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Chapter 3

Mathematical analysis of the ordinary

reflectance scanning microscope

In this chapter the mathematical framework for modelling the reflectance scanning

microscope is described in detail. Many authors have presented mathematical analysis

describing imaging in optical systems, the forerunner of which was Hopkins who

described the imaging process in partially coherent optical systems [44,45]. Hopkins’

work was further adapted and applied to the case of imaging in ordinary (simple

reflectance and transmission) scanning laser microscopes by Sheppard and Wilson and

their co-workers in the 1970s and 1980s [4,5,6,46].

3.1  The ordinary reflectance scanning microscope

The analysis begins with an introduction of the simple scanning microscope illustrated

in Fig. 3.1, a configuration that has been extensively studied by others [4,5,6,44,45,46].

However, it is instructive to begin with a review of such a simple configuration since

this introduces many of the basic concepts used to treat the more complicated imaging

systems of interest in this thesis.

Optical configuration

Illustrated in Fig. 3.1 is the optical layout of the simple ordinary reflectance scanning

microscope. The standard optical head of the reflectance scanning microscope

comprises an objective lens (Obj), collector lens (Col), and large area photo-detector

(Det). Although Fig. 3.1 illustrates the microscope operating in transmission, the same

analysis can be applied to a system operating in reflection, in which case the objective
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and collector lenses are one and the same, and a beamsplitter is placed prior to the

objective lens to separate the incident and reflected beams.

Figure 3.1 : The optical layout of the ordinary reflectance scanning microscope.

Scanning is performed in scanning microscopes using two main techniques: beam

scanning and sample scanning. In beam scanning systems the focused spot is scanned

across a stationary sample, whereas in sample scanning systems the sample is scanned

under a stationary focused spot. In the current analysis it is assumed that the sample

scanning technique is used to image the sample, thus eliminating the optical

complexities evident in beam scanning systems [8].

The objective lens, with associated aperture pupil function p x y1 1 1( , ) , focuses a

collimated plane wave onto the surface of the sample. The focused field interacts with

the sample and then propagates to the collector lens by the diffraction process. The

form of the resultant field after interaction with the sample depends upon the

reflection / transmission properties of the sample about the scan position. At the plane

of the collector lens the field is modified by the aperture pupil function of the collector

lens, p x y2 2 2( , ) , is collimated and propagates, without further modification,  to the

large area photo-detector where the signal is generated by the integral, over the area

of the photo-detector, of the square magnitude of the incident amplitude field

distribution.
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Image calculation

The aim of the modelling process is to calculate the electric field distribution,

ψ ′ ( , )x y2 2 ,  in the plane of the photo-detector for a known incident field distribution,

ψ ( , )x y1 1 , on the objective aperture.

The field distribution, ψ ( , )x yo o ,  in the plane of the sample (the focal point of the

objective lens) is given by the two-dimensional Fourier transform of the field,

ψ ′ ( , )x y1 1 ,  immediately after the plane of the objective aperture, which following the

analysis described in sec. 2.4 gives

( )ψ
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where h x yo o1( , )  is the amplitude point spread function of the objective lens, and all

other symbols have their usual meaning. An important note is that in the current

analysis it is assumed that the objective lens is in perfect focus and is free of

aberrations; detractions from such ideal conditions that result in signal degradation

which will be treated in detail in later chapters. The field immediately after interaction

with the sample, whether operating in reflection or transmission, is given by
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where r x yo o( , )  represents the complex amplitude reflectance, or transmittance, of

the sample about the scan position, ( , )x ys s . After reflection from the surface of the

sample the  field propagates towards the collector lens by the diffraction process. The

field, ψ ( , )x y2 2 ,  in the plane of the collector lens is given by the two-dimensional

Fourier transform of the field, ψ ′ ( , )x yo o , immediately after interaction with the

sample. Hence, the field at the collector lens [4,7,20] is given by
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in which phase factors have been ignored, f is the focal length of the collector lens,

which is assumed to be equal to the focal length of the objective lens, and all other

symbols have their usual meaning. The effect of the collector lens is to collimate the

diverging reflected wave by introducing a phase factor into the optical field. However,

to simplify the current analysis the phase introduced by the lens has been ignored.

The field, ψ ′ ( , )x y2 2 ,  immediately after  the  collector  lens is given by the

multiplication of the incident field distribution, ψ ( , )x y2 2 , and the collector aperture

pupil function, p x y2 2 2( , ) , i.e.

( ) ( ) ( )ψ ψ′ =x y x y p x y2 2 2 2 2 2 2, , ,                                (3.4)

this field then propagates, without further modification, towards the large area photo-

detector. The signal from the photo-detector, as a function of scan position, is given

by the integral, over the area of the photo-detector, of the square magnitude of the

incident field distribution, i.e.
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where R x yd d( , ) represents the responsivity of the photo-detector. Assuming the

responsivity of the photo-detector is uniform (and set to unity) then the signal from

the photo-detector, as a function of scan position, is given by

( ) ( ) ( )I x y x y p x y dx dys s, , ,= ∫∫
−∞

∞

ψ 2 2 2 2 2
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which by expanding gives
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Substituting for ψ ( , )x y2 2 from eq. (3.3) gives
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where xo ′  and yo ′  are dummy variables introduced to satisfy the multiplication of ψ

and ψ *.  Rearranging  eq. (3.8) gives
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where constant scaling factors have been ignored. Equation (3.9) can be further

simplified to give
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where g x yo o2 ( , )  is the point spread function associated with the square magnitude

of the collector aperture pupil function [4,7,20] , given by
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           (3.11)

where f is the focal length of the collector lens and all other symbols have their usual

meaning.

Equation (3.10) is a convolution type process involving the objective amplitude point

spread function, h1, the object reflectance, r, and the point spread function associated

with the square modulus of the collector pupil function, g2.

It is useful at this point to consider two extreme cases of collector aperture size that

govern the operation of the reflectance scanning microscope. These two cases are

referred to as coherent and incoherent imaging [4,7,20].
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3.1.1 The coherent optical channel

Consider the situation where the collector aperture is very small, such that it may be

described by a delta function [4,7,20]. In this case, the amplitude point spread function,

g2, becomes

g x yo o2 1( , ) =                                                (3.12)

which by substituting into eq. (3.10) and rearranging gives

I x y h x y r x x y y dx dy

h x y r x x y y dx dy

s s o o o s o s o o

o o o s o s o o

( , ) ( , ) ( , )

*( ' , ' ) ( ' , ' ) '

= − −










⋅ − −

∫∫

∫∫

−∞

∞

∞

∞

1

1

 

               *  '
-

.             (3.13)

Equation (3.13) can be expressed in the simplified form

I x y h x y r x ys s s s s s( , ) ( , ) ( , )= ⊗ − −1

2
                            (3.14)

where ⊗ represents convolution. The resulting signal from the reflectance scanning

microscope is now linear in field amplitude and is generally termed coherent imaging.

The negative signs in eq. (3.14) indicate that strictly eq. (3.13) is in the form of a

correlation integral. Equation (3.14) illustrates that the response of the coherent

scanning microscope is generated by calculating the square magnitude of the

convolution of the objective amplitude point spread function and the reflectance

characteristics of the sample.

Step response

Figure 3.2 illustrates the normalised step response of the coherent scanning

microscope for a clear, aberration free, circular objective aperture under uniform

illumination. The response has been generated using the transfer function model

described in chapter 6.

An important characteristic of coherent imaging is evident in Fig. 3.2. The response

of the coherent imaging system exhibits undesirable ringing and a lag in the response

to a straight edge. It has been the work of many researchers to apply apodization
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techniques to remove the undesired ringing from the coherent response whilst

maintaining the fastest rise time [4,7].

-1 0 1
0

0.2

0.4

0.6

0.8

1

N
or

m
al

is
ed

 r
es

po
ns

e

Normalised distance from step - λ/NA

Figure 3.2 : The normalised step response of the coherent scanning microscope, for

a clear, aberration free, circular objective under uniform illumination.

3.1.2  The incoherent optical channel

Consider the situation where the collector aperture is infinitely large [4,7,20], such that

the aperture pupil function, p x y2 2 2( , ) , is constant, and the associated amplitude

point spread function is effectively a delta function,

g x y x yo o o o2 ( , ) ( , )= δ  .                                      (3.15)

Substituting into eq. (3.10) gives
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which can be expressed in the simplified form

( ) ( )I x y h x y r x ys s s s s s( , ) , ,= ⊗ − −1

2 2
                            (3.17)

where ⊗ represents convolution. It can be seen from eq. (3.17) that the signal from

the reflectance scanning microscope is now linear in the square modulus of the electric

field amplitude, the irradiance, and so is generally termed incoherent imaging.

Equation (3.17) illustrates that the response of the incoherent scanning microscope is
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generated by the convolution (strictly correlation) of the square magnitude of the

objective point spread function and the square magnitude of the reflectance properties

of the sample.

Step response

Figure 3.3 illustrates the normalised step response of the incoherent scanning

microscope for a clear, aberration free, circular objective aperture under uniform

illumination. The response has been generated using the transfer function model

described in chapter 6. It can be seen  that the response is very different to that of the

coherent system. The response of  the incoherent imaging system exhibits none of the

undesirable ringing characteristics of the coherent imaging system, and, unlike the

coherent system, the response to a straight edge is symmetrical about the centre of the

edge.
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Figure 3.3 : The normalised step response of the incoherent scanning microscope,

for a clear, aberration free, circular objective under uniform illumination.

The simple incoherent imaging model, often referred to as the convolutional model,

is often used by researchers to calculate the theoretical readout signal in optical disc

systems, due to the fact that experimental observations agree very closely with

predictions of the incoherent model [18,48,49,50,51].
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The incoherent transfer function

It is common to characterise the performance of electrical systems in terms of their

impulse response, step response or frequency response. In electrical systems the

variable of interest is temporal frequency, and it is with this that transfer function

representations of electrical circuits can be developed. In order to evaluate the

frequency response of the optical imaging system, a transfer function representation

has to be developed. In optical systems the variable of interest is spatial frequency,

and hence this can be used to characterise their transfer function behaviour.

The optical impulse can be represented by a point object, which can be visualised as a

delta function, i.e.

( ) ( )r x y x y, ,= δ                                             (3.18)

which by substituting into eq. (3.17) gives

( )I x y h x ys s s s( , ) ,= 1

2
                                        (3.19)

which is the impulse response of the incoherent imaging system. If the objective is a

clear, aberration free, circular aperture under uniform illumination, then the impulse

response of the incoherent system is given by the well known Airy disc pattern of eq.

(2.23) which is illustrated in Fig. (2.2) [4,6,7,20,46].

The optical transfer function, OTF, is the spatial frequency representation of the

frequency response of the optical imaging system [40,44]. The incoherent OTF is given

by the two-dimensional Fourier transform of the incoherent impulse response.

Therefore, the incoherent OTF is given by

( ) ( ) ( ){ }O h x y j x y dx dyx y o o o x o y o oν ν π ν ν, , exp= +∫∫
−∞

∞

1

2
2               (3.20)

where νx and νy are spatial frequency components in the x and y directions

respectively. However, the amplitude point spread function is simply the two-

dimensional Fourier transform of the aperture pupil function of the objective lens.

Therefore, substituting for h x y1 1 1( , )  from eq. (3.1) into eq. (3.20) gives
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where p1  and P1   are Fourier transform pairs and * represents complex conjugation.

Using Fourier transform theorems eq. (3.21) can be represented as a function of the

objective aperture pupil function and its complex conjugate [4,42,43], i.e.

( ) ( )O p x f y f p x y dxdyx y x yν ν ν λ ν λ, , * ( , )= + +∫∫
−∞

∞

1 1                   (3.22)

or in short form,

( ) ( ) ( )O p f f p f fx y x y x yν ν ν λ ν λ ν λ ν λ, , * ,= ⊗ − −1 1                     (3.23)

where ⊗ represents two-dimensional convolution and all other symbols have the usual

meaning. It can seen that the incoherent optical transfer function is given by the two-

dimensional convolution of the aperture pupil function and its reversed complex

conjugate. For a clear, aberration free, circular objective aperture under uniform

illumination, and a specific pair of spatial frequencies ν x  and ν y , the incoherent OTF

is equivalent to the area of overlap of two circles, one centred about the origin and the

other displaced by νxλf in the x - direction, and νyλf in the y - direction, as illustrated

in Fig. 3.4.

Figure 3.4 : Generation of the incoherent optical transfer function by the calculation

of the area of overlap of the displaced circular objective pupil function and its

complex conjugate centred about the origin.

Area of overlap.
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In this example where the objective is devoid of any aberrations, the OTF is purely

real. However, in aberrated systems the OTF is in fact complex, having both

magnitude and phase. The magnitude of the OTF is referred to as the modulation

transfer function, MTF, and the phase of the OTF is referred to as the phase

transfer function, PTF [32,43,52].

Figure 3.5 illustrates the calculated incoherent OTF for a clear, aberration free,

circular objective aperture under uniform illumination,  where the frequency axes are

given in normalised spatial frequency components

ν
ν λ

N NA
  

 
=                                                  (3.24)

where λ  is  the wavelength  of illumination, and  NA is the numerical  aperture of the

objective lens [4,20] .

The cut-off in the OTF (i.e. O x y( , )ν ν = 0) occurs at the characteristic spatial

frequency

ν ν ν
λc x y

NA
    = + =2 2 2                                          (3.25)

which corresponds to a displacement of p1 of one diameter in any direction, at which

point the circles in Fig. 3.4 no longer overlap.  The incoherent OTF illustrated in Fig.

3.5 has the well known form given by
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where d is the diameter of the circular objective aperture, and all other symbols have

their usual meaning.

Figure 3.6 illustrates the effects that the form of the incident illumination can have on

the spatial frequency characteristics of the incoherent imaging system. Plots are

illustrated along the νx  axis of the incoherent OTF, for a clear, aberration free,

circular objective aperture, under both uniform illumination and Gaussian illumination

( w a
e− =2 2/  , a - aperture radius).
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Figure 3.5 : The incoherent optical transfer function, for a clear, aberration free,

circular objective aperture  under uniform illumination.
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Figure 3.6 : Plot along the νx axis of the incoherent OTF for uniform illumination

(solid line) and Gaussian  illumination ( w
e− 2 = a/2) (dashed line), for a clear,

aberration free, circular objective aperture.

It is clear that the response and the shape of the incoherent OTF depends significantly

on the form of the incident illumination and the shape of the objective aperture. In the

case of uniform illumination and a circular objective aperture (solid line) the transfer

function rolls off at an approximately linear rate (actually as in eq. (3.26)) with
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increase in spatial frequency. However, in the case of Gaussian illumination ( w
e− 2 =

a/2) and a circular aperture the shape of the OTF has changed dramatically, with a

boost of the low spatial frequency response and the attenuation of  the high spatial

frequency response.

3.1.3  Coherence ratio

The coherence ratio [32], γ, is defined as the ratio of the numerical aperture of the

collector lens to the numerical aperture of the objective lens, i.e.

γ =
NA

NA
C

O

                                                  (3.27)

where  the subscripts O and C refer to the objective and collector lenses respectively.

For the coherent optical system where the collector aperture pupil function is

infinitesimally small, the coherence ratio is γ = 0, and for the incoherent imaging

system where the collector aperture pupil function is infinitely large, the coherence

ratio is γ = ∞ .

It can be shown that the spatial frequency cut-off of the OTF is a function of the

coherence ratio of the imaging system, and can be expressed as
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2
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     .                    (3.28)

Figure 3.7 illustrates the effect that the size of the collector aperture has on the spatial

frequency response and the resolving power of the ordinary reflectance system. It can

be seen that the coherent imaging system cuts off at half the spatial frequency of the

incoherent system and that it has a flat frequency response within the low spatial

frequency region. An interesting result is that for a coherence factor of  γ ≥ 1 the

spatial frequency cut-off of the imaging system remains constant.

A coherence factor of γ = 1 is the case where the numerical apertures of the objective

and collector lenses are the same. The case where  0 < γ < ∞  corresponds to the case
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of the more general partially coherent imaging system which will be treated in detail in

sec. 3.2.
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Figure 3.7 : Plot along the νx axis of the OTF for a coherence factor of γ=0 (bold

dashed line) (coherent system) and a coherence factor of γ=1 (solid line).

3.2  The Type 1 reflectance scanning microscope

It has been shown that when the reflectance scanning microscope employs an

infinitesimally  small collector aperture or an infinitely large collector aperture, then

the characteristics of the imaging system are very different. However, it is of more

interest to consider the case when the collector aperture is neither infinite in extent

nor infinitesimally small in extent, in which case the imaging is neither incoherent or

coherent, but partially coherent.

The optical system illustrated in Fig. 3.1 is often referred to as the Type 1 ordinary,

reflectance scanning microscope, and it has been discussed in Chap. 1 that it has

imaging characteristics similar to that of the conventional microscope. Following the

previous analysis, it can be seen that the expression representing the signal from the

Type 1 reflectance scanning microscope is given by eq. (3.10), where the collector

aperture pupil function, p x y2 2 2( , )  is of finite areal size. It is also useful to develop a

transfer function description for this more general, partially coherent, case.
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Transfer function representation

To derive a transfer function representation for the signal generated in the Type 1

reflectance scanning microscope, eq. (3.10), then the reflectance properties of the

sample must be expressed in terms of its spatial frequency spectrum, Γ( , )ν νx y , i.e.

( ) ( ) [ ]( )r x y j x y d dx y x y y, , exp= − +∫∫
−∞

∞

Γ ν ν π ν ν ν ν2     x               (3.29)

and its complex conjugate

( ) ( ) [ ]( )r x y j x y d dx y x y y*     x, * , exp= +∫∫
−∞

∞

Γ ν ν π ν ν ν ν2              (3.30)

where νx and νy are spatial frequencies in the x and y directions respectively.

Substituting for r x y( , )  and r x y*( , )  into eq. (3.10) and rearranging gives
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where the symbols have their usual meaning. Replacing the term in the square

brackets of eq.(3.31) with the function C x y x y( , ; , )ν ν ν ν′ ′ , the signal from the Type 1

reflectance system can be expressed in the form
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where the function C x y x y( , ; , )ν ν ν ν′ ′  is termed the partially coherent transfer

function, PCTF, which is a function of the properties of the optical system itself. It

describes the intensity of the components in the image with spatial frequencies equal

to ( )ν νx x− ′ in the x direction, and ( )ν νy y− ′ in the y direction. The term
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M x y x y( , ; , )ν ν ν ν′ ′  is called the medium function and describes the spatial frequency

properties of the sample, in this case given by

( ) ( ) ( )M x y x y x y x yν ν ν ν ν ν ν ν, ; , , * ,′ ′ = ′ ′Γ Γ    .                    (3.33)

The Type 1 PCTF

Comparing eq. (3.32) and eq. (3.31), it can be seen that the PCTF for the Type 1

system is given by

( ) ( ) ( ) ( )

( ){ } ( ){ }
C h x y h x y g x x y y

j x y j x y

dx dy dx dy

x y x y o o o o o o o o

x o y o x o y o

o o o o

ν ν ν ν

π ν ν π ν ν

, ; , , * , ,

exp exp

′ ′ = ′ ′ − ′ − ′

⋅ − + ′ ′+ ′ ′

⋅ ′ ′

∫∫∫∫
−∞

∞

1 1 2

2 2

    

                               

                           

  (3.34)

which by substituting for g x yo o2 ( , )from eq. (3.11) and rearranging gives

( ) ( ) ( ) ( )

( ){ } ( ){ }

( )

C h x y h x y p x y

j x y j x y

j

f
x x x x y y y y

dx dy dx dy dx dy

x y x y o o o o

x o y o x o y o

o o o o

o o o o

ν ν ν ν

π ν ν π ν ν

π
λ

, ; , , , ,

exp exp

′ ′ = ′ ′

⋅ − + ′ ′+ ′ ′

⋅ − ′+ − ′








⋅ ′ ′

∫∫∫∫∫∫
−∞

∞

 *  

                           

                         exp
2  

 

                          

1 1 2 2 2

2

2 2 2 2

2 2

2 2
 .   (3.35)

Combining the terms in the exponentials and separating the variables, allows eq.

(3.35) to be recast in the form

( ) ( )

( )

( )

C p x y

h x y j x
x

f
y

y

f
dx dy

h x y j x
x

f
y

x y x y

o o o x o y o o

o o o x o y

ν ν ν ν

π ν
λ

ν
λ

π ν
λ

ν

, ; , ,

, exp

* , exp

′ ′ =

⋅ − −








 + −













































⋅ ′ ′ ′ ′−
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∞

−∞

∞
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∞

2 2 2

2

1
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1
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′ ′













y

f
dx dy dx dyo o

2
2 2λ 
 

.

(3.36)

Using the shift and convolution theorems [42,43] now allows the Type 1 PCTF to be

expressed in terms of the objective and collector aperture pupil functions, i.e.
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( ) ( ) ( )
( )

C p f x f y p f x f y

p x y dx dy

x y x y x y x yν ν ν ν ν λ ν λ ν λ ν λ, ; , , * ,

,

′ ′ = − − ′ − ′ −

⋅

∫∫
−∞

∞

1 2 2 1 2 2

2 2 2

2

    

                                                              

 (3.37)

where scaling terms have been ignored.

If it assumed that  the  objective and collector apertures are symmetrical about the x

and y axes, then the time reversal of p1 and p1*  in eq. (3.37) can be ignored, such that

the Type 1 PCTF may be written in the more usual form

( ) ( ) ( )
( )

C p x f y f p x f y f

p x y dx dy

x y x y x y x yν ν ν ν ν λ ν λ ν λ ν λ, ; , , * ,

,

′ ′ = + + + ′ + ′

⋅

∫∫
−∞

∞

1 1

2

2

    

                                                  

 (3.38)

where the symbols have their usual meaning.

It can be seen from eq. (3.38) that the generation of the Type 1 PCTF is effectively a

correlation type process involving the objective aperture pupil function, its complex

conjugate and the square magnitude of the collector aperture pupil function [4,7,20,34]. A

computational procedure for generating the Type 1 PCTF will be described in detail in

sec. 6.1.

The response of the Type 1 reflectance scanning microscope can now be calculated in

two ways, either directly via eq. (3.10) or using the transfer function representation of

eq. (3.32). These methods have been implemented in computer code and are termed

the ‘direct calculation’ approach and the ‘transfer function’ approach. In the ‘direct

calculation’ approach the electric field is calculated as it propagates through the

optical system as the sample is scanned beneath the focused spot. It may be used for

generating the response to simple one-dimensional and two-dimensional reflectance

type objects, and is described in detail in sec. 5.1. In the ‘transfer function’ approach

the response is generated using the transfer function representation of the signal and is

described in sec. 6.2 for generating the response to simple one-dimensional

reflectance type objects.
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3.3  The Type 2, or confocal, reflectance scanning microscope

It has been described in chapter 1 that an alternative scanning microscope

arrangement can be configured by placing a pinhole arrangement into the detection

arm of the instrument. The Type 2, or confocal scanning microscope, as it is

commonly referred, has found widespread use in biological spheres, where its depth

discrimination properties are primarily useful [4,53]. The introduction of a confocal

pinhole into the detection arm of the instrument leads to a modification of the imaging

characteristics of the scanning microscope. To understand the imaging process in the

confocal microscope, and to compare its imaging characteristics with those of the

Type 1 configuration, it is useful to develop a similar mathematical description of

imaging in such an optical configuration. The analysis follows directly from that

presented for the Type 1 configuration, as described in sec. 3.1, and involves the

calculation of the electric field as it propagates through the optical system.

Optical configurations

The confocal reflectance scanning microscope can be implemented using the two

configurations which are illustrated in Figs. 3.8 and 3.9.

Figure 3.8 : The optical layout of the ordinary Type 2, or confocal, reflectance

scanning microscope, employing a pinhole photo-detector.
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Figure 3.8 illustrates the confocal reflectance scanning microscope where the pinhole

aperture is introduced by replacing the large area photo-detector of the Type 1 system

with an auxiliary lens and pinhole photo-detector arrangement. The auxiliary lens is

used to focus the propagating field that is reflected from the sample, onto the plane of

the  pinhole photo-detector. The pinhole photo-detector can be visualised as either a

photo-detector of infinitesimally small extent, or a large area photo-detector with a

pinhole aperture placed immediately in front of it.

Figure 3.9 : The optical layout of the ordinary Type 2, or confocal, reflectance

scanning microscope, employing a pinhole aperture and auxiliary lens arrangement.

Figure 3.9 illustrates an alternative confocal detection arrangement where a pinhole

aperture is placed in the combined focal point of two auxiliary lenses. The

propagating field that is reflected from the sample is brought to focus in the plane of

the pinhole aperture by the first auxiliary lens, the  field then propagates through the

pinhole and diverges towards to second auxiliary lens. Here the field is collimated and

continues to propagate, without further modification, to the large area photo-

detector, which is assumed to be of uniform responsivity.

Due to the complexities involved in fabricating a pinhole photo-detector, the confocal

arrangement illustrated in Fig. 3.9 is the more realistic system to implement

practically.

It is instructive to analyse both the confocal imaging systems illustrated in Fig. 3.8 and

Fig. 3.9 to determine if both systems exhibit identical imaging characteristics.
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Image calculation

In order to analyse the signal generation process in the confocal reflectance scanning

microscope, the field distribution incident on the photo-detector has to be calculated

for a known incident field distribution on the objective aperture, as in the Type 1

configuration.

Consider first the confocal configuration of Fig. 3.8. The field, ψ ′ ( , )x y2 2 , in the

plane of the auxiliary lens is as calculated previously in the Type 1 system, as given by

eq. (3.4). Immediately after the auxiliary lens the field distribution, ψ ′ ′ ( , )x y2 2 , is

modified by the aperture pupil function of the auxiliary lens, p x y3 2 2( , ) , to give

( ) ( ) ( ) ( )ψ ψ′ ′ =x y x y p x y p x y2 2 2 2 2 2 2 3 2 2, , , ,    .                     (3.39)

The field distribution, ψ ( , )x yd d , incident on the photo-detector is given by the two-

dimensional Fourier transform of the field distribution ψ ′ ′ ( , )x y2 2 , immediately after

the auxiliary lens, i.e.

( ) ( ) ( ) ( )( )

( )

ψ
λ

ψx y
f

x y p x y p x y

jk

f
x x y y dx dy

d d
A

A
d d

, , , ,

exp

=

⋅ +








∫∫
−∞

∞1
2 2 2 2 2 3 2 2

2 2 2 2                 

                     (3.40)

where fA is the focal length of the auxiliary lens, { , }x yd d is the plane of the photo-

detector and all other symbols have their usual meaning. The signal from the photo-

detector is again given by the integral, over the area of the photo-detector, of the

square magnitude of the incident distribution, i.e.

 ( ) ( ) ( )I x y x y R x y dx dys s d d d d d d, , ,= ∫∫
−∞

∞

ψ
2

                        (3.41)

or

( ) ( ) ( ) ( )I x y x y x y R x y dx dys s d d d d d d d d, , * , ,= ∫∫
−∞

∞

ψ ψ                 (3.42)

where R x yd d( , )  represents the responsivity of the photo-detector and * represents

complex conjugation. Substituting for ψ ( , )x yd d  from eq. (3.40) allows eq. (3.42) to

be recast in the form
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( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )( )

I x y x y x y

p x y p x y p x y p x y

R x y
jk

f
x x x x y y y dx dy

dx dy dx dy

s s

d d
A

d d d d

, , * ,

, * , , * ,

, exp

= ′ ′

⋅ ′ ′ ′ ′

⋅ − ′ + − ′








⋅ ′ ′

∫∫∫∫

∫∫

−∞

∞

−∞

∞

ψ ψ2 2 2 2

2 2 2 2 2 2 3 2 2 3 2 2

2 2 2 2 2

2 2 2 2

           

             

          

      (3.43)

which simplifies to give

( ) ( ) ( ) ( ) ( )

( )

I x y x y x y p x y p x y

G x x y y dx dy dx dy

s s c c, , * , , * ,

,

= ′ ′ ′ ′

⋅ − ′ − ′ ′ ′

∫∫∫∫
−∞

∞

ψ ψ2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2                        

           (3.44)

where G x y( , )2 2  is the Fourier transform of the pinhole photo-detector responsivity,

i.e.

( ) ( ) ( )G x y R x y
jk

f
x x y y dx dyd d

A
d d d d2 2 2 2, , exp= +









∫∫
−∞

∞

              (3.45)

and p x yc ( , )2 2  is the combined aperture pupil function of the collector and auxiliary

lenses, i.e.

( ) ( ) ( )p x y p x y p x yc 2 2 2 2 2 3 2 2, , ,=  .                                (3.46)

Substituting for ψ ( , )x y2 2  from eq. (3.3) allows eq. (3.44) to be expressed in terms of

the reflectance properties of the sample, i.e.

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

I x y h x y h x y r x x y y r x x y y

p x y p x y G x x y y

jk

f
x x y y

jk

f
x x y y dx dy dx dy

s s o o o o o s o s o s o s

c c

o o o o

, , * , , * ,

, * , ,

exp exp

= ′ ′ − − ′− ′−

⋅ ′ ′ − ′ − ′

⋅ +








−
′ ′+ ′ ′









′ ′

⋅

∫∫∫∫

∫∫∫∫

−∞

∞

−∞

∞

1 1

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

             

              

           dx dy dx dyo o o o′ ′

.  (3.47)

This can be rewritten as

( ) ( ) ( ) ( ) ( )

( )

I x y h x y h x y r x x y y r x x y y

g x y x y dx dy dx dy

s s o o o o o s o s o s o s

o o o o o o o o

, , * , , * ,

, ; ,

= ′ ′ − − ′− ′−

⋅ ′ ′ ′ ′

∫∫∫∫
−∞

∞

1 1

                                    

  (3.48)

where g x y x yo o o o( , ; , )′ ′ is given by
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( ) ( ) ( ) ( )

( ) ( )

g x y x y p x y p x y G x x y y

jk

f
x x y y

jk

f
x x y y dx dy dx dy

o o o o c c

o o o o

, ; , , * , ,′ ′ = ′ ′ − ′ − ′

⋅ +








−
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′ ′
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−∞

∞

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2     exp exp

   (3.49)

where all symbols have their usual meaning and constant scaling factors have been

ignored.

It can be seen that the signal generation process for the confocal reflectance system is

again a convolution type operation. However, it is more complicated than the Type 1

imaging process in so much as it now incorporates properties of the auxiliary lens and

pinhole photo-detector.

Presenting now the analysis for the alternative confocal reflectance system illustrated

in Fig 3.9. The field, ψ ′ ′ ( , )x y2 2 , immediately after auxiliary lens 1 is given by

( ) ( ) ( ) ( )ψ ψ′ ′ =x y x y p x y p x y2 2 2 2 2 2 2 3 2 2, , , ,                          (3.50)

where p x y3 2 2( , )  represents the aperture pupil function of auxiliary lens 1, and

p x y2 2 2( , )  is the collector aperture pupil function. The field distribution, ψ ( , )x y3 3 ,

in the plane of the pinhole is given by the two-dimensional Fourier transform of the

field distribution, ψ ′ ′ ( , )x y2 2 , immediately after auxiliary lens 1, i.e.

( ) ( ) ( ) ( )( )

( )

ψ
λ

ψx y
f

x y p x y p x y

jk

f
x x y y dx dy

A

A

3 3
1

2 2 2 2 2 3 2 2

1
3 2 3 2 2 2

1
, , , ,

exp

=

⋅ +








∫∫
−∞

∞

              

                   (3.51)

where fA1 is the focal length of auxiliary lens 1, and all the other symbols have their

usual meaning. Immediately after the pinhole aperture the field is modified by the

pupil function of the pinhole, p x yp ( , )3 3 , to give

( ) ( ) ( )ψ ψ′ =x y p x y x yp3 3 3 3 3 3, , ,  .                              (3.52)

The field, ψ ( , )x y4 4 , in the plane of auxiliary lens 2 is given by the two-dimensional

Fourier transform of the field,ψ ′ ( , )x y3 3 , immediately after the pinhole, i.e.

( ) ( ) ( )ψ
λ

ψx y
f

x y
jk

f
x x y y dx dy

A A
4 4

2
3 3

2
4 3 4 3 3 3

1
, , exp= ′ +









∫∫
−∞

∞

          (3.53)



Chapter 3 Mathematical analysis of the ordinary reflectance scanning microscope

66

where fA2 is the focal length of auxiliary lens 2, and all the other symbols have their

usual meaning. Immediately after auxiliary lens 2 the field is modified by the aperture

pupil function of auxiliary lens 2, p x y4 4 4( , )  , to give

( ) ( ) ( )ψ ψ′ =x y p x y x y4 4 4 4 4 4 4, , ,   .                               (3.54)

The field then propagates, without further modification, towards the photo-detector.

The signal from the photo-detector is calculated as previously, and is given by

 ( ) ( )I x y x y dx dys s d d, ,= ′∫∫
−∞

∞

ψ 4 4

2
                                 (3.55)

where it is assumed the responsivity is uniform (equal to unity) over the area of the

photo-detector. Substituting for ψ ′ ( , )x y4 4  from eq. (3.54) into eq. (3.55) gives

( ) ( ) ( ) ( )I x y x y x y p x y dx dys s, , * , ,= ∫∫
−∞

∞

ψ ψ4 4 4 4 4 4 4

2

4 4                (3.56)

which by substituting for ψ ( , )x y4 4  using eq. (3.53) and rearranging gives

( ) ( ) ( )

( ) ( ) ( )( )

I x y x y x y

p x y
jk

f
x x x y y y dx dy

dx dy dx dy

s s

A

, , * ,

, exp

= ′ ′ ′ ′

⋅ − ′ + − ′








⋅ ′ ′

∫∫∫∫

∫∫

−∞

∞

−∞

∞

ψ ψ3 3 3 3

4 4 4

2

2
4 3 3 4 3 3 4 4

3 3 3 3

              

           

   .     (3.57)

If it assumed that auxiliary lens 2 collects all the field that propagates through the

confocal pinhole, and that it does not obstruct the field in any way, then p x y4 4 4( , )

can be assumed to be uniform (equal to unity) for all { , }x y4 4 and eq. (3.57) simplifies

to give

( ) ( ) ( )I x y x y x y dx dys s, , ,*= ′ ′∫∫
−∞

∞

ψ ψ3 3 3 3 3 3                          (3.58)

which substituting for ψ ′ ( , )x y3 3  from eq. (3.52) gives

( ) ( ) ( ) ( )I x y x y x y p x y dx dys s p, , * , ,= ∫∫
−∞

∞

ψ ψ3 3 3 3 3 3

2

3 3  .                (3.59)

Substituting for ψ ( , )x y3 3  from eq. (3.51) and rearranging gives
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( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )( )

I x y x y x y

p x y p x y p x y p x y

p x y
jk

f
x x x y y y dx dy

dx dy dx dy

s s

p
A

, , * ,

, * , , * ,

, exp

= ′ ′

⋅ ′ ′ ′ ′
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∫∫
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∞
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∞

ψ ψ2 2 2 2

2 2 2 2 2 2 3 2 2 3 2 2

3 3

2

1
3 2 2 3 2 2 3 3

2 2 2 2

             

             

          

        (3.60)

which can be further simplified to give

( ) ( ) ( ) ( ) ( )

( )

I x y x y x y p x y p x y

G x x y y dx dy dx dy

s s c c, , * , , * ,

,

= ′ ′ ′ ′

⋅ − ′ − ′ ′ ′

∫∫∫∫
−∞

∞

ψ ψ2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2                            

           (3.61)

where G x y( , )2 2  is the Fourier transform of the square magnitude of the pinhole

aperture pupil function, i.e.

( ) ( ) ( )G x y p x y
jk

f
x x y y dx dyp

A
2 2 3 3

2

1
3 2 3 2 3 3, , exp= +









∫∫
−∞

∞

            (3.62)

and p x yc ( , )2 2  is the combined aperture pupil function of the collector and auxiliary

lenses as given by eq. (3.46). Substituting for ψ ( , )x y2 2  from eq. (3.3) allows eq.

(3.61) to be expressed in terms of the reflectance properties of the sample, i.e.

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

I x y h x y h x y r x x y y r x x y y

p x y p x y G x x y y

jk

f
x x y y

jk

f
x x y y dx dy dx dy

s s o o o o o s o s o s o s

c c

o o o o

, , * , , * ,

, * , ,

exp exp

= ′ ′ − − ′− ′−
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⋅ +
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′ ′
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2 2 2 2 2 2 2 2

             

              

           dx dy dx dyo o o o′ ′

  (3.63)

which can be rewritten as

( ) ( ) ( ) ( ) ( )

( )

I x y h x y h x y r x x y y r x x y y

g x y x y dx dy dx dy

s s o o o o o s o s o s o s

o o o o o o o o

, , * , , * ,

, ; ,

= ′ ′ − − ′− ′−

⋅ ′ ′ ′ ′

∫∫∫∫
−∞

∞

1 1

                                    

  (3.64)

where g x y x yo o o o( , ; , )′ ′ is given by eq. (3.49) with G x y( , )2 2  given by eq. (3.62), all

other symbols have their usual meaning and constant scaling factors have been

ignored.
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Comparing eq. (3.48) and eq. (3.64) it can be seen that the two confocal

configurations illustrated in Figs 3.8 and 3.9 have exactly the same imaging

characteristics, providing auxiliary lens 2 in Fig. 3.9 collects all the field that

propagates through the pinhole.

It is instructive at this point to consider two extreme cases of pinhole size for the

configuration of Fig. 3.9. If the pinhole aperture is infinitely large, such that

p x yp( , )3 3 1=  for all { , }x y3 3 , then

( ) ( )G x y x y2 2 2 2, ,= δ                                                  (3.65)

and eq. (3.64) reduces to the same form as that for the Type 1 reflectance system, eq.

(3.10), as would be expected.

If the pinhole is infinitesimally small, such that p x y x yp( , ) ( , )3 3 3 3= δ , then

 ( )G x y2 2 1, =                                                           (3.66)

and

( ) ( ) ( )g x y x y h x y h x yo o o o c o o c o o, ; , , * ,′ ′ = ′ ′                       (3.67)

which allows the signal to be expressed in the form

( ) ( ) ( ) ( )I x y h x y h x y r x x y y dx dys s o o c o o o s o s o o, , , ,= − −∫∫
−∞

∞

1

2

         (3.68)

and the confocal imaging system exhibits coherent imaging properties, and is termed

the ideal confocal system. Note, the form of the collector lens point spread function

now effects the imaging process, unlike the Type 1 configuration.

Transfer function representation

As in the Type 1 reflectance scanning microscope analysis, it is possible to develop a

transfer function representation of the signal from the confocal reflectance scanning

microscope.

Recalling eq. (3.29) and eq. (3.30), the reflectance  properties of the sample can be

expressed in terms of its spatial frequency spectrum, Γ( , )ν νx y , i.e.
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( ) ( ) [ ]( )r x y j x y d dx y x y y, , exp= − +∫∫
−∞

∞

Γ ν ν π ν ν ν ν2     x               (3.29)

and its complex conjugate

( ) ( ) [ ]( )r x y j x y d dx y x y y*     x′ ′ = ′ ′ ′ ′+ ′ ′ ′ ′∫∫
−∞

∞

, * , expΓ ν ν π ν ν ν ν2      (3.30)

which substituting into eq. (3.64) gives

( )

( ){ }

( ) ( ) ( ) ( )( ){ }

I x y h x y h x y g x y x y

j x x y y dx dy dx dy

j x y

s s o o o o o o o o

x o x o y o y o o o o o

x y x y x x s y y s

, ( , ) *( , ) ( , ; , )

exp

, * , exp

=



 ′ ′ ′ ′

⋅ − − ′ ′+ − ′ ′ ′ ′





⋅ ′ ′ − − ′ + − ′

∫∫∫∫ ∫∫∫∫
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∞

−∞

∞

   

                    

             

1 1 2

2

2

π ν ν ν ν

ν ν ν ν π ν ν ν νΓ Γ

                ⋅ ′ ′d d d dx y x yν ν ν ν

  (3.69)

where the symbols have their usual meaning. Replacing the term in square brackets of

eq. (3.69) with C x y x y( , ; , )ν ν ν ν′ ′ , the signal from the confocal reflectance system can

be expressed in the characteristic form given previously in eq. (3.32), i.e.

( ) ( ) ( )

( ) ( )[ ]{ }

I x y C M

j x y d d d d

s s x y x y x y x y

x x s y y s x y x y

, , ; , , ; ,

exp

= ′ ′ ′ ′

⋅ − ′ + − ′ ′ ′
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ν ν ν ν ν ν ν ν

π ν ν ν ν ν ν ν ν

 

                  2

    (3.32)

where for the case of the confocal system the term C x y x y( , ; , )ν ν ν ν′ ′  represents the

confocal PCTF, and the medium function M x y x y( , ; , )ν ν ν ν′ ′  remains unchanged.

The confocal PCTF

Comparing eq. (3.32) and eq. (3.69) it can be seen that the confocal PCTF is given by

( )
( ){ } ( ){ }

C h x y h x y g x y x y

j x y j x y dx dy dx dy

x y x y o o o o o o o o

x o y o x o o y o o o o o

ν ν ν ν

π ν ν π ν ν

, ; , ( , ) *( , ) ( , ; , )

exp exp

′ ′ = ′ ′ ′ ′

⋅ − + ′ ′ + ′ ′ ′ ′

∫∫∫∫
−∞

∞

1 1 2

2 2

  

                  

(3.70)
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that by substituting for g x y x y2 2 2 2 2( , ; , )′ ′  using eq. (3.49) and rearranging gives

( )

( ) ( ) ( )

( ) ( )

( ){ }

C h x y h x y

p x y p x y G x x y y

jk

f
x x y y

jk

f
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c c
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(3.71)

Grouping the terms in the exponentials and rearranging gives
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 (3.72)

which by using the shift and convolution theorems [42,43] allows the confocal PCTF to

be expressed in the form

( ) ( ) ( )
( ) ( ) ( )

C p x f y f p x f y f

p x y p x y G x x y y dxdydx dy

x y x y x y x y

c c

ν ν ν ν ν λ ν λ ν λ ν λ, ; , , * ,

, * , ,

′ ′ = + + ′+ ′ ′+ ′

⋅ ′ ′ − ′ − ′ ′ ′

∫∫∫∫
−∞

∞

1 1

                              

 (3.73)

where G x y( , )  is given by eq. (3.62) and all other symbols have their usual meaning

and it is assumed the apertures are symmetrical about the x and y axes.

It can be seen that the expressions representing the signal from both the Type 1 and

confocal reflectance scanning microscopes are of identical form. However, the PCTFs

of the two imaging configurations are very different. Comparing eq. (3.38) and eq.

(3.73) it can be seen that the confocal PCTF is more complicated compared to the

Type 1 PCTF, in so much that the confocal PCTF is a function of the Fourier
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transform of the square modulus of the pinhole aperture pupil function, and is a

convolution process involving four variables.

Again consider two extreme cases of confocal pinhole aperture size. For the case

where the confocal pinhole is infinitesimally small, such that p x y x yp ( , ) ( , )3 3 3 3= δ ,

then G x x y y( , )− ′ − ′ =1 and eq. (3.73) reduces to the form,

( ) ( ) ( )C p x f y f p x y dxdyx y x y x yx cν ν ν ν ν λ ν λ, ; , , ,′ ′ = + +∫∫
−∞

∞

1

2
           (3.74)

and the confocal PCTF is effectively given by the square magnitude of the incoherent

OTF [4].

For the case where the confocal pinhole is infinitely large, such that p x yp( , )3 3 1= for

all { , }x y3 3 , then in such a case G x x y y( , )− ′ − ′  is a delta function and eq. (3.73)

reduces to the form,

( ) ( ) ( )
( ) ( )

C p x f y f p x f y f

p x y p x y dxdy

x y x y x yx x y

c c

ν ν ν ν ν λ ν λ ν λ ν λ, ; , , * ,

, * ,

′ ′ = + + + ′ + ′

⋅

∫∫∫∫
−∞

∞

1 1

                                           

    (3.75)

which is the same form as for the Type 1 case, as would be expected.

Chapters 5 and 6 described computational procedures for evaluating the imaging

equations developed throughout this current chapter.


