kerr rotation, i.e. tan( ( )) ( )a x xo o= δ . The

sample MO spectrum is uniform, i.e. Λ Λ( ) *( )ν νx x= ′ = 1, and the signal from the

Type 1 differential detector MO system is given by

( ) ( ) ( ){ } ( ) ( ){ }I x C j x d C j x ds x x s x x x s x= ′ − ′ ′+∫ ∫
−∞

∞

−∞

∞

0 2 0 2; exp ; expν π ν ν ν π ν ν  (6.16)

and the signal is determined by the one-dimensional Fourier transform of the axial

values of the Type 1 PCTF.
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Figure 6.17 : The impulse response of the Type 1 differential detector MO. Also

illustrated is the impulse response of the incoherent optical system (bold dashed

line).

The resulting response for the differential detector MO scanning microscope,

generated using the transfer function algorithm, with the half wave plate fast axis
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aligned at 22.5° is shown in Fig. 6.17. This is identical to that of the incoherent optical

system described in sec. 3.1.2. This is to be expected since the axial form of the PCTF

has the same functional form described by the relationship of eq. (3.26).

6.4.2  The confocal system

The computational procedure, using the transfer function approach, for calculating the

response of the confocal differential detector MO scanning microscope follows

directly from the algorithm described in detail in sec. 6.4.1. However, when

calculating the response of the confocal configuration, the Type 1 PCTF should be

replaced by the confocal PCTF. The computational procedure for generating the

confocal PCTF has been described in detail in sec. 6.1.
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Figure 6.18 : Plot of the impulse response of the differential detector MO system for

the ideal confocal configuration (solid line), the Type 1 configuration (bold dashed

line), for clear, aberration free, circular apertures under uniform illumination.

Figure 6.18 illustrates the impulse response of the confocal differential detector MO

scanning microscope, employing an infinitesimally small pinhole with the half wave
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plate fast axis aligned at 22.5°, generated using the transfer function algorithm. The

response was generated using clear, aberration free, circular apertures of equal

diameter, under uniform incident illumination, using a MO sample of uniform

reflectance (rx equal to unity) and zero phase. Also illustrated is the impulse response

of the Type 1 configuration under the same conditions.

It can be clearly seen that the response of the ideal confocal differential detector MO

system is identical to that of the Type 1 system described previously. This interesting

and perhaps surprising result indicates that, unlike the confocal reflectance system and

the single detector MO system, the confocal differential detector MO system offers no

improved lateral resolution over the Type 1 configuration. This has important

consequences for the design of MO SLMs, a point that will be discussed in more

detail later.

It was shown previously that for an MO sample of uniform ordinary reflectance, the

signal from the differential detector MO system is found by taking the Fourier

transform along the axial values of the PCTF, whether the configuration is Type 1 or

confocal. However, it can be shown that the axial variation of the PCTF is identical in

both the Type 1 and ideal confocal cases, and that they are in fact identical to the axial

values of the incoherent OTF illustrated in Fig. 3.6. Figure 6.19 illustrates the form of

the incoherent OTF, the Type 1 PCTF and the ideal confocal PCTF along the νx = 0

axis, for clear, aberration free, circular apertures of equal diameter under uniform

illumination. It can be clearly seen that the axial values of the three transfer functions

are identical.

Hence, it has been shown that the confocal differential detector MO system, offers no

improved lateral resolution over the Type 1 configuration, and that both systems have

imaging characteristics identical to that of the incoherent reflectance imaging system,

assuming the MO sample is of uniform ordinary reflectance (rx equal to unity).
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Figure 6.19 : Plot along the νx = 0  axis of the incoherent OTF, the Type 1 PCTF

and the ideal confocal PCTF, for clear, aberration free, circular apertures of equal

diameter under uniform illumination.

6.4.3  Pinhole size and resolution issues in the confocal differential detector MO

scanning microscope

It is illustrated in Fig. 6.18 that the impulse response of the confocal differential

detector MO scanning microscope employing an infinitesimally small pinhole, is

identical to that of the Type 1 configuration, when the MO sample if of uniform

reflectance. However, it is instructive to investigate the effects which the size of the

confocal pinhole has upon the response of the confocal differential detector MO

system. Figure 6.20 illustrates a plot of FWHM of the impulse response of the

confocal differential detector MO system as a function of pinhole radius. The

responses were generated using the transfer function approach with clear, aberration

free, circular apertures of equal diameter, under uniform incident illumination. The

MO sample was of uniform reflectance (rx equal to unity) and zero phase. The plot

has been normalised with respect to the FWHM of the impulse response of the Type 1

differential detector MO system under the same conditions. Also illustrated, for
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comparison purposes, is a plot of FWHM against pinhole radius of the impulse

response of the confocal reflectance system, under the same conditions.

Figure 6.20 illustrates that the size of the confocal pinhole has very little effect on the

FWHM of the impulse response of the differential detector MO scanning microscope.

In fact, the resolution for a truly infinitesimally small pinhole is identical to that for no

confocal pinhole at all (Type 1 case). In fact a pinhole size of around 0.7λ/NA leads

to a slight degradation in resolution performance. This result is somewhat surprising

and has certainly not featured in any of the published literature to date. It has

important implications for the design of MO scanning laser microscopes and will

discussed further in chapter 9.
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Figure 6.20 : Plot of FWHM of the impulse response of the confocal differential

detector MO system as a function of pinhole size, for a MO sample of uniform

reflectance and zero phase.

6.4.4  Half wave-plate misalignment in the differential detector MO scanning

microscope

It was illustrated in sec. 6.4.1 that if the MO sample is of uniform reflectance and zero

phase, and the fast axis of the half wave plate is aligned at 22.5° to the angle of the
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incident plane of polarisation, then the response of the differential detector MO

system depends upon the axial values of the PCTF. However, what effect would

misalignment of the half wave plate from the optimum position have upon the

response of the differential detector MO scanning microscope?

Expressing the signal from the differential detector MO system in terms of the

reflectance and MO properties of the sample gives

( ) ( ) ( ) ( ) ( ) ( )( ){
( ) ( ) ( ) ( )( ) }

I x C

d d

s x x x x x x

x x x x x x

= ′ ′ − ′

+ ′ + ′ ′

∫∫
−∞

∞

ν ν ν ν ν ν θ

ν ν ν ν θ ν ν

; * * cos

* * sin

Γ Γ Λ Λ

Γ Λ Γ Λ

  

                  

4

4

               (6.17)

which if we assume the MO sample is of uniform reflectance, i.e. Γ( ) ( )ν δ νx x=  and

Γ *( ) ( )ν δ νx x′ = ′ , can be expressed in the form

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

I x C C d d

C d C d

s x x x x x x

x x x x x x

= − ′ ′ ′

+ ′ ′ ′+

∫∫

∫ ∫

−∞

∞

−∞

∞

−∞

∞

0 0 4 4

0 4 0 4

; cos ; * cos

; * sin ; sin

θ ν ν ν ν θ ν ν

ν ν θ ν ν ν θ ν

Λ Λ

Λ Λ        

         (6.18)

and when θ = °22 5.  the signal will depend upon the axial values of the PCTF, as

shown previously. However, misalignment of the half wave plate introduces two extra

terms into the response of the differential detector MO system. The first of these is a

constant dc term governed by the angle of misalignment and the value of the PCTF at

the origin, and the second depends upon the form of the PCTF over all ( ; )ν νx x ′

space.

Figure 6.21 illustrates plots of dc level and the magnitude of the impulse response of

the differential detector MO scanning microscope, as a function of half wave plate

orientation (in degrees). The responses were generated using the transfer function

approach, with clear, aberration free, circular apertures of equal diameter, under

uniform incident illumination. The MO sample was of uniform reflectance (rx equal to

unity) and zero phase. The impulse response magnitude has been normalised with

respect to the maximum value, which occurs when θ = °22 5. , and the dc level

magnitude has been normalised with respect to the maximum value, which occurs

when θ = °0 .
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Figure 6.21 : Plot of the dc level (dashed line) and magnitude of the impulse

response (solid line) of the differential detector MO system, for a MO sample of

uniform reflectance and zero phase.

Figure 6.21 illustrates that when the fast axis of the half wave plate is aligned at its

optimum value, θ = °22 5. , the dc level will be removed and the magnitude of the

impulse response will be at its maximum. However, misalignment of the half wave

plate reduces the magnitude of the impulse response whilst at the same introducing a

large dc offset into the observed signal. It should be noted that the FWHM of the

impulse response remains unaffected by the rotation of the half wave plate. Apart

from the orientation θ = °0  where MO contrast is no longer observed. It should be

noted that a similar trend is observed in the confocal mode of operation.


