
Online Non-Stationary Boosting

Adam Pocock, Paraskevas Yiapanis, Jeremy Singer,
Mikel Luján, and Gavin Brown

School of Computer Science, University of Manchester, UK
{apocock,pyiapanis,jsinger,mlujan,gbrown}@cs.manchester.ac.uk

Abstract. Oza’s Online Boosting algorithm provides a version of Ad-
aBoost which can be trained in an online way for stationary problems.
One perspective is that this enables the power of the boosting frame-
work to be applied to datasets which are too large to fit into memory.
The online boosting algorithm assumes the data distribution to be inde-
pendent and identically distributed (i.i.d.) and therefore has no provision
for concept drift. We present an algorithm called Online Non-Stationary
Boosting (ONSBoost) that, like Online Boosting, uses a static ensemble
size without generating new members each time new examples are pre-
sented, and also adapts to a changing data distribution. We evaluate the
new algorithm against Online Boosting, using the STAGGER dataset
and three challenging datasets derived from a learning problem inside a
parallelising virtual machine. We find that the new algorithm provides
equivalent performance on the STAGGER dataset and an improvement
of up to 3% on the parallelisation datasets.

1 Introduction

Many real-world problems change their characteristics over time. This is known
as learning in non-stationary environments, where the function which maps from
the inputs to the outputs changes over time [4, 5, 7, 10]. This change is known as
concept drift. Ensemble frameworks provide a modular style where components
can be added, removed or modified which is particularly useful when tracking
changing concepts. The aim of this work is to demonstrate a novel online learning
algorithm, capable of being deployed in a real-time environment, requiring online
learning with thousands of examples per second. The domain we work with is
that of adaptive Java compilers, which dynamically optimise how Java code is
executed on modern multi-core computers.

We are investigating the application of ML techniques to automatic paralleli-
sation problems, running inside a Java virtual machine. Automatic parallelisa-
tion problems have several interesting characteristics that constrain the space of
applicable learning algorithms. Training data is taken from runtime analysis of
Java benchmarks, recording properties of the machine state at the start/end of
each method execution. The prediction task is, given the machine state, and the
source code for a new Java method, should this method be executed in parallel?
This is an important task, as parallel execution can potentially fail if it causes a

resource conflict with other currently running methods; and solving this problem
well can potentially halve the runtime of a piece of Java code.

Since decisions are taken at the start of every method execution, this results
in a dataset generating potentially millions of examples per second, rendering
many standard offline training algorithms infeasible. The exemplar of this is our
DaCapo Bloat data [1], which generates 1, 273, 359 datapoints in 386 milliseconds
of runtime. Predictions required by the parallelisation system therefore need to
be generated on the order of microseconds otherwise the parallelisation oppor-
tunity is lost in the overhead created by the ML system. Additionally, a training
cycle must not ’lock’ the ML system preventing it from providing a prediction. A
further problem is that the data is not independent and identically distributed,
as decisions made by the parallelisation system using ML predictions will alter
the future behaviour of the system. In summary we require a ML system which:

– Learns in a ‘true’ online fashion1.
– Can adapt to a changing distribution.
– Can generate predictions quickly.
– Can be updated without preventing the generation of predictions.

We propose a system based Oza’s Online Boosting [8], with modifications to
enable the updating of ensemble members, adapting the system to changing data.
Online Boosting meets the requirements using simple base models which can
generate predictions quickly, and while each ensemble member is being trained,
the remainder of the ensemble members could be used to generate a prediction.

The layout of this paper is as follows: Section 2 provides a description of the
related literature. Section 3 provides a description of our algorithm and how it
relates to the literature. Section 4 provides our experimental setup and testing
results, and Section 5 contains the conclusions and future directions for our
algorithm.

2 Related Work

Learn++.NSE [2, 7] provides an algorithm for generating a boosted classifier on
streaming data. It generates a series of classifiers using batches of examples,
by converting the online datastream into a series of chunks of a fixed size. At
each time step one new classifier is trained on a batch of new examples, using an
example weighting distribution similar to AdaBoost based upon the performance
of the current ensemble, then all the ensemble members are reweighted according
to their performance on the current batch of examples. After each classifier has
been trained it becomes immutable, though its weight in the majority vote may
change dependent on its current performance.

Knowledge-based Sampling Stream (KBS-Stream) [10] is a boosting algo-
rithm similar to Learn++.NSE, as it generates a series of classifiers by creating

1 By ‘true’ online, we mean a system which learns from and then discards each training
example one-by-one.

batches of examples from an online datastream. A key difference from Learn++

is the classifier weighting scheme, based on a probabilistic correlation measure.
Another important difference is the way it makes use of new data: in Learn++, a
new classifier trained every K examples, whereas in KBS-Stream, a new classifier
is only trained if the data distribution is deemed to have drifted.

It is important to note that both Learn++.NSE and KBS-Stream assume
that data in each batch are independent and identically distributed. In our par-
allelisation problem the distribution is unknown, and thus no such guarantee
can be made. This leads to a problem if we were to apply these algorithms to
the parallelisation datasets described in Section 4.1, as each new example would
hypothetically require the generation of a new classifier. In contrast to such
‘batching’ algorithms are algorithms which update the classifiers on presenta-
tion of each example, which we term ‘true’ online learning algorithms.

Online boosting developed by Oza [8] provides a boosting algorithm which
mimics the sampling with replacement variant of AdaBoost [3] when applied to
an online stream of examples. Each example is presented to an ensemble member
r times, where r is drawn from a Poisson(λ) where λ is a weight derived from
previous performance on that example. Effectively, if the example is misclassi-
fied by an earlier classifier it is presented more often to classifiers later on in
the ensemble. This assumes that the ensemble members are capable of learning
incrementally and that repeated training on the same example will have a cumu-
lative effect on the classifier. The ensemble is initialised with a fixed number of
members which remain throughout the training process. The algorithm is proven
to return the same ensemble as AdaBoost in the limit of infinite examples, when
using a Naive Bayes classifier as the weak learning algorithm. At each stage
the algorithm is approximating the performance of AdaBoost trained upon the
same examples, which limits the performance when the distribution is changing
because offline classification tasks are not subject to concept drift.

AdaBoost performs a greedy forward search in the space of classifiers. Alter-
native search methods which are less greedy can be fitted in the place of this
forward search. One such algorithm is FloatBoost [6] which incorporates a se-
quential forward floating search [9] in place of the greedy forward search. This
enables the removal of classifiers which are hindering the performance of the
ensemble or are made redundant by a combination of other ensemble members.
Like AdaBoost, it is an offline binary classification algorithm. The sequential for-
ward floating search increases the runtime of the algorithm significantly whilst
providing an increase in the accuracy.

The properties of the various online algorithms described in this section are
summarised in Table 1.

3 Non-Stationary Boosting

We present an algorithm that, like Online Boosting, uses a static ensemble size
without generating new members each time new examples are presented, and
also adapts to a changing data distribution. It is based upon a combination of

Algorithm “True” Online Fixed Ensemble Size Concept Drift

Learn++.NSE 7 7 4

KBS-Stream 7 7 4

Online Boosting 4 4 7

ONSBoost 4 4 4

Table 1. Comparison of related algorithms and ONSBoost. By “True Online” we
mean that the algorithm can be trained on single examples, without chunking them
and assuming i.i.d. within the batch.

FloatBoost [6] and Online Boosting [8] which we call Online Non-Stationary
Boosting, or ONSBoost. It incorporates a floating search into the Online Boost-
ing algorithm, which enables the addition of new classifiers and the removal
of poorly performing classifiers. This lets the algorithm follow a changing data
distribution.

The algorithm, ONSBoost, provides a simple extension of Online Boosting
to allow the resetting of outdated and inaccurate classifiers. The key parameters
are: K, determining how often the classifiers are checked to see if a reset is
necessary; W , the size of the window used to determine if a reset is necessary;
and P , a “protection” period, where a classifier cannot be reset. The protection
period is necessary to allow a classifier sufficient training examples to learn the
new concept.

The algorithm reduces to Oza’s Online Boosting in the case when K is greater
than the number of examples in the training dataset2. When K is less than the
number of examples N there are bNK c classifier removal steps.

Window Size
In a true online environment the base assumption is that there is an infinite
stream of examples being generated for training and classification. This means
it is not feasible to store all the previous examples and use those to determine
performance. A common technique for evaluating online classifiers is to use a
window of the most recent examples to determine the current performance [4].
This can also improve the accuracy on data with concept drift as it forces the
classifier to adapt to the most recent data. In common with these other tech-
niques we use a window to determine the current performance of the ensemble
and to decide which, if any, members need replacing to improve the ensemble.

Update Period
A parameter is introduced to control how often a search is performed of the clas-
sifiers to check if the ensemble performance is being hindered. Ideally this step
would be performed after each example has been presented for training, how-
ever this introduces problems. The backwards search requires n× j evaluations,
where n is the window size and j is the number of classifiers which makes it very
computationally intensive compared to training. Thus performing a search after
each example would greatly increase the time complexity of each training cycle.

2 Note that in our current implementation we have used a modified pseudo-count
method for error estimates

This parameter effectively controls how quickly poorly performing classifiers
are replaced, and thus has an effect on the speed with which the algorithm adapts
to concept drift. The searches are then limited so they are only performed after
the algorithm has seen K new examples. For example, if the parameter is set to
50, then each time 50 examples have been processed then a backwards search
for poorly performing classifiers will be executed.

Protecting New Classifiers
One further parameter is added to the system, which is necessitated by the fact
that newly created classifiers will perform poorly until they have been trained
on a sufficient number of examples. They are “protected” from removal by the
backwards search until they have been sufficiently trained. This is not a problem
in an offline algorithm as each new classifier is trained on the whole dataset. It is
parameterised because the amount of time a classifier needs to train to a given
standard on a dataset is in general unknown.

How to place classifiers?
A subtle point in all boosting algorithms, but particularly in Oza’s Online Boost-
ing is that the classifier ordering matters whilst the system is being trained. In
Online Boosting each classifier is implicitly dependent on the output of all clas-
sifiers before it, as they are trained in a fixed sequential order. The performance
of a previous classifier dictates the number of times that the current classifier
is trained on any given example. To modify Online Boosting to allow for the
replacement of classifiers thought needs to be given to the placement of the new
classifier.

The current algorithm places the reset classifier at the end of the ensemble,
and the alternative is in place replacement, where the reset classifier directly
replaces the old one. The former makes the (i + 1)th classifier adapt to the
distribution of examples that the ith classifier was learning when the ith classifier
is replaced. In the latter the new ith classifier will initially have poor performance
and thus make all examples have higher weights for any classifiers which are
sequentially after the ith classifier. The choice between these two behaviours is
interesting, but not explored in this paper. The two different methods are shown
in Figure 1.

Fig. 1. Classifier placement. If classifier B is replaced with a fresh classifier D, D can
be put in two different places.

Algorithm 1 ONSBoost

Variables: H = the ensemble, h is an ensemble member, ε(H) is the ensemble error
on the window
Parameters: M = number of classifiers, K = update period, W = window size P =
number of examples to “protect” a new classifier
Initialisation: ∀m ∈ {1, 2, ...,M}, λscm = 0, λswm = 0, k = 0

ONSBoost (H, train,(x, y))
PHASE I: Oza’s Online Boosting
Set the current example’s “weight” λ = 1
Increment the example counter k = k + 1
for all hm, (m ∈ {1, 2, ...,M}) in H do

Set r sampled from Poisson(λ)
for i = 0, i < r do
hm ← train(hm, (x, y))

end for
if y = hm(x) then
λscm ← λscm + λ

εm ← λsw
m +1

λsc
m+λsw

m +1

λ← λ(1
2(1−εm)

)
else
λswm ← λswm + λ

εm ← λsw
m +1

λsc
m+λsw

m +1

λ← λ(1
2εm

)
end if

end for

PHASE II: ONSBoost modification
Move window along datastream
if k = K then
HP = all classifiers which have trained on at least P examples
h′ = arg minh∈HP ε(H − h)
if ε(H − h′) < ε(H) then

Remove h′ from H, and add a new h to the end of H
Set λsch = 0, λswh = 0, εh = 0

end if
k ← 0

end if

return H(x)← arg maxc∈Y
∑

m:hm(x)=c
log 1−εm

εm

4 Experimental Results

An obvious question is “how should we fix the parameters K, W and P?” In this
section we empirically evaluate the proposed algorithm with particular emphasis
on characterising the parameter space.

4.1 Datasets

We use 4 datasets in the presented experiments, STAGGER and 3 datasets
taken from an automatic parallelisation problem which have concept drift and
thousands or millions of examples.

The parallelisation datasets all use a set of features derived from an offline
inspection of Java bytecode. The Java applications are taken from the DaCapo
benchmarks suite [1]. The datasets are described in detail in [11]. Each dataset
comprises a set of method features, and if the method was successfully executed
in parallel with its parent method. The class concept is subject to concept drift
as the underlying virtual machine state is not fully captured in the feature set.
This is a hidden context [4] which can be subject to gradual, cyclical, and abrupt
forms of concept drift. Abrupt and cyclical behaviour can be generated as the
feature set does not include information on all currently executing methods,
and these can cause conflicts which cause the parallel execution to fail. Gradual
behaviour can be generated as variables in the application change over time and
cause different memory access patterns, which affect the parallel execution.

The STAGGER dataset is described in [12]. A standard methodology with
this dataset is to generate 100 test examples sampled from the current distribu-
tion which are used to test the performance of any given algorithm. This does
not reflect a true online learning scenario as there is not generally an opportunity
to sample a testing set from the same distribution As a result dataset size was
increased to 600 to improve the measure of accuracy, with 1/3 still taken from
each of the three concepts. The format and features of the datasets are described
in Table 2.

Dataset Examples Features Feature Type Class Skew

bloat 1,273,359 38 Binary 7% +ve

antlr 169,578 38 Binary 22% +ve

pmd 38,994 38 Binary 48% +ve

STAGGER 600 3 Ternary 29% +ve
Table 2. Dataset Properties

4.2 Comparison With Online Boosting

Due to the problems Learn++.NSE and KBS-Stream have with data which is not
i.i.d. at the example level, we compare the new algorithm with Online Boosting
(without priming). In all cases the base learner used is a categorical Naive Bayes
with pseudocounts. The number of classifiers was kept constant at 30 when using

both ONSBoost and Online Boosting. Each experiment was repeated 10 times,
to eliminate some of the randomness inherent in the Poisson distribution used
in both algorithms. Results on STAGGER are presented, with additional re-
sults using datasets collected by our automatic parallelisation framework. Each
experiment tests the online accuracy of a classifier. Online accuracy is the per-
centage of the training data that the classifier predicts correctly, before it has
been trained on that example. The value are given with 95% confidence intervals.

Dataset Online Boosting ONSBoost ONSBoost Parameters

antlr 80.89% ± 0.23 81.92% ± 0.05 K = 200,W = 50

bloat 89.32% ± 0.85 91.93% ± 0.03 K = 200,W = 50

pmd 76.19% ± 0.18 78.10% ± 0.18 K = 200,W = 50

STAGGER 95.97% ± 0.36 96.10% ± 0.36 K = 10,W = 10
Table 3. Online accuracy comparison between ONSBoosting and Online Boosting.

The parameters for the comparison with Online Boosting were chosen as these
give the best result across the most data. This can be seen in the parameter ex-
ploration in Section 4.3. With the STAGGER dataset an Update Period of 200
examples means that the algorithm considers classifiers for removal based upon
a concept which changes with a hard boundary at the example immediately af-
terwards. For this reason a small update period was chosen, with a consequently
smaller window size. In these experiments we perform better than Online Boost-
ing in the parallelisation datasets, and equivalently in the STAGGER dataset.
Even small improvements in accuracy are important for our task, as each incor-
rect prediction has associated costs, and a 1% improvement in accuracy results
in an extra 12,000 correctly classified examples in the bloat dataset.

4.3 Exploration of Parameter Space

We now vary the parameters of ONSBoost to see how sensitive the performance is
to parameter choice. Results are presented in Figure 2 varying the update period
(K) and window size (W) parameters of ONSBoost. The number of examples
to protect a new classifier (P) was fixed at 100 for all experiments. Figure 2(b)
shows the accuracy for one line of the heat maps, fixing the window size to 50,
and varying the update period from 50 to 2000 in steps of 10. This shows how
the performance increases as this parameter increases before decreasing again
once past a data dependent threshold, and the performance will converge to the
performance of Online Boosting when the update period is equal to the size of
the dataset.

From the exploration of the parameter space it appears that small window
sizes and a relatively high number of steps before a backward search are the best
parameters, as these consistently provide the highest accuracies. Using a window
size which is much greater than the number of steps before a backwards search
causes a decrease in performance, as new classifiers are penalised by the window
as they have not been trained upon the examples it contains.

(a) Antlr dataset (b) Antlr dataset 50 ≤ K ≤ 2000

(c) Pmd dataset (d) STAGGER dataset

Fig. 2. Online accuracy results for ONSBoosting.

5 Conclusion & Future Work

We presented an algorithm capable of dealing with continuous concept drift in
a resource constrained environment over millions of examples. The algorithm
is motivated by the need to develop a fast online learning algorithm for an
automatic parallelisation problem, which imposes constraints on the types of
algorithms which can be used. The algorithm replaces classifiers based upon their
impact on the ensemble’s performance rather than simply removing the oldest
classifier in the ensemble, so it can cope with some measure of cyclic behaviour
in the concept drift. We compared this new algorithm to Online Boosting, and
found an improvement in performance on our automatic parallelisation problem,
and comparable performance on a standard problem. The key idea is to maintain
a fixed number of classifiers which are updated online, and to replace classifiers
if they are negatively impacting the performance of the ensemble.

Our algorithm is based upon Online Boosting but will not converge to offline
AdaBoost given the limit of infinite training examples. This is because the data
is assumed to be i.i.d. in AdaBoost. Concept drift data is not i.i.d. and thus

Online Boosting is a sub-optimal choice of learning algorithm in a concept drift
environment. ONSBoost provides a way to cope with concept drift in streaming
data while maintaining the useful properties of Online Boosting, namely the
ability to deal with incremental learning of streaming data, and the fixed number
of classifiers, and thus fixed memory usage.

An area of further research is to develop a system to enable ONSBoost to
cope better with cyclical drift. Learn++.NSE can turn off classifiers based upon
their current performance, but keep them for reuse later. A way of mimicking
this ability in the ONSBoost system would be to select new ensemble members
from a pool which included all previously removed classifiers, and a new ensemble
member with no prior knowledge of the system. Other possible extensions include
using a variable number of classifiers to decrease the ensemble size when the data
is simple to classify and to increase the ensemble size when the data is difficult
to classify.

References

1. Blackburn, S.M., et al.: The DaCapo benchmarks: Java benchmarking development
and analysis. In: OOPSLA ’06: Proc. of the 21st annual ACM SIGPLAN conference
on Object-Oriented Programing, Systems, Languages, and Applications. pp. 169–
190. ACM Press, New York, NY, USA (Oct 2006)

2. Elwell, R., Polikar, R.: Incremental Learning of Variable Rate Concept Drift. In:
Proc. of the 8th International Workshop on Multiple Classifier Systems. p. 151.
Springer (2009)

3. Freund, Y., Schapire, R.: Experiments with a new boosting algorithm. In: Machine
Learning: Proc. of the Thirteenth International Conference. pp. 148–156 (1996)

4. Kuncheva, L.: Classifier Ensembles for Changing Environments. In: Proc. of the
5th International Workshop on Multiple classifier systems (MCS 2004). pp. 1–15.
Springer-Verlag New York Inc (2004)

5. Kuncheva, L.: Classifier ensembles for detecting concept change in streaming data:
Overview and perspectives. In: Proc. of the 2nd Workshop SUEMA 2008 (ECAI
2008) (2008)

6. Li, S., Zhang, Z., Shum, H., Zhang, H.: FloatBoost learning for classification. Ad-
vances in Neural Information Processing Systems pp. 1017–1024 (2003)

7. Muhlbaier, M., Polikar, R.: An ensemble approach for incremental learning in non-
stationary environments. Lecture Notes in Computer Science 4472, 490 (2007)

8. Oza, N.C.: Online Ensemble Learning. Ph.D. thesis, The University of California,
Berkeley, CA (Sep 2001)

9. Pudil, P., Novoviová, J., Kittler, J.: Floating search methods in feature selection.
Pattern recognition letters 15(11), 1119–1125 (1994)

10. Scholz, M., Klinkenberg, R.: Boosting classifiers for drifting concepts. Intelligent
Data Analysis 11(1), 3–28 (2007)

11. Singer, J., Pocock, A., Yiapanis, P., Brown, G., Luján, M.: Fundamental Nano-
Patterns to Characterize and Classify Java Methods. In: Proc. Workshop on Lan-
guage Descriptions, Tools and Applications (2009)

12. Widmer, G., Kubat, M.: Learning in the presence of concept drift and hidden
contexts. Machine learning 23(1), 69–101 (1996)

