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Chapter 4

Mathematical analysis of the magneto-

optic scanning microscope

In this chapter the mathematical process for modelling the magneto-optic (MO)

scanning microscopes will be described in detail. In the previous chapter diffraction

theory was applied to model the response of the Type 1 and confocal reflectance

scanning microscopes. A similar approach was applied to modelling the readout

process in magneto-optic storage systems by Milster and Curtis [54], where the readout

channel is analogous to that of a scanning microscope sensitive to the Kerr effect.

Magneto-optic, MO, imaging, via the Faraday, polar or longitudinal Kerr effects,

relies upon the detection of the rotation of the plane of polarisation of a linearly

polarised field upon reflection from, or transmission through, a magneto-optic sample.

Many detection schemes have been devised which are capable of detecting the very

small rotations, typically <1°, introduced by these effects [18,24,55,56]. Alternative

detection strategies are also employed to detect the small amount of ellipticity that is

introduced upon interaction with a MO sample [57]. However, in the current analysis

only detection schemes that are sensitive to the rotation of polarisation are presented.

The two most common detection schemes being the single detector [7,24,55,56,58,59] and

differential detector [7,27,58,59,60] configurations.

The optical layout of the MO detection schemes are similar to those of the reflectance

imaging systems presented in chapter 3. Hence, a similar analysis can be applied to

develop a mathematical model of the imaging process in MO systems. The

propagation of the electric field through the optical system is formulated using scalar

diffraction theory. However, for the MO detection schemes the behaviour and

interaction of linearly polarised fields must also be considered. Hence, a Jones matrix
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analysis will be employed to describe the interaction of the polarised field with the

MO sample and the optics of the readout channel [27,60,61,62,63].

The Type 1 configuration of the differential detector MO scanning microscope is

commonly employed as the readout head in optical storage systems [7,60,64,65] and will

be analysed in detail in the current chapter. However, it is interesting, for

completeness, to develop an expression describing the imaging process in the

alternative single detector arrangement.

A magneto-optic confocal arrangement is also often employed by researchers to

image magnetic thin films [10,11,12,13,14,48,49,66], and so will also be analysed here in detail.

4.1  The single detector MO scanning microscope

The single detector MO system relies on the use of an analyser in conjunction with

single photo-detector to generate a signal which is proportional to the rotation of

polarisation of the linearly polarised field after interaction with an MO sample.

4.1.1  The Type 1 system

Illustrated in Fig. 4.1 is the optical layout of the simplest MO detection scheme, that

of the Type 1 single detector MO scanning microscope [7,24,55,56,58,59].

Optical configuration

The illumination is provided by a linearly polarised coherent source, such as a laser,

that is focused onto the surface of the sample by the objective lens. A polariser in the

illumination path is often used to enhance the incident polarisation state. After

interaction with the sample an orthogonal y component of polarisation is introduced

into the transmitted field by the magneto-optic effect, along with any phase variations

introduced by the sample. The transmitted field then propagates to the collector lens

by the diffraction process, where it is collimated and propagates to the analyser. The
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analyser is aligned so that its transmission axis is at an angle β°  to the plane of

incident polarisation and acts to transmit the field component that is polarised along

its transmission axis. Hence, the field components are resolved along the axis of the

analyser and then propagate, without further modification, to a large area photo-

detector, here assumed to have uniform responsivity. Although Fig. 4.1 illustrates the

optical system operating in transmission, it is common to employ the MO detection

system in reflection [18,59], in which case a beamsplitter is placed prior to the objective

lens to separate incident and reflected fields.

Figure 4.1 : The optical layout of the single detector MO scanning microscope.

Image calculation

Assuming a uniform incident field distribution,ψ x x y( , )1 1 , that is linearly polarised in

x, then the field distribution, ψ x o ox y( , ) , at the surface of the sample (the focal point

of the objective lens) is as calculated previously in sec 2.5 and chapter 3, and is given

by

( ) ( ) ( ){ } ( )ψ ψx o o x o ox y p x y x y h x y, , , ,= =FT 1 1 1 1 1 1                   (4.1)

where p x y1 1 1( , ) is the objective aperture pupil function and h x yo o1( , )  is the

amplitude point spread function of the objective lens. The interaction of the incident

field distribution, ψ x o ox y( , ) , and the MO properties of the sample can be represented

by the Jones matrix characteristic [56,61]
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where ψx′ and ψy′ are the orthogonal polarised field components after reflection from,

or transmission through, the MO sample, rx represents the complex amplitude

reflectance of the sample, tan(a) represents the tangent of Kerr rotation, and φ

represents the phase difference between the x and y polarised field components. The

introduction of an orthogonal y component of polarisation can be viewed as the

rotation of the plane of polarisation after reflection from, or transmission through, the

MO sample and the phase difference contributes to ellipticity in the readout beam.

Hence, after interaction with the MO sample the reflected field distribution is

composed of orthogonal x and y polarised field components given by

( ) ( ) ( )
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where ( , )x ys s  is the scan position on the sample and all other symbols have their

usual meaning. The orthogonal field components, ψ x x y( , )2 2  and ψ y x y( , )2 2 , in the

plane of the collector lens are given by the two-dimensional Fourier transform of the

field components, ψ x o ox y′ ( , )  and ψ y o ox y′ ( , ) , immediately after interaction with

the MO sample, i.e.
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        (4.4)

where f is the focal length of the collector lens (which is assumed to be equal to the

focal length of the objective lens). Immediately after the collector lens the orthogonal

field components, ψ x x y( , )2 2  and ψ y x y( , )2 2 , are modified by the aperture pupil

function of the collector lens to give,

( ) ( ) ( )
( ) ( ) ( )

ψ ψ

ψ ψ
x x

y y

x y x y p x y

x y x y p x y

′ =

′ =
2 2 2 2 2 2 2
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, , ,

, , ,
                                 (4.5)

where p x y2 2 2( , ) is the collector aperture pupil function.

If the transmission axis of the analyser is aligned at an angle β°  to the plane of

incident polarisation, x, then upon propagation through the analyser the orthogonal
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field components, ψ x x y′ ( , )2 2  and ψ y x y′ ( , )2 2 , will be resolved along the

transmission axis of the analyser to give

( ) ( ) ( )ψ ψ β ψ β′ ′ = ′ + ′x y x y x yx y2 2 2 2 2 2, , cos , sin    .               (4.6)

The field then propagates, without further modification, to the large area photo-

detector, which is assumed to be of uniform responsivity and equal to unity. The

signal from the photo-detector is as calculated previously, and is given by the integral,

over the area of the photo-detector, of the square magnitude of the incident field

distribution, i.e.

( ) ( )I x y x y dx dys s, ,= ′ ′∫∫
−∞

∞

ψ 2 2

2

2 2                                (4.7)

which substituting for ψ ′ ′ ( , )x y2 2  from eq. (4.6) gives

( ) ( ) ( )I x y x y x y dx dys s x y, , cos , sin= ′ + ′∫∫
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2

2 2  .            (4.8)

Substituting for ψ x x y′ ( , )2 2  and ψ y x y′ ( , )2 2  from eq. (4.5) and rearranging gives
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            (4.9)

where * represents complex conjugation. Substituting for ψ x x y( , )2 2  and ψ y x y( , )2 2

from eq. (4.4) gives
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where xo ′  and yo ′ are dummy variables. Rearranging eq. (4.10) and substituting for

ψ x o ox y′ ( , )  and ψ y o ox y′ ( , )  from eq. (4.3) gives
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where constant scaling factors have been ignored and g x yo o2 ( , )  is the amplitude

point spread function associated with the square magnitude of the collector aperture

pupil function, as given by eq. (3.11).

To maximise the signal from the Type 1 single detector MO scanning microscope the

analyser must be aligned so that only the MO signal propagates to the photo-detector,

i.e. only the y component of the reflected field generated after interaction with the

MO sample. Hence, by setting β = 90° the signal from the photo-detector will be

sensitive to only the MO properties of the sample, and the resultant signal from the

Type 1 single detector MO scanning microscope is given by
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Transfer function representation

A transfer function representation of the signal generated in the Type 1 single detector

MO scanning microscope can be obtained using a similar analysis as developed for

generating the transfer function model for the ordinary reflectance scanning

microscope, described in sec. 3.2 and sec. 3.3.
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If the reflectance and MO properties of the sample are expressed in terms of their

associated spectra, Γ( , )ν νx y  and Λ( , )ν νx y  respectively, i.e.

( ) ( ) ( ){ }
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where νx  and ν y  are orthogonal spatial frequency components, then substituting into

eq. (4.11), gives
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Comparing eq. (4.14) and eq. (3.31) it can be seen that the integral in the square

brackets of eq. (4.14) represents the Type 1 PCTF. Hence, the signal from the Type 1

single detector MO scanning microscope can be expressed in the characteristic form

of eq. (3.32), i.e.
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          (3.32)

where the medium function, M x y x y( , ; , )ν ν ν ν′ ′ , is now a function of the reflectance

and the MO properties of the sample, and the rotation of the transmission axis of the

analyser. Comparing eq. (3.32) and eq. (4.14) it can be seen that the medium function

for the single detector MO system can be expressed in the form

( ) ( ) ( )( )
( ) ( )( )

M x y x y x y x y

x y x y

ν ν ν ν ν ν β ν ν β

ν ν β ν ν β

, ; , * , cos * , sin
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′ ′ = ′ ′ + ′ ′

⋅ +

Γ Λ

Γ Λ                    
   .      (4.15)

If the analyser is aligned so as to maximise the Kerr signal, i.e. β=90°, then eq. (4.15)

reduces to the form
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( ) ( ) ( )M x y x y x y x yν ν ν ν ν ν ν ν, ; , , * ,′ ′ = ′ ′Λ Λ                        (4.16)

and it can be seen that, as expected, the signal from the photo-detector is sensitive

only to the MO properties of the sample, i.e. detects only the magneto-optically

induced y component of polarisation.

If the analyser is aligned to the same direction as the incident polarisation, i.e. x, then

it can be seen that the medium function reduces to the same form as for the Type 1

reflectance scanning microscope, as given by eq. (3.33), and the system no longer

images magneto-optic contrast.

The response of the Type 1 single detector  MO scanning microscope can now be

modelled in computer code using the 'direct calculation' approach for simple one-

dimensional and two-dimensional MO objects, which is described in sec. 5.2, and the

'transfer function' approach for simple one-dimensional objects, which is described in

sec. 6.3.1.

4.1.2  The confocal system

It is the aim of this section to describe the signal generation process in the confocal

configuration of the single detector MO scanning microscope.

Optical configuration

Figure 4.2 : The optical layout of the confocal single detector MO scanning

microscope.
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Figure 4.2. illustrates the optical layout of the confocal single detector MO scanning

microscope which is similar to that of the Type 1 single detector MO scanning

microscope illustrated in Fig. 4.1, where the confocal arrangement is implemented by

the introduction of a pinhole aperture and auxiliary lens arrangement into the

detection arm.

Image calculation

The field distribution in the plane of auxiliary lens 1 is equal to the field distribution

incident on the photo-detector in the Type 1 configuration, as given previously by eq.

(4.6), assuming the incident illumination is linearly polarised in x.

The field distribution,ψ ′ ′ ′ ( , )x y2 2 , immediately after auxiliary lens 1 is given by

( ) ( ) ( )
( ) ( ) ( ) ( )( )

ψ ψ

ψ β ψ β

′ ′ ′ = ′ ′

= +

x y x y p x y
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2 2 2 2 3 2 2

3 2 2 2 2 2 2 2 2 2

, , ,

, , , cos , sin                
    (4.17)

where p x y3 2 2( , )  is the aperture pupil function of auxiliary lens 1, p x y2 2 2( , )  is the

collector aperture pupil function, and ψ x x y( , )2 2  and ψ y x y( , )2 2  are the orthogonal

field components immediately before transmission through the analyser. The field

distribution, ψ ( , )x y3 3 , in the plane of the confocal pinhole is given by the two-

dimensional Fourier transform of the field distribution, ψ ′ ′ ′ ( , )x y2 2 , immediately

after the auxiliary lens 1, i.e.
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       (4.18)

where fA1 is the focal length of auxiliary lens 1, and all other symbols have their usual

meaning. Immediately after the pinhole aperture the field distribution is modified by

the aperture function of the pinhole, p x yp ( , )3 3 , to give

( ) ( ) ( )ψ ψ′ =x y x y p x yp3 3 3 3 3 3, , ,   .                               (4.19)

The field distribution, ψ ( , )x y4 4 , in the plane of auxiliary lens 2 is given by the two-

dimensional Fourier transform of the field distribution, ψ ′ ( , )x y3 3 , immediately after

the pinhole aperture, i.e.
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where fA2 is the focal length of auxiliary lens 2 and all other symbols have their usual

meaning. The field distribution is then modified by the aperture pupil function of

auxiliary lens 2, p x y4 4 4( , ) , to give

( ) ( ) ( )ψ ψ′ =x y x y p x y4 4 4 4 4 4 4, , ,   .                              (4.21)

The field then propagates, without further modification, towards the large area photo-

detector, which is assumed to be of uniform responsivity and equal to unity. The

signal from the photo-detector is calculated  as previously, and is given by the

integral, over the area of the photo-detector, of the square magnitude of the incident

field distribution, i.e.

( ) ( )I x y x y dx dys s, ,= ′∫∫
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∞

ψ 4 4

2

4 4                                 (4.22)

which by substituting for ψ ′ ( , )x y4 4 from eq. (4.21) and rearranging gives

( ) ( ) ( ) ( )I x y p x y x y x y dx dys s, , , * ,= ∫∫
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2

4 4 4 4 4 4ψ ψ   .           (4.23)

If it assumed that auxiliary lens 2 collects all the light emanating from the pinhole

aperture, then p x y4 4 4( , )  can be seen to be assumed to be equal to unity and eq.

(4.23) can be written, using Rayleigh’s theorem, as

( ) ( ) ( ) ( )I x y p x y x y x y dx dys s p, , , * ,= ∫∫
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∞

3 3

2

3 3 3 3 3 3ψ ψ   .           (4.24)

Substituting for ψ ( , )x y3 3  from eq. (4.18) and rearranging gives
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which simplifies to give
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where constant scaling factors have been ignored and G x y( , )2 2   is the Fourier

transform of the square magnitude of the pinhole aperture pupil function as given by

eq. (3.62). Substituting for ψ ′ ′ ′ ( , )x y2 2  from eq. (4.17) into eq. (4.26) yields
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where p x yc ( , )2 2  is the combined aperture pupil function of the collector and

auxiliary lenses as given by eq. (3.46). Substituting for ψ x x y( , )2 2  and ψ y x y( , )2 2

from eq. (4.4) and rearranging gives
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which simplifies to
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( ) ( )( )

I x y g x y x y x y x y

x y x y dx dy dx dy

s s o o o o x o o y o o

x o o y o o o o o o

, , ; , , cos , sin

* , cos * , sin

= ′ ′ ′ + ′

⋅ ′ ′ ′ + ′ ′ ′ ′ ′

∫∫∫∫
−∞

∞

ψ β ψ β

ψ β ψ β           

  (4.29)

where g x y x yo o o o( , ; , )′ ′  is as given by eq. (3.49). Substituting for ψ x o ox y′ ( , )  and

ψ y o ox y′ ( , )  from eq. (4.3) and rearranging yields
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( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( )( )( )
( ) ( ) ( )( )

I x y g x y x y h x y h x y

r x x y y r x x y y a x x y y j x x y y

r x x y y r x x y y a x x y y j x

s s o o o o o o o o

x o s o s x o s o s o s o s o s o s

x o s o s x o s o s o s o s

, , ; , , * ,

, cos , tan , exp , sin

* , cos * , tan , * exp

= ′ ′ ′ ′

− − + − − − − − − −

′− ′− + ′− ′− ′− ′−

∫∫∫∫
−∞

∞

2 1 1

β φ β

β φ( )( )( )o s o s

o o o o

x y y

dx dy dx dy

′− ′−

′ ′

, sin β

(4.30)

It can be seen that the signal from the confocal single detector arrangement is similar

to that obtained in the Type 1 single detector MO scanning microscope as illustrated

in eq. (4.11). However, for the confocal configuration the signal depends upon the

function g x y x yo o o o( , ; , )′ ′  that is a function of the Fourier transform of the square

magnitude of the pinhole aperture pupil function. A similar result was obtained when

comparing the expressions representing the signals generated in the Type 1 and the

confocal reflectance scanning microscopes, eq. (3.10) and eq. (3.64) respectively.

Transfer function representation

A transfer function representation of the signal from the confocal single detector MO

can be generated following that analysis presented for the Type 1 single detector MO

system, sec. 4.1.1.

Expressing the reflectance and MO properties of the sample in terms of their

associated spectra, Γ( , )ν νx y  and Λ( , )ν νx y  respectively, as given by eq. (4.13), and

substituting into eq. (4.30) gives

( ) ( ) ( ) ( )

( ){ } ( ){ }
( ) ( )( ) ( ) ( )( )

( )

I x y h x y h x y g x y x y

j x x j x x dx dy dx dy

j x

s s o o o o o o o o

y o y o y o y o o o o o

x y x y x y x y

x x s

, , * , , ; ,

exp exp

, cos , sin * , cos * , sin

exp

=



 ′ ′ ′ ′

⋅ − + ′ ′+ ′ ′ ′ ′





⋅ + ′ ′ + ′ ′

⋅ − ′ +

∫∫∫∫ ∫∫∫∫
−∞

∞

−∞

∞

1 1 2

2 2

2

π ν ν π ν ν

ν ν β ν ν β ν ν β ν ν β

π ν ν ν

Γ Λ Γ Λ

( )( ){ }y y s x y x yy d d d d− ′ ′ ′ν ν ν ν ν

  (4.31)

where all symbols have their usual meaning.
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Comparing eq. (4.31) with eq. (4.14) it can again be seen that the only difference is

the dependence on the pinhole pupil function explicit in the function

g x y x yo o o o2 ( , ; , )′ ′  for the confocal case. The signal from the confocal single detector

MO scanning microscope can also be expressed in the characteristic form of eq.

(3.32) with a medium function defined by eq. (4.15) and a confocal PCTF as given by

eq. (3.73).

In sec. 6.3.2 the transfer function approach will be used to model the response of the

confocal single detector MO scanning microscope for simple one-dimensional MO

objects.

4.2  The differential detector MO scanning microscope

It has already been mentioned that the optical configuration of the differential detector

MO scanning microscope is commonly used in the readout head of optical storage

systems. The differential detector MO system relies upon a differential detection

configuration to produce a signal which is proportional to the rotation of the plane of

polarisation, the polarity of the signal determining the direction of the rotation of

polarisation. An advantage of the differential detector configuration is that it helps to

reduce common mode signals and so offers improved signal to noise ratio over the

single detector MO system [7,58,59,60].

4.2.1  The Type 1 system

Figure 4.3 illustrates the optical channel of the Type 1 differential detector MO

scanning microscope. The differential detector arrangement, consisting of a half wave

plate and polarising beamsplitter placed after the collector aperture, ensures that equal

but opposite signals are generated at the two photo-detectors. The signals are fed

through a differential amplifier arrangement such that the difference signal is

generated.
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Optical configuration

Figure 4.3 : The optical layout of the Type 1 differential detector MO scanning

microscope.

The propagation of the orthogonal field distributions to the plane of the half wave

plate are as described for the single detector MO configuration to the plane of the

analyser. The half wave plate acts so as to balance the signals on the two photo-

detectors [65], thus removing common mode signals. The  half wave plate rotates the

plane of polarisation of linearly polarised incident light by an amount which is twice

that angle subtended between the principle axis of the half wave plate and the angle of

the incident linearly polarised field. The modified field components then propagate

towards to the differential detection arm of the instrument. The polarising

beamsplitter acts such that the x component propagates through the polarising

beamsplitter towards photo-detector 1, and the y component is reflected at the

interface of the polarising beamsplitter towards photo-detector 2. The signal is then

generated by calculating the difference signal between the two signals from the photo-

detectors. In normal operation the half wave plate and polarising beamsplitter

arrangement are aligned such that in the absence of the Kerr effect each photo-

detector will receive equal amounts of light and the difference signal will be zero.

However, in the presence of a Kerr rotation the photo-detectors will receive unequal

amounts of light and a difference signal will be generated at the output of the

differential amplifier. Although Fig. 4.3 illustrates the optical system operating in
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transmission it is common to operate the differential detector MO system in

reflectance [18,59], in which case a beamsplitter is placed prior to the objective lens to

separate incident and reflected fields.

Image calculation

The orthogonal field components immediately after the plane of the collector lens are

as calculated for the single detector MO scanning microscope, given by eq. (4.5), for

an incident illumination, which is linearly polarised in x.

The effects of the half wave plate can be described using the Jones matrix [27,54]

ψ
ψ

θ θ
θ θ

ψ
ψ

x

y

x

y

′ ′
′ ′









 =

−








 ⋅

′
′











cos sin

sin cos

2 2

2 2
                                (4.32)

where ψ x ′  and ψ y ′  are the orthogonal field components immediately before the half

wave plate, ψ x ′ ′  and ψ y ′ ′ are the modified orthogonal field components immediately

after propagation through the half wave plate and θ  is the angle between the fast axis

of the half wave plate and the plane of the incident polarisation. Hence, the field

components, ψ x x y′ ′ ( , )2 2  and ψ y x y′ ′ ( , )2 2 , immediately after the half wave plate

are given by

( ) ( ) ( )
( ) ( ) ( )

ψ ψ θ ψ θ

ψ ψ θ ψ θ

x x y

y x y

x y x y x y

x y x y x y

′ ′ = ′ + ′

′ ′ = − ′ + ′

2 2 2 2 2 2

2 2 2 2 2 2

2 2

2 2

, , cos , sin

, , sin , cos
               (4.33)

where the symbols have their usual meaning. The orthogonal field components then

propagate, without further modification, towards the polarising beamsplitter and

differential photo-detector arrangement. The x field component propagates through

the polarising beamsplitter and is incident on photo-detector 1, and the y field

component is reflected at the beamsplitter interface and is incident on photo-detector

2. The signals from the two photo-detectors are calculated as previously and are given

by the integral, over the surface of the photo-detector, of the square magnitude of the

incident field distributions. Hence, the signals from the two photo-detectors are given

by
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( ) ( )

( ) ( )

I x y x y dx dy

I x y x y dx dy

Det s s x

Det s s y

1 2 2

2

2 2

2 2 2

2

2 2

, ,

, ,

= ′ ′

= ′ ′

∫∫

∫∫

−∞

∞

−∞

∞

ψ

ψ

                         (4.34)

where it is assumed the photo-detectors are of equal responsivity, which is uniform

and equal to unity over the surface of the photo-detectors.

The differential signal is found by subtracting the signals from the two photo-

detectors and is given by

( ) ( ) ( ) ( ) ( )I x y I x y I x y x y x y dx dys s Det s s Det s s x y, , , , ,= − = ′ ′ − ′ ′∫∫
−∞

∞

1 2 2 2

2

2 2

2

2 2ψ ψ

(4.35)

which substituting for ψ x x y′ ′ ( , )2 2  and ψ y x y′ ′ ( , )2 2  from eq. (4.33) gives

( ) ( ) ( )

( ) ( )

I x y x y x y

x y x y dx dy

s s x y

x y

, , cos , sin

, sin , cos

= ′ + ′

− − ′ + ′

∫∫
−∞

∞

ψ θ ψ θ

ψ θ ψ θ

2 2 2 2

2

2 2 2 2

2

2 2

2 2

2 2       

  .               (4.36)

Substituting for ψ x x y′ ( , )2 2  and ψ y x y′ ( , )2 2  from eq. (4.5) and rearranging gives

( ) ( ) ( ) ( )

( ) ( )

I x y p x y x y x y

x y x y dx dy

s s x y

x y

, , , cos , sin

, sin , cos

=



 +

− − +





∫∫
−∞

∞

2 2 2

2

2 2 2 2

2

2 2 2 2

2

2 2

2 2

2 2

ψ θ ψ θ

ψ θ ψ θ             

        (4.37)

where the symbols have their usual meaning. Substituting for ψ x x y( , )2 2  and

ψ y x y( , )2 2  using eq. (4.4) and rearranging gives

( ) ( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

( ) ( )( )

I x y p x y
jk

f
x x x y y y dx dy

x y x y x y x y

x y x y x y

s s o o o o

x o o y o o x o o y o o

x o o y o o x o o

, , exp

, cos , sin * , cos * , sin

, sin , cos * ,

= − ′ + − ′




















⋅






′ + ′ ′ ′ ′ + ′ ′ ′

− − ′ + ′ − ′ ′

∫∫∫∫ ∫∫
−∞

∞

2 2 2
2

2 2 2 2

2 2 2 2

2 2

ψ θ ψ θ ψ θ ψ θ

ψ θ ψ θ ψ ( ) ( )( )′ + ′ ′ ′






sin * , cos2 2

2 2

θ ψ θy o ox y

dx dy

 (4.38)

which by substituting for ψ x o ox y′ ( , )  and ψ y o ox y′ ( , )   from eq. (4.3) and g x yo o( , )

from eq. (3.11) gives
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( ) ( ) ( ) ( )

( )(

( ) ( )( ) ( ){ } )

( )(

( ) ( )( )

I x y g x x y y h x y h x y

r x x y y

r x x y y a x x y y j x x y y

r x x y y

r x x y y a x x y y

s s o o o o o o o o

x o s o s

x o s o s o s o s o s o s

x o s o s

x o s o s o s o s
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= − ′ − ′ ′ ′

⋅






− −

+ − − − − − − −

⋅ ′− ′−

+ ′− ′− ′− ′−
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2
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2

θ

φ θ

θ

[ ] ( ){ } )
( )(

( ) ( )( ) ( ){ } )

( )(
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* exp , sin

, sin

, tan , exp , cos

* , sin

* , tan , * exp , cos

j x x y y

r x x y y

r x x y y a x x y y j x x y y

r x x y y

r x x y y a x x y y j x x y y

dx

o s o s

x o s o s

x o s o s o s o s o s o s

x o s o s

x o s o s o s o s o s o s

φ θ

θ

φ θ

θ

φ θ

′− ′−

− − − −

+ − − − − − − −

⋅ − ′− ′−

+ ′− ′− ′− ′− ′− ′−






2

2

2

2

2

o o o ody dx dy′ ′

   (4.39)

which represents the signal from the Type 1 differential detector MO system for an

arbitrary half wave plate fast axis angle θ°.

The signal from the differential detector MO system is maximised when the angle

subtended by the fast axis of the half wave plate and the angle of incident polarisation

is θ = °225. . The resultant signal from the Type 1 differential detector MO scanning

microscope in this case is then

( ) ( ) ( ) ( )

( )( ( ) ( )( )[ ] ( ){ }

( )( ( ) ( )( )

I x y g x x y y h x y h x y

r x x y y r x x y y a x x y y j x x y y

r x x y y r x x y y a x x y y j x x y

s s o o o o o o o o

x o s o s x o s o s o s o s o s o s

x o s o s x o s o s o s o s o s

, , , * ,

, * , tan , * exp ,

* , , tan , exp ,

= − ′ − ′ ′ ′

⋅






− − ′− ′− ′− ′− ′− ′−

+ ′− ′− − − − − − −

∫∫∫∫ 1 1

φ

φ( ){ })o s

o o o o

y

dx dy dx dy

−






′ ′

.

(4.40)
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Transfer function representation

A transfer function representation of the signal generated in the Type 1 differential

detector MO scanning microscope can be generated using the same analysis as was

presented for the single detector MO system.

Expressing the reflectance and MO properties of the sample in terms of their

associated spectra, Γ( , )ν νx y  and Λ( , )ν νx y  respectively as given by eq. (4.13), allows

eq. (4.39) to be expressed in the form

( ) ( ) ( ) ( )

( ){ } ( ){ }

( )( ( ) ) ( )( ( ) )

( )

I x y g x x y y h x y h x y

j x y j x y dx dy dx dy

s s o o o o o o o o

x o y o x o y o o o o o

x y x y x y x y

x y

, , , * ,

exp exp

, cos , sin * , cos * , sin

, sin

=



 − ′ − ′ ′ ′

⋅ − + ′ ′+ ′ ′ ′ ′





⋅



 + ′ ′ + ′ ′

− −

∫∫∫∫ ∫∫∫∫
−∞

∞

−∞

∞

1 1

2 2

2 2 2 2

π ν ν π ν ν

ν ν θ ν ν θ ν ν θ ν ν θ

ν ν

Γ Λ Γ Λ

Γ( ( ) ) ( )( ( ) )2 2 2 2θ ν ν θ ν ν θ ν ν θ

ν ν ν ν

+ − ′ ′ + ′ ′





′ ′

Λ Γ Λx y x y x y

x y x yd d d d

, cos * , sin * , cos

(4.41)

which by comparison with eq. (3.31) can be further simplified to give the

characteristic equation expressed in eq. (3.32), i.e.

( ) ( ) ( )
( ) ( )[ ]{ }

I x y C M

j x y d d d d

s s x y x y x y x y

x x s y y s x y x y

, , ; , , ; ,

exp

= ′ ′ ′ ′

⋅ − ′ + − ′ ′ ′

∫∫∫∫
−∞

∞

ν ν ν ν ν ν ν ν

π ν ν ν ν ν ν ν ν                    2

    (3.32)

where C x y x y( , ; , )ν ν ν ν′ ′  represents the Type 1 PCTF. However, in the differential

detector MO scanning microscope the medium function, M x y x y( , ; , )ν ν ν ν′ ′ , is now

given by

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

M x y x y x y x y x y x y

x y x y x y x y

ν ν ν ν ν ν ν ν ν ν ν ν θ

ν ν ν ν ν ν ν ν θ

, ; , , * , , * , cos

, * , * , , sin

′ ′ = ′ ′ − ′ ′

+ + ′ ′

Γ Γ Λ Λ

Γ Λ Γ Λ

4

4                             
 (4.42)

where the symbols have their usual meaning.
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If the half wave plate is aligned so as to maximise the Kerr signal from the differential

amplifier, i.e. θ = °225. , then the medium function reduces to

( ) ( ) ( ) ( ) ( )( )M x y x y x y x y x y x yν ν ν ν ν ν ν ν ν ν ν ν, ; , , * , * , ,′ ′ = + ′ ′ Γ Λ Γ Λ   .   (4.43)

The response of the Type 1 differential detector  MO scanning microscope can now

be modelled in computer code using the 'direct calculation' approach for simple one-

dimensional and two-dimensional MO objects, which is described in sec. 5.3, and the

'transfer function' approach for simple one-dimensional objects, which is described in

sec. 6.4.1.

4.2.2  The confocal system

It has already been mentioned that the confocal arrangement of the differential

detector MO scanning microscope is often used by researchers to study magnetic thin

films. Hence, it is useful to investigate the readout mechanism in such an imaging

system and to compare its imaging characteristics with those of the Type 1

configuration.

Optical configuration

Figure 4.4 : The optical layout of the confocal differential detector MO scanning

microscope.
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Figure 4.4 illustrates the optical channel of the confocal arrangement of the

differential detector MO scanning microscope.

The pinhole aperture and auxiliary lens arrangement is introduced between the half

wave plate and the polarising beamsplitter and differential detector arrangement.

Image calculation

The orthogonal field distributions immediately after propagation through the half

wave plate are as given in the Type 1 differential detector MO system, eq. (4.33).

The orthogonal polarised field components, ψ x x y′ ′ ′ ( , )2 2  and ψ y x y′ ′ ′ ( , )2 2 ,

immediately after propagating through auxiliary lens 1 are given by

( ) ( ) ( )
( ) ( ) ( )( )

( ) ( ) ( )
( ) ( ) ( )( )

ψ ψ

ψ θ ψ θ

ψ ψ

ψ θ ψ θ

x x

x y

y y

x y

x y p x y x y

p x y x y x y

x y p x y x y

p x y x y x y

′ ′ ′ = ′ ′

= ′ + ′

′ ′ ′ = ′ ′

= − ′ + ′

2 2 3 2 2 2 2

3 2 2 2 2 2 2

2 2 3 2 2 2 2

3 2 2 2 2 2 2

2 2

2 2

, , ,

, , cos , sin

, , ,

, , sin , cos

                   

                    

    (4.44)

where p x y3 2 2( , )  is the aperture pupil function of auxiliary lens 1 and all other

symbols have their usual meaning. The orthogonal field components, ψ x x y( , )3 3 and

ψ y x y( , )3 3 , in the plane of the confocal pinhole are given by the two-dimensional

Fourier transform of the field components, ψ x x y′ ′ ′ ( , )2 2  and ψ y x y′ ′ ′ ( , )2 2 ,

immediately after auxiliary lens 1, i.e.

( ) ( ) ( )

( ) ( ) ( )

ψ
λ

ψ

ψ
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x
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A

y
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y
A

x y
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f
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x y
f

x y
jk

f
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3 3
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3 2 3 2 2 2

3 3
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3 2 3 2 2 2

1

1

, , exp
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= ′ ′ ′ +
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





= ′ ′ ′ +








∫∫

∫∫

−∞

∞

−∞

∞
     (4.45)

where fA1 is the focal length of auxiliary lens 1. The orthogonal field distributions are

modified by the aperture pupil function of the confocal pinhole, p x yp ( , )3 3 , to give

( ) ( ) ( )
( ) ( ) ( )

ψ ψ

ψ ψ

x p x

y p y

x y p x y x y

x y p x y x y

′ =

′ =

3 3 3 3 3 3

3 3 3 3 3 3

, , ,

, , ,
  .                          (4.46)
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The orthogonal field distributions, ψ x x y( , )4 4  and ψ x x y( , )4 4 ,in the plane of

auxiliary lens 2 are given by the two-dimensional Fourier transform of the field

distributions, ψ x x y′ ( , )3 3  and  ψ y x y′ ( , )3 3 , immediately after the pinhole aperture,

i.e.

( ) ( ) ( )

( ) ( ) ( )

ψ
λ

ψ

ψ
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ψ

x
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x
A

y
A

y
A

x y
f

x y
jk

f
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f
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2
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4 3 4 3 3 3
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1

1
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
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= ′ +


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
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∫∫

∫∫

−∞

∞

−∞

∞
      (4.47)

where fA2 is the focal length of auxiliary lens 2. These field distributions are modified

by the aperture pupil function of auxiliary lens 2, p x y4 4 4( , ) , to give

( ) ( ) ( )
( ) ( ) ( )

ψ ψ

ψ ψ
x x

y y

x y p x y x y

x y p x y x y

′ =

′ =
4 3 4 4 4 4 4

4 4 4 4 4 4 4

, , ,

, , ,
  .                            (4.48)

The orthogonal field components then propagate, without further modification,

towards the polarising beamsplitter and differential photo-detector arrangement.

Assuming that  the x field component propagates through the polarising beamsplitter

towards photo-detector 1, and that the y field component is reflected at the polarising

beamsplitter interface towards photo-detector 2, then the signal from the confocal

differential detector MO system is given by

( ) ( ) ( ) ( ) ( )I x y I x y I x y x y x y dx dys s Det s s Det s s x y, , , , ,= − = ′ − ′∫∫
−∞

∞

1 2 4 4

2

4 4

2

4 4ψ ψ

          (4.49)

where it is assumed that the photo-detectors are of equal, uniform responsivity (set to

unity). Substituting for ψ x x y′ ( , )4 4  and ψ y x y′ ( , )4 4  from eq. (4.48), and

rearranging gives

( ) ( ) ( ) ( )I x y p x y x y x y dx dys s x y, , , ,= −



∫∫

−∞

∞

4 4 4

2

4 4

2

4 4

2

4 4ψ ψ    .    (4.50)

Again, assuming that auxiliary lens 2 collects all the field emanating from the pinhole,

then p x y4 4 4( , )can be set to unity and eq. (4.50) simplifies to

( ) ( ) ( ) ( )I x y p x y x y x y dx dys s p x y, , , ,= −



∫∫

−∞

∞

3 3

2

3 3

2

3 3

2

3 3ψ ψ    .      (4.51)

Substituting for ψ x x y( , )3 3  and ψ y x y( , )3 3  from eq. (4.45), and rearranging gives
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( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

I x y p x y
jk

f
x x x y y y dx dy

x y x y x y x y dx dy dx dy

s s p
A

x x y y

, , exp

, * , , * ,

= − ′ + − ′




















⋅ ′ ′ ′ ′ ′ ′ ′ ′ − ′ ′ ′ ′ ′ ′ ′ ′ ′ ′

∫∫∫∫ ∫∫
−∞

∞

−∞

∞

3 3

2

1
3 2 2 3 2 2 3 3

2 2 2 2 2 2 2 2 2 2 2 2  ψ ψ ψ ψ

   (4.52)

which simplifies to

( ) ( )

( ) ( ) ( ) ( )( )
I x y G x x y y

x y x y x y x y dx dy dx dy

s s

x x y y

, ,

, * , , * ,

= − ′ − ′

⋅ ′ ′ ′ ′ ′ ′ ′ ′ − ′ ′ ′ ′ ′ ′ ′ ′ ′ ′

∫∫∫∫
−∞

∞

2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 ψ ψ ψ ψ

(4.53)

where ( )G x y2 2,  is the Fourier transform of the square magnitude of the pinhole

aperture pupil function and is given by eq. (3.62). Substituting for ψ x x y′ ′ ′ ( , )2 2  and

ψ y x y′ ′ ′ ( , )2 2  from eq. (4.44) and rearranging gives

( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

I x y G x x y y p x y p x y

x y x y x y x y

x y x y x y x y

s s c c

x y x y

x y x y

, , , * ,

, cos , sin * , cos * , sin

, sin , cos * , sin * , cos

= − ′ − ′ ′ ′

⋅






+ ′ ′ + ′ ′

− − + − ′ ′ + ′ ′






∫∫∫∫
−∞

∞

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

2 2 2 2

2 2 2 2

ψ θ ψ θ ψ θ ψ θ

ψ θ ψ θ ψ θ ψ θ

 dx dy dx dy2 2 2 2′ ′

  .

 (4.54)

Substituting for ψ x x y( , )2 2  and ψ y x y( , )2 2  from eq. (4.4) and rearranging gives

( ) ( ) ( ) ( )

( ) ( )

( ) ( )( ) ( )

I x y G x x y y p x y p x y

jk

f
x x y y

jk

f
x x y y dx dy dx dy

x y x y x y

s s c c

o o o o

x o o y o o x o o y

, , , * ,

exp exp

, cos , sin * , cos

= − ′ − ′ ′ ′






⋅ −








−
′ ′− ′ ′









′ ′






⋅






′ + ′ ′ ′ ′ +

∫∫∫∫ ∫∫∫∫
−∞

∞

−∞

∞

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

2 2 2ψ θ ψ θ ψ θ ψ ( )( )

( ) ( )( ) ( ) ( )( )

′ ′ ′

− − ′ + ′ ′ ′ ′ + ′ ′ ′






′ ′

* , sin

, sin , cos * , sin * , cos

x y

x y x y x y x y

dx dy dx dy

o o

x o o y o o x o o y o o

o o o o

2

2 2 2 2

θ

ψ θ ψ θ ψ θ ψ θ

 

 (4.55)

which simplifies to
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( ) ( )

( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

I x y g x y x y

x y x y x y x y

x y x y x y x y

dx dy dx dy

s s o o o o

x o o y o o x o o y o o

x o o y o o x o o y o o

o o o o

, , ; ,

cos , sin , * , cos * , sin

, sin , cos * , sin * , cos

= ′ ′







′ + ′ ′ ′ ′ + ′ ′ ′

− − ′ + ′ − ′ ′ ′ + ′ ′ ′






′ ′

∫∫∫∫
−∞

∞

2 2 2 2

2 2 2 2

θψ θψ ψ θ ψ θ

ψ θ ψ θ ψ θ ψ θ

  (4.56)

where g x y x yo o o o( , ; , )′ ′  is given by eq. (3.49). Finally, substituting for ψ x o ox y′ ( , )

and ψ y o ox y′ ( , )  from eq. (4.3) and rearranging gives

( ) ( ) ( ) ( ) ( )(

( ) ( )( ) ( ){ } )
( )(
( ) ( )( )[ ]

I x y g x y x y h x y h x y r x x y y

r x x y y a x x y y j x x y y

r x x y y

r x x y y a x x y y

s s o o o o o o o o x o s o s

x o s o s o s o s o s o s

x o s o s

x o s o s o s o s

, , ; , , * , , cos

, tan , exp , sin

* , cos

* , tan , *

= ′ ′ ′ ′






− −

+ − − − − − − −

⋅ ′− ′−

+ ′− ′− ′− ′−

∫∫∫∫ 1 1 2

2

2

θ

φ θ

θ

( ){ } )
( )(

( ) ( )( ) ( ){ } )
( )(

( ) ( )( )[ ] ( ){ } )

exp , sin

, sin

, tan , exp , cos

* , sin

* , tan , * exp , cos

j x x y y

r x x y y

r x x y y a x x y y j x x y y

r x x y y

r x x y y a x x y y j x x y y dx

o s o s

x o s o s

x o s o s o s o s o s o s

x o s o s

x o s o s o s o s o s o s o

φ θ

θ

φ θ

θ

φ θ

′− ′−

− − − −

+ − − − − − − −

⋅ − ′− ′−

+ ′− ′− ′− ′− ′− ′−






2

2

2

2

2 dy dx dyo o o′ ′

(4.57)

which represents the signal from the confocal differential detector MO scanning

microscope for an arbitrary half wave plate angle θ°.

Transfer function representation

A transfer function representation of the signal from the confocal differential detector

MO scanning microscope can be generated using the same procedure as was

presented for the previous MO scanning microscopes.

Expressing the reflectance and MO properties of the sample in terms of their

associated spectra, Γ( , )ν νx y  and Λ( , )ν νx y  respectively as given by eq. (4.13), allows

eq. (4.40) to be expressed in the form
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( ) ( ) ( ) ( )

( ){ } ( ){ } ]
( )( ( ) ) ( )( ( ) )

( )(

I x y g x y x y h x y h x y

j x y j x y dx dy dx dy

s s o o o o o o o o

x o y o x o y o o o o o

x y x y x y x y

x y

, , ; , , * ,

exp exp

, cos , sin * , cos * , sin

, sin

= ′ ′ ′ ′





⋅ − + ′ ′+ ′ ′ ′ ′

⋅



 + ′ ′ + ′ ′

− − +

∫∫∫∫ ∫∫∫∫
−∞

∞

−∞

∞

1 1

2 2

2 2 2 2

2

π ν ν π ν ν

ν ν θ ν ν θ ν ν θ ν ν θ

ν ν θ

Γ Λ Γ Λ

Γ ( ) ) ( )( ( ) )Λ Γ Λν ν θ ν ν θ ν ν θ

ν ν ν ν

x y x y x y

x y x yd d d d

, cos * , sin * , cos2 2 2− ′ ′ + ′ ′





′ ′

(4.58)

where the symbols have their usual meaning. Comparing eq. (4.58) with eq. (4.41) it

can be seen that the signal from the confocal differential detector configuration can be

expressed in the characteristic form of eq. (3.32), where the medium function is as for

the Type 1 differential detector MO scanning microscope, eq. (4.42) and the PCTF is

now given by the confocal PCTF of eq. (3.73).

In sec. 6.4.2 the transfer function approach will be used to model the response of the

confocal differential detector MO scanning microscope for simple one-dimensional

MO objects.


