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Chapter 5

The direct calculation approach

It is the aim of this chapter to present the process for generating the theoretical

readout signal from the Type 1 reflectance, single detector and differential detector

MO scanning microscopes  by implementing the analysis presented in chapters 3 and 4

in computer code.  The so-called direct calculation approach [59] involves the

formulation of the optical field as it propagates through the optical system to the

detector, as the sample is scanned beneath the focused spot. A similar approach was

applied by Jipson and Williams [67] for developing a two-dimensional model of the

theoretical readout process in reflectance-based optical disc systems. Here we are

concerned both with reflectance and MO imaging systems.

The optical field distribution is represented by a two-dimensional matrix, the complex

elements of which correspond to sample points across the optical field. The aperture

pupil functions are represented by similar two-dimensional matrices where the

elements in the matrix correspond to the transmission properties of the pupil at sample

points across its surface. The Fourier transform operation is performed using the Fast

Fourier Transform (FFT) algorithm [42,68].

The signal generation process, using the direct calculation approach, is relatively

straight forward to implement computationally. However, the direct calculation

approach is also computationally demanding if a high resolution signal is required, due

to the large number of sample points  required to represent accurately the optical

field, aperture pupil functions and the sample characteristics. Since the resolution of

the scanning microscope is determined primarily by the size and shape of the focused

spot, then to obtain a high resolution output signal the focused field distribution needs

to be represented by as many sample points as possible. The relationship between the

resolution of the matrix containing the aperture pupil function and the matrix
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containing the focused spot is determined by Fourier  transform and scalar diffraction

theory analysis and is described below.

The focused spot is given by the two-dimensional Fourier transform of the aperture

pupil function, eq. (2.9). Considering the one-dimensional case initially, the Fourier

transform may be expressed in the conventional form [4,7,42]

( ) ( ) { }g m f x jxm dx= −∫
−∞

∞

exp 2π                                    (5.1)

where x represents the spatial domain and m represents the spatial frequency domain.

Using scalar diffraction theory the  one-dimensional focused spot is given by
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                                (5.2)

where p x( )  represents the aperture pupil function, for a clear aperture of width 2a,

and f is the focal length of the lens. Comparing eq. (5.2) and eq. (5.1) it can be seen

that the components within the focal plane {m} are scaled by 1/λf, and that the units

in both the aperture pupil plane {x} and the focal plane {m} are in terms of length.

Using the properties of the discrete Fourier transform, the spatial resolution in the

focal plane, ∆m, is given by

∆
∆

m

f xλ
=

1

mdim
                                                  (5.3)

where  mdim  represents the size of the matrix (vector) containing the aperture pupil

function, and  ∆x  represents the spatial resolution in the aperture pupil plane. If the

size of the matrix containing the aperture pupil function, mdim, is a function of the

width of the aperture, i.e.

mdim∆x ca=                                                   (5.4)

where c is a multiplication factor, then substituting eq. (5.4) into eq. (5.3) gives

∆m

f caλ
=

1
 .                                                     (5.5)

Assuming the numerical aperture of the lens, NA, is approximately

NA
a

f
≈                                                        (5.6)
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then

∆m
cNA

=
λ

.                                                   (5.7)

Hence, to produce for example a focused spot which has a resolution of 0.05λ/NA,

i.e. each element of the matrix represents  0.05λ/NA, then using eq. (5.7), it can be

seen that c = 20. If the size of the matrix, mdim, is 512 elements, then the width or the

aperture pupil function, given by 2a, is represented by approximately 51 elements

within that matrix. Therefore, to produce a high resolution focused spot whilst

maintaining a high resolution aperture pupil function is extremely difficult, and

requires the application of very large matrices, > 512 elements. This increases the size

of the calculation considerably, and hence the calculation time. Hence, it is for this

reason that the direct calculation approach is restricted in this thesis to imaging in the

Type 1 system and not confocal systems where the imaging process is much more

complicated. The resolution of the object is determined by the resolution of the

focused spot.

5.1  Modelling the Type 1 reflectance scanning microscope

In the following section the direct calculation approach will be applied to imaging in

the Type 1 reflectance scanning microscope.

Computational procedure

The computational procedure for calculating the response follows directly from the

analysis presented in sec. 3.2, and involves the evaluation of eq. (3.1) - eq. (3.10) in

computer code. The direct calculation approach can be applied to generate images of

both one-dimensional and two-dimensional, simple or complex (i.e. amplitude and

phase), reflectance objects. In the current analysis the two-dimensional imaging

process will be described in detail.
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In the following analysis the aperture pupil functions are represented by two-

dimensional matrices of dimensions adim × adim, the reflectance object is represented

by a square matrix of dimensions odim × odim, and the focused field distribution is

represented by a two-dimensional matrix of dimensions fdim × fdim, where

fdim<<odim. Thus, the resulting two-dimensional image is represented by a two-

dimensional matrix of dimensions odim-fdim × odim-fdim.

Figure 5.1 illustrates the direct calculation approach for generating the image of a

two-dimensional reflectance sample and is described in detail as follows.

Step 1 • Generate a matrix containing the objective aperture pupil function, po,

which is of dimensions adim × adim.

• Generate a matrix containing the collector aperture pupil function, pc,

which is of dimensions adim × adim.

• Generate a matrix of containing the incident field distribution, ψ1, which

is of dimensions adim × adim.

• Generate a matrix representing the reflectance characteristics of the two-

dimensional sample, r, which is of dimensions odim × odim. The

resolution of the object is determined by the desired spot resolution, ∆m .

The aperture pupil functions are centred in a larger two-dimensional matrix

of dimensions mdim × mdim. If adim/2=a, then using the analysis developed

in the previous section the resolution of the focused field distribution, ∆m  ,

can be easily calculated.

Step 2 Calculate the matrix, ψ2, representing the field distribution immediately

after the objective lens by array multiplying the incident field distribution

matrix, ψ1, and the objective aperture pupil function matrix, po. ψ2 is a two-

dimensional matrix of dimensions mdim × mdim.

Step 3 Take the two-dimensional fast Fourier transform of the field distribution

matrix ψ2 to calculate the matrix, ψ3, representing the field distribution at
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the scan position on the surface of the reflectance sample. The focused field

distribution is then represented by a two-dimensional matrix of dimensions

mdim × mdim. However, the majority of the matrix elements are equal to

zero, hence, the field may be represented by a smaller central area of the

matrix of dimensions fdim × fdim, this will help speed up the computational

procedure. ψ3′ represents the smaller matrix containing the focused field

distribution and is of dimensions fdim, × fdim.

Step 4 Calculate the matrix, ψ4, representing the field distribution after interaction

with the sample, by array multiplying the field distribution matrix, ψ3′,

representing the focused field distribution and the matrix representing the

reflectance properties of the sample, r, about the scan position on the

current scan line. ψ4 is a two-dimensional matrix of dimensions mdim ×

mdim.

Step 5 Take the two-dimensional fast Fourier transform of the field matrix ψ4′ to

calculate the matrix, ψ5, representing the field distribution in the plane of

the collector lens.

Step 6 Calculate the matrix, ψ6, representing the field distribution immediately

after the collector lens by array multiplying the field distribution matrix ψ5

and the collector aperture pupil function matrix, pc. ψ6 represents the field

distribution incident on the photo-detector.

Step 7 The signal from the photo-detector, Ij,I, for the current scan position (j, I), is

calculated by taking the sum of the square magnitude of each element of the

field distribution matrix, ψ6, representing the field distribution incident on

the photo-detector.

Step 8 Repeat Steps 4 - 7  for each scan position along the sample to generate the

response along the current scan line.
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Figure 5.1 : The signal generation process in the Type 1 reflectance scanning

microscope generated  using the direct calculation approach.
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Step 9 Centre the focused field distribution on the next scan line and repeat Steps

4-8 for each scan line to generate a two-dimensional matrix, I, representing

the image of the two-dimensional reflectance sample generated by the Type

1 reflectance scanning microscope.

The process described is implemented in computer code, the algorithm for which is

described in the following section.

The direct calculation algorithm

The following algorithm, written in pseudocode (see Appendix B), illustrates the

computational procedure for calculating the image of a two-dimensional object using

the direct calculation approach for modelling the response of the Type 1 reflectance

scanning microscope.

Step 1. Input
data.

Matrix containing the objective aperture pupil function - po, of
dimensions adim × adim.
Matrix containing the collector aperture pupil function - pc, of
dimensions adim × adim.
Matrix containing the incident field distribution - ψ1, of
dimensions  adim × adim.
Matrix containing the sample reflectance characteristics - r, of
dimensions odim × odim  (two-dimensional reflectance object).

Output
data.

Matrix representing the image generated by the Type 1
reflectance scanning microscope - I, of dimensions
odim-fdim × odim-fdim.

Step 2 FOR  y = 1,2,…,adim
        FOR x = 1,2,…,adim

         Set 
( )

( ) ( )
ψ

ψ

2

1 o                              

y x

y x p y x

+ − + − =

×

( ) / , ( ) /

, , ;

mdim adim mdim adim2 2

        END;
END.

Step 3 Set ψ3 = Fast Fourier Transform (ψ2 );
 #1

FOR  y = 1,2,…,fdim
        FOR x = 1,2,…,fdim

      Set ( ) ( )ψ ψ3 3 2′ = + − + −y x y x, ( ) / , ( )mdim fdim mdim fdim ;
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        END;
END;
Set i = 0;              (i represents the scan position along the
Set j = 0.             current scan line j)

Step 4 FOR  y = 1,2,…,fdim
        FOR x = 1,2,…,fdim

        Set   
( )

( ) ( )( )
ψ

ψ

4

3

2 2y x

y x r y j x i

+ − + − =

′ × + +

( ) / , ( ) /

, ( ), ;

mdim fdim mdim fdim

                      

        END;
END.

Step 5 Set ψ5 = Fast Fourier Transform (ψ4 ).
 #1

Step 6 FOR  y = 1,2,…,adim
        FOR x = 1,2,…,adim

  Set 
( )
( ) ( )

ψ

ψ

6

5 c

y x

y x p y x

+ − + − =

+ − + − ×

( ) / , ( ) /

( ) / , ( ) / , ;

mdim adim mdim adim

mdim adim mdim adim

2 2

2 2

        END;
END.

Step 7
Set ( ) ( )I j i y x

y

y

x

x

, ,     6= ∑ ∑
=

=

=

=

1 1

2
mdim mdim

ψ ;

Set i i= + 1.                    (Increment the scan position)
Step 8 WHILE ( )i   < −odim fdim  DO Steps 4-7.

Step 9 Set j j= + 1 ;                    (Increment the scan line)

WHILE ( )j   < −odim fdim  DO Steps 4-8;

STOP.

#1 Fast Fourier Transform algorithm is described in reference 68.

The response to a simple one-dimensional object may be generated using a similar

algorithm to that presented above. However, in the one-dimensional case the rows of

the two-dimensional matrix represent the properties of the one-dimensional

reflectance object and the response is generated along a single scan line.

Step response

The code just described was used to generate the image for the simple one-

dimensional step object shown in Fig. 5.2. The step is in reflectance from 0% (no

reflectance) to 100% (total reflectance); the scan direction is in x. The result is

illustrated in Fig. 5.3, for clear, aberration free, circular apertures of equal diameter

under both uniform and Gaussian ( w
e− =2  a/2) incident illumination.
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Figure 5.2 : The theoretical one-dimensional step in reflectance used to generate the

step response illustrated in Figure 5.3; the scan direction is in x .
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Figure 5.3 : The step response of the Type 1 reflectance scanning microscope for the

one-dimensional step illustrated in Fig 5.2, for clear, aberration free, circular

apertures of equal diameter under uniform (bold dashed line) and Gaussian ( w
e− =2

a/2) (dotted line) incident illumination.

As expected from discussions in chapter 2, the response under uniform illumination is

sharper than that under Gaussian illumination. However, under uniform illumination

the Airy disc focused spot gives rise to side lobes and these translate to ‘wiggles’ at

the extremes of the step. It should be noted that a shift of the midpoint in the response

to an edge is evident in the readout signal, which for a coherence ratio of γ = 1 is
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approximately 0.05λ/NA, this corresponds to 0.05µm for a wavelength of 514nm and

objective lens NA of 0.5.

Two-dimensional imaging

Figure 5.4 illustrates a two-dimensional reflectance object which represents a

commercially available resolution test target. The lines are of width 2µm, length 10µm

and spacing 2µm. Such a test target is often used to assess the imaging characteristics

of an optical system and  to determine its MTF.
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Figure 5.4 : Two-dimensional reflectance object representing a commercial optical

test target. Black corresponds to non reflective areas and white corresponds to

reflective areas. The sample resolution is 0.0625λ/NA which corresponds to

0.06425µm for a wavelength of 514nm and objective NA of 0.5.

Figure 5.5 illustrates the image of the simple test target of Fig. 5.4 for clear,

aberration free, circular apertures under uniform incident illumination, generated using

the direct calculation algorithm presented previously.

Figure 5.6 illustrates a line plot along the bars at the top of Fig. 5.5, illustrating the

quantitative nature of the image.
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Figure 5.5 : Image of the two-dimensional test target illustrated in Fig. 5.4

generated using the direct calculation approach, for clear, aberration free, circular

apertures of equal diameter,  under uniform illumination.
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Figure 5.6 : Plot along the bars at the top of Fig. 5.6.

An example of the advantage of this modelling approach is the ability to investigate

the effects of cross-talk in optical disc systems, and the effects of tracking error,

which is illustrated for the MO case in secs. 5.2 and 5.3.
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5.2  Modelling the single detector MO scanning microscope

In the following section the direct calculation approach is applied to imaging in the

Type 1 single detector MO scanning microscope. The analysis follows directly from

that presented for the Type reflectance system, described in sec. 5.1. However, in the

magneto-optic scanning microscope the propagation of orthogonal field components

must be traced after interaction with the MO sample. Hence, the computational

procedure involves the generation of two matrices to represent the orthogonal, x and

y, field components after interaction with the MO sample.

Computational procedure

The computational procedure for calculating the two-dimensional response follows

directly from the analysis presented in sec. 4.1.1, and involves the evaluation of eq.

(4.1) to eq. (4.11) in computer code. The matrix dimensions and signal resolution are

determined using the analysis described previously.

Figure 5.7 illustrates the direct calculation approach for generating the response to a

one-dimensional MO sample, and is described in detail as follows.

The subscripts x and y indicate the corresponding x and y orthogonal field

distributions.

Step 1 • Generate a matrix containing the objective aperture pupil function, po,

which is of dimensions dim × adim.

• Generate a matrix containing the collector aperture pupil function, pc,

which is of dimensions adim × adim.

• Generate a matrix of containing the incident field distribution, ψ 1x
,

which is of dimensions adim × adim.

• Generate a matrix representing the reflectance characteristics of the

sample, r, which is of dimensions odim × odim.

• Generate a matrix representing the Kerr rotation characteristics of the
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sample, k, which is of dimensions odim × odim.

• Generate a matrix representing the phase characteristics of the sample, φ,

which is of dimensions odim × odim.

The aperture pupil functions are centred in a larger two-dimensional matrix

of dimensions mdim × mdim. If adim/2=a, then using the analysis developed

previously the resolution of the focused field distribution, ∆m  , can be

easily calculated.

Step 2 Calculate the matrix, ψ 2x
, representing the field distribution immediately

after the objective lens by array multiplying the incident field distribution

matrix, ψ 1x
, and the objective aperture pupil function matrix, po. ψ 2x

is a

two-dimensional matrix of dimensions mdim × mdim.

Step 3 Take the two-dimensional fast Fourier transform of the field distribution

matrix ψ 2x
 to calculate the matrix, ψ 3x

, representing the field distribution

at the scan position on the surface of the reflectance sample. As previously

generate a matrix ψ3x

′ representing the focused field distribution which is of

dimensions fdim × fdim.

Step 4 Calculate the matrices, ψ 4x
 and ψ 4 y

, representing the orthogonal field

components after interaction with the MO sample.

• The x field component, ψ 4x
, is calculated by array multiplying the field

distribution matrix ψ 3x
 representing the focused field distribution and

the matrix, r, representing the reflectance properties of the sample,

about the scan position.

• The y field component, ψ 4 y
, is calculated by array multiplying the field

distribution matrix ψ 3x
representing the focused field distribution and

the matrices r, k and φ , representing the reflectance characteristics, the

Kerr rotation characteristics and phase characteristics of the sample,
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about the scan position. ψ 4x
 and ψ 4 y

 are two-dimensional matrices of

dimensions mdim × mdim.

Step 5 Take the two-dimensional fast Fourier transform of the field matrices ψ 4x

and ψ 4 y
 to calculate the corresponding matrices, ψ 5x

and ψ 5y
, representing

the orthogonal field distributions in the plane of the collector lens.

Step 6 Calculate the matrices, ψ 6x
and ψ 6 y

, representing the orthogonal field

distributions immediately after the collector lens by array multiplying the

orthogonal field distribution matrices, ψ 5x
and ψ 5y

,   and the collector

aperture pupil function matrix, pc.

Step 7 Calculate the matrix, ψ7, representing the field distribution immediately

after the analyser by calculating the field distribution along the transmission

axis of the analyser, which is aligned at an angle β  to the plane of the

incident polarisation, ψ 1x
, using eq. (4.6). ψ7 represents the field

distribution incident on the photo-detector.

Step 8 The signal from the photo-detector, Ij,i, for the current scan position, (j, i),

is calculated by taking the sum of the square magnitude of each element of

the field distribution matrix, ψ7, representing the field distribution incident

on the photo-detector.

Step 9 Repeat Steps 4 - 8  for each scan position along the sample to generate the

response along the current scan line.

Step 10 Centre the focused field distribution on the next scan line and repeat Steps

4-9 for each scan line to generate a two dimensional matrix, I, representing

the image of the two-dimensional object generated by the Type 1 single

detector MO scanning microscope.
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Figure 5.7 : The signal generation process in the Type 1 single detector MO  system

generated using the direct calculation approach.
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The process described is implemented in computer code, the algorithm for which is

described in the following section.

The direct calculation algorithm.

The following algorithm, written in pseudocode (see Appendix B), illustrates the

computational procedure for calculating the image of a two-dimensional object using

the direct calculation approach for modelling the response of the Type 1 single

detector MO scanning microscope.

Step 1. Input
data.

Matrix containing the objective aperture pupil function - po, of
dimensions adim × adim.
Matrix containing the collector aperture pupil function - pc, of
dimensions adim × adim.
Matrix containing the incident field distribution - ψ 1x

, of

dimensions  adim × adim.
Matrix containing the sample reflectance characteristics - r, of
dimensions odim × odim (two-dimensional MO object).
Matrix containing the sample Kerr rotation characteristics - k, of
dimensions odim × odim (one-dimensional MO object).
Matrix containing the sample phase characteristics - φ, of
dimensions odim × odim (one-dimensional MO object).

Output
data.

Matrix representing the image generated by the Type 1 single
detector MO scanning microscope - I, of dimensions
odim-dim × odim-fdim.

Step 2 FOR  y = 1,2,…,adim
        FOR x = 1,2,…,adim

        Set 
( )

( ) ( )
ψ

ψ

2 2 2
x

y x

y x p y x

+ − + − =

×

( ) / , ( ) /

, , ;

mdim adim mdim adim

                                 1 ox

        END;
END.

Step 3 Set ψ 3x
 = Fast Fourier Transform (ψ 2x

 ); #1

FOR  y = 1,2,…,fdim
        FOR x = 1,2,…,fdim
                Set

( ) ( )ψ ψ3 32 2
x x

y x y x′ + − + − =( ) / , ( ) / , ;mdim fdim mdim fdim  

        END;
END;
Set I = 0;              (I represents the scan position along the
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Set j = 0.               Current scan line j)
Step 4 FOR  y = 1,2,…,fdim

        FOR x = 1,2,…,fdim
                Set

  
( )

( ) ( )( )
ψ

ψ

4

3

2 2
x

x

y x

y x r y j x i

+ − + − =

′ × + +

( ) / , ( ) /

, ( ), ;

mdim fdim mdim fdim

                                           

  
( ) ( )

( )( ) ( )( ) ( )( )
ψ ψ

φ

4 32 2
y x

y x y x

r y j x i k y j x i y j x i

+ − + − = ′

× + + × + + × + +

( ) / , ( ) / ,

( ), ( ), ( ), ;

mdim fdim mdim fdim

        END;
END.

Step 5 Set ψ 5x
 = Fast Fourier Transform (ψ 4x

); #1

Set ψ 5 y
 = Fast Fourier Transform (ψ 4 y

). #1

Step 6 FOR  y = 1,2,…,adim
        FOR x = 1,2,…,adim
                Set

    
( )
( ) ( )

ψ

ψ

6 2 2

2 2

x
y x

y x p y x

+ − + − =

+ − + − ×

( ) / , ( ) /

( ) / , ( ) / , ;

mdim adim mdim adim

mdim adim mdim adim5 cx

     
( )
( ) ( )

ψ

ψ

6 2 2

2 2

y
y x

y x p y x

+ − + − =

+ − + − ×

( ) / , ( ) /

( ) / , ( ) / , ;

mdim adim mdim adim

mdim adim mdim adim5 cy

        END;
END.

Step 7 FOR  y = 1,2,…,mdim
        FOR x = 1,2,…,mdim
                Set ( ) ( ) ( )ψ ψ β ψ β7 y x y x y x, , cos , sin= +6 6x y

;

        END;
END.

Step 8
Set ( ) ( )I j i y x

y

y

x

x

, ,     7= ∑ ∑
=

=

=

=

1 1

2
mdim mdim

ψ ;

Set i i= + 1.                    (Increment the scan position)
Step 9 WHILE ( )i   < −odim fdim  DO Steps 4-8.

Step 10 Set j j= + 1 ;                   (Increment the scan line)

WHILE ( )j   < −odim fdim  DO Steps 4-9;

STOP.

#1 Fast Fourier Transform algorithm is described in reference 68.

The one-dimensional response may be generated as described for the Type 1

reflectance scanning microscope.
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Step response

Figure 5.8 illustrates a simple one-dimensional object in x, that is infinite in extent in y,

and which represents a step in Kerr rotation from  − °1  to + °1 ; the scan direction is

in x. The MO object illustrated in Fig. 5.8 was used to generate the step response

illustrated in Fig. 5.9, using the algorithm presented above.

-1

0

1

Distance - x
Distance - y

Sample 
Kerr rotation

(degrees)

Figure 5.8 : The theoretical one-dimensional step in Kerr rotation, for an MO

sample of uniform reflectance (equal to one) and of zero phase, used to generate the

step response illustrated in Figure 5.9.

The responses in Fig 5.9 were generated using clear, aberration free, circular

apertures of equal diameter under both uniform and Gaussian ( w
e− =2 a/2)  incident

illumination, for an analyser angle of 90° to the plane of incident polarisation

(extinction position).

Figure 5.9 illustrates that the single detector MO scanning microscope detects the

change in the magnitude of the Kerr rotation. However, it can only produce a unipolar

signal, due to the single detector configuration, and so is unable to distinguish the

polarity of rotation. The result of Fig. 5.9 indicates that the optimally aligned Type 1

single detector MO channel (β=90°) is a phase contrast detection system, where the

change in rotation is measured from the photo-detector. It should be noted that it is

common to operate the Type 1 single detection MO channel with the analyser aligned

at ≈8° to the extinction position to maximise the signal-to-noise ratio [20].
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Figure 5.9 : The step response of the Type 1 single detector  MO  system for the one-

dimensional step illustrated in Fig. 5.6, for clear, aberration free, circular apertures

of equal diameter under uniform (solid line) and Gaussian ( w
e− =2 a/2) (dashed line)

incident illumination, for an analyser orientation of β=90° to the angle of incident

polarisation, generated using the direct calculation approach.

Two-dimensional imaging

In the following section the imaging of two-dimensional MO objects using the direct

calculation approach for modelling the response of the Type 1 single detector MO

scanning microscope is presented.

Figure 5.10 illustrates a MO object comprising a series of circular bits, of diameter

1µm and spacing 1µm. The Kerr rotation inside the bits is +1° and outside -1°.

Figure 5.11 illustrates the image of the bits of Fig 5.10 The image was generated with

clear, aberration free, circular apertures of equal diameter, under uniform incident

illumination.
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Figure 5.10 : Two-dimensional MO object comprising a track of circular MO bits of

diameter 1µm and spacing 1µm. The Kerr rotation of the bits (white areas) is +1°,

and elsewhere (black areas)  -1°.
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Figure 5.11 : Image of MO bits illustrated in Fig 5.10, using the Type 1 single

detector MO scanning microscope generated using the direct calculation approach.

Figure 5.12 illustrates the effects on the signal amplitude when scanning the focused

beam along a track at varying distances from the centre of the track. Such a process

can be used to investigate the effects of tracking error and cross-talk in optical disc

systems.
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Figure 5.12 : Plots of signal profile at varying distances from the track centre for

the two-dimensional image illustrated in Fig. 5.11

5.3  Modelling the differential detector MO scanning microscope

In the following section the direct calculation approach is applied to imaging in the

Type 1 differential detector MO scanning microscope. The analysis follows directly

from that presented for the Type 1 single detector MO system, described in sec. 5.2.

Computational procedure

The computational procedure for calculating the response follows directly from the

analysis presented in sec. 4.1.1 and sec. 4.2.1, and involves the evaluation of eq. (4.1)

to eq. (4.5) and eq. (4.32) to eq. (4.35) in computer code. The matrix dimensions and

signal resolution are determined using the analysis described previously.

Figure 5.13 illustrates the direct calculation approach for generating the response to a

two-dimensional MO sample, and is described in detail as follows.
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The subscripts x and y indicate the corresponding x and y orthogonal field

distributions.

Steps 1 to 6 are as detailed for the single detector case.

Step 7 Calculate the field matrices, ψ 7x
and ψ 7 y

, representing the modified

orthogonal field distributions immediately after the half wave plate, which

has its fast axis aligned at an angle θ  to the plane of the incident

polarisation, ψ 1x
, using eq. (4.33).

Step 8 Calculate the signals from each of the two photo-detectors.

• The signal from the photo-detector 1, IDet1, for the current scan position,

(j, i), is calculated by taking the sum, of the square magnitude, of each

element of the field distribution matrix, ψ 7x
, representing the x field

distribution incident on the photo-detector.

• The signal from the photo-detector 2, IDet2, for the current scan position,

(j, i), is calculated by taking the sum, of the square magnitude, of each

element of the field distribution matrix, ψ 7y
, representing the y field

distribution incident on the photo-detector.

• 

Step 9 Calculate the signal from the differential amplifier, Ij,i, at the current scan

position, (j, i),  by subtracting the signals from the two photo-detectors, i.e.

IDet1-IDet2.

Step 10 Repeat Steps 4 - 9 for each scan position along the sample to generate the

response along the current scan line.

Step 11 Centre the focused field distribution on the next scan line and repeat Steps

4-10 for each scan line to generate a two dimensional matrix, I, representing

the image of the two-dimensional object generated by the Type 1

differential detector MO scanning microscope.
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Figure 5.13 : The signal generation process in the Type 1 differential detector MO

system using the direct calculation approach.
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The process described is implemented in computer code, the algorithm for which is

described in the following section.

The direct calculation algorithm

The following algorithm, written in pseudocode (see Appendix B), illustrates the

computational procedure for calculating the image of a two-dimensional object using

the direct calculation approach for modelling the response of the Type 1 differential

detector MO scanning microscope.

Step 1. Input
data.

Matrix containing the objective aperture pupil function - po, of
dimensions adim × adim.
Matrix containing the collector aperture pupil function - pc, of
dimensions adim × adim.
Matrix containing the incident field distribution - ψ 1x

, of

dimensions  adim × adim.
Matrix containing the sample reflectance characteristics - r, of
dimensions odim × odim (two-dimensional MO object).
Matrix containing the sample Kerr rotation characteristics - k, of
dimensions odim × odim (one-dimensional MO object).
Matrix containing the sample phase characteristics - φ, of
dimensions odim × odim (one-dimensional MO object).

Output
data.

Matrix representing the image generated by the Type 1
differential detector MO scanning microscope - I, of dimensions
odim-dim × odim-fdim.

Step 2 FOR  y = 1,2,…,adim
        FOR x = 1,2,…,adim

        Set 
( )

( ) ( )
ψ

ψ

2 2 2
x

y x

y x p y x

+ − + − =

×

( ) / , ( ) /

, , ;

mdim adim mdim adim

                                 1 ox

        END;
END.

Step 3 Set ψ 3x
 = Fast Fourier Transform (ψ 2x

 ); #1

FOR  y = 1,2,…,fdim
        FOR x = 1,2,…,fdim
                Set

( ) ( )ψ ψ3 32 2
x x

y x y x′ + − + − =( ) / , ( ) / , ;mdim fdim mdim fdim

        END;
END;
Set I = 0;              (I represents the scan position along the
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Set j = 0.               Current scan line j)
Step 4 FOR  y = 1,2,…,fdim

        FOR x = 1,2,…,fdim
                Set

  
( )

( ) ( )( )
ψ

ψ

4

3

2 2
x

x

y x

y x r y j x i

+ − + − =

′ × + +

( ) / , ( ) /

, ( ), ;

mdim fdim mdim fdim

                                           

  
( ) ( )

( )( ) ( )( ) ( )( )
ψ ψ

φ

4 32 2
y x

y x y x

r y j x i k y j x i y j x i

+ − + − = ′

× + + × + + × + +

( ) / , ( ) / ,

( ), ( ), ( ), ;

mdim fdim mdim fdim

        END;
END.

Step 5 Set ψ 5x
 = Fast Fourier Transform (ψ 4x

); #1

Set ψ 5 y
 = Fast Fourier Transform (ψ 4 y

). #1

Step 6 FOR  y = 1,2,…,adim
        FOR x = 1,2,…,adim
                Set

    
( )
( ) ( )

ψ

ψ

6 2 2

2 2

x
y x

y x p y x

+ − + − =

+ − + − ×

( ) / , ( ) /

( ) / , ( ) / , ;

mdim adim mdim adim

mdim adim mdim adim5 cx

     
( )
( ) ( )

ψ

ψ

6 2 2

2 2

y
y x

y x p y x

+ − + − =

+ − + − ×

( ) / , ( ) /

( ) / , ( ) / , ;

mdim adim mdim adim

mdim adim mdim adim5 cy

        END;
END.

Step 7 FOR  y = 1,2,…,mdim
        FOR x = 1,2,…,mdim
                Set ( ) ( ) ( )ψ ψ θ ψ θ7 2 2

x
y x y x y x, , cos , sin= +6 6x y

;

                Set ( ) ( ) ( )ψ ψ θ ψ θ7 2 2
y

y x y x y x, , sin , cos= − +6 6y y
;

        END;
END.

Step 8
Set ( ) ( )I j i y xDet

y

y

x

x

1
1 1

2

, ,     7x
= ∑ ∑

=

=

=

=mdim mdim

ψ ;

Set ( ) ( )I j i y xDet
y

y

x

x

2
1 1

2

, ,     7y
= ∑ ∑

=

=

=

=mdim mdim

ψ ;

Set i i= + 1 #3.                    (Increment the scan position)
Step 9 Set ( ) ( ) ( )I j i I j i I j iDet Det, , ,= −1 2 .

Step 10 WHILE ( )i   < −odim fdim  DO Steps 4-9.

Step 11 Set j j= + 1 ;                   (Increment the scan line)

WHILE ( )j   < −odim fdim  DO Steps 4-10;

STOP.

#1 Fast Fourier Transform algorithm is described in reference 68.
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The one-dimensional response may be generated as described for the Type 1

reflectance scanning microscope.

Step response

Figure 5.14 illustrates the step response the Type 1 differential detector MO scanning

microscope, generated using the algorithm presented above. The responses of Fig.

5.14 were generated using the MO object of Fig. 5.8 with clear, aberration free,

circular apertures under uniform and Gaussian ( w
e− 2 =a/2) incident illumination, for a

half wave plate angle of 22.5° to the plane of incident polarisation (ideal case).
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Figure 5.14 : The Kerr step response of the Type 1 differential detector  MO  system

for clear, aberration free, circular apertures of equal diameter under uniform (solid

line) and  Gaussian ( w
e− =2 a/2) (dashed line) incident illumination, for an half wave

plate orientation of θ=22.5° to plane of incident polarisation, x, generated using the

direct calculation approach.

Figure 5.14 illustrates that the response of the Type 1 differential detector MO

scanning microscope is very different to that of the single detector configuration with

analyser set to extinction, Fig. 5.9. Due to the half wave plate, polarising beamsplitter
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and differential detector arrangement, the Type 1 differential detector MO scanning

microscope is able to distinguish the polarity of the rotation, as well as the magnitude

of the rotation. Figure 5.14 clearly illustrates the form of the incident illumination

affects the response of the scanning microscope, a result that was illustrated when

investigating the reflectance system, sec. 5.1. However, unlike the Type 1 reflectance

scanning microscope, the MO response is symmetrical about the centre of the edge.

Two-dimensional imaging

Figure 5.15 illustrates the image of the bits of Fig 5.10  for the Type 1 differential

detector case. The image was generated with clear, aberration free, circular apertures

of equal diameter under uniform incident illumination.
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Figure 5.15 : Image of the MO bits of Fig 5.10, using the Type 1 differential

detector MO scanning microscope generated using the direct calculation approach.

Figure 5.16 shows the effects on the signal amplitude when scanning the focused

beam along a track at varying distances from the centre of the track, and clearly

illustrates the effects of tracking error in optical storage systems.

Figure 5.16 indicates that for a tracking error of 0.75µm, the signal magnitude has

decreased to 5% of the maximum (along the track centre).
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Figure 5.16 : Plots of signal profile at varying distances from the track centre for

the two-dimensional image illustrated in Fig. 5.15.


