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Abstract

We present a novel interpretation of informa-
tion theoretic feature selection as optimiza-
tion of a discriminative model. We show
that this formulation coincides with a group
of mutual information based filter heuristics
in the literature, and show how our proba-
bilistic framework gives a well-founded ex-
tension for informative priors. We then de-
rive a particular sparsity prior that recovers
the well-known IAMB algorithm (Tsamardi-
nos & Aliferis, 2003) and extend it to create a
novel algorithm, IAMB-IP, that includes do-
main knowledge priors. In empirical evalua-
tions, we find the new algorithm to improve
Markov Blanket recovery even when a mis-
specified prior was used, in which half the
prior knowledge was incorrect.

1 Introduction

Classifying examples is one of the most fundamental
tasks in Machine Learning. Feature selection (FS) is
the process of determining which inputs or features
should be presented to the classification algorithm. In
the past this was performed by domain experts, who
chose features they thought relevant to the classifica-
tion task. Many modern machine learning domains
collect as many features as possible and use a feature
selection algorithm to find a relevant subset of features
to use in classification. An even more recent trend has
been the incorporation of domain experts back into
the feature selection process, to guide it in complex
spaces. The question of how to integrate such domain
knowledge into an algorithm is therefore important.
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Helleputte & Dupont (2009) present a good exam-
ple of much recent work on informative priors for
regularized linear models. They develop a prior for
an approximate zero-norm minimization, constraining
some of the dimensions according to knowledge gained
from the biological literature. Krupka et al. (2008)
define meta-features, where each feature is qualified
by additional information, and a mapping is learned
from meta-features to some measure of feature ‘qual-
ity’. Knowledge can then be transferred between tasks
by learning the feature-quality mapping; however the
challenge remains to define a good quality measure
and reliably learn the mapping. In the special case
where the features can be assumed to be faithful to an
unknown Bayesian network, the feature selection prob-
lem is equivalent to learning the local structure of the
network around the target node. Mukherjee & Speed
(2008) present a method of learning global structures
with priors on network properties such as sparsity and
degree, as well as specific arc constraints. The gener-
ated network contains the relationships between all of
the nodes (features), hence the feature selection prob-
lem can be solved by inspecting the Markov Blan-
ket (the set of child, parent and spouse nodes) for
any given target node. However, the possible network
structures grow super-exponentially with the number
of nodes, and so the procedure becomes impractical
with large datasets.

In this paper we begin from a clear probabilistic
model of the data, and derive an iterative filter fea-
ture selection algorithm which optimizes our model.
We show how our probabilistic interpretation gives
a well-founded extension in the form of informative
priors for sparsity and domain knowledge. We show
how a particular choice of sparsity prior recovers the
well-known IAMB algorithm (Tsamardinos & Aliferis,
2003) and create a novel algorithm IAMB-IP which
extends IAMB to include domain knowledge priors.
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2 The feature selection problem

There are three main types of feature selection al-
gorithm: filters, wrappers and embedded methods
(Guyon et al., 2006). In this work we concentrate
on filters, which are commonly specified as a corre-
lation measure (or filter “criterion”) between features
and class labels. Features exhibiting a higher value
of the criterion are favored for inclusion in the fea-
ture set, with the assumption that higher correlation
implies more predictive power. However the exact re-
lationship between the criterion and the classification
error is usually unclear. An alternative perspective is
to define a probabilistic model, and then derive the ap-
propriate criterion to maximize the posterior of that
model. Therefore we begin by defining a discrimina-
tive model and deriving an error term for the feature
selection process; this error term is a root criterion
from which many mutual information based selection
criteria can be derived.

2.1 Notation

We assume an underlying true distribution p(x, y)
from which we have an i.i.d. sample of N observa-
tions, denoted as D = {(xi, yi); i = 1...N}. Each ob-
servation is a pair (x, y), consisting of a d-dimensional
feature vector x = {x1, ..., xd}, and a target class y,
drawn from the underlying variables X = {X1, ..., Xd}
and Y . We further assume that p(y|x) is defined by
a subset, X∗, of the features X, while the remaining
features are redundant or irrelevant. We adopt a d-
dimensional binary vector θ, specifying the selected
features: a 1 indicates the feature is selected, and a 0
indicates it is discarded. We use ¬θ for the negation
of θ, i.e. the unselected features. We then define Xθ as
the set of selected features, and X¬θ as the set comple-
ment of Xθ, the set of unselected features. Therefore
X = Xθ ∪X¬θ, as Xθ and X¬θ form a partition. We
use xθ for an observation of the selected features Xθ,
and similarly for x¬θ. We define p(y|x,θ) as p(y|xθ),
and use the latter when specifically talking about fea-
ture selection. We then formally define X∗ as the min-
imal feature set s.t. ∀ x, y p(y|xθ∗) = p(y|x) and use
θ∗ as the vector indicating this feature set. The fea-
ture selection problem is to identify this vector. We
define τ as the other model parameters involved in the
generation of class labels, and λ as the generative pa-
rameters for the observations x. We use || to denote
the KL-Divergence between two distributions.

2.2 A discriminative model for FS

In this section we decompose the likelihood of a dis-
criminative model into a sum of terms, each with a
natural interpretation in the context of the feature se-

lection problem. When making the commonly adopted
filter assumption that the feature selection and model
fitting processes can be performed separately, this
leads naturally to the choice of the mutual informa-
tion as a filter criterion.

We approximate the true distribution p with a hypo-
thetical model q, with separate parameters for feature
selection, θ, and classification, τ . Following Minka
(2005) and Lasserre et al. (2006), in the construction
of a discriminative model, the joint likelihood is

L(D,θ, τ, λ) = p(θ, τ)p(λ)

N∏
i=1

q(yi|xi,θ, τ)q(xi|λ).

(1)
As this is a discriminative model we wish to maximize
L with respect to θ (our feature selection parameters)
and τ (our model parameters), thus we are not con-
cerned with the generative parameters λ. Excluding
the generative terms gives

L(D,θ, τ, λ) ∝ p(θ, τ)

N∏
i=1

q(yi|xi,θ, τ). (2)

We wish to find the Maximum a Posteriori (MAP)
solution, with respect to the parameters {θ, τ}. We
choose to work with the scaled negative log-likelihood,
−`, converting our maximization problem into a min-
imization problem, without changing the position of
the optima. This gives

−` = − 1

N

( N∑
i=1

log q(yi|xi,θ, τ) + log p(θ, τ)

)
(3)

which is the function we will minimize with respect to
{θ, τ}; the scaling term is to simplify exposition later.

We are interested in decomposing this likelihood to
extract terms related to feature selection and to clas-
sification. We begin by introducing the ratio p(yi|xi)

p(yi|xi)

into the logarithm. This is the probability of the cor-
rect class given all the features. As this ratio is unity
it does not change the value of the log likelihood, nor
the positions of its optima. We can then expand the
resulting logarithm to give several terms,

−` = − 1

N

( N∑
i=1

log
q(yi|xi,θ, τ)

p(yi|xi)

+

N∑
i=1

log p(yi|xi) + log p(θ, τ)

)
.

(4)

This expands the likelihood into 3 terms: the log-
likelihood ratio between the true model and our pre-
dictive model, the log-likelihood of the true model,
and the prior term. This middle term is a finite sam-
ple approximation to the conditional entropy H(Y |X)
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and represents the total amount of uncertainty there is
about the class label given the data. The conditional
entropy is the log-likelihood of the true model when
taking the limit of data points.

We are concerned with separating out the influence of
feature selection and classification in our model, and

thus introduce an extra ratio p(yi|xi,θ)
p(yi|xi,θ) into the first

term. This is the probability of the correct class given
the features we have selected with θ. We can then
further expand the first logarithm as follows,

−` = − 1

N

( N∑
i=1

log
q(yi|xi,θ, τ)

p(yi|xi,θ)
+

N∑
i=1

log
p(yi|xi,θ)

p(yi|xi)

+

N∑
i=1

log p(yi|xi) + log p(θ, τ)

)
. (5)

As before we have the log likelihood of the true model
and the prior term. We have now separated out the
first log likelihood ratio into two terms. The first term
is the ratio between our predictive model and the true
distribution of the labels given our selected subset of
features. This represents how well our model fits the
data given the current set of features. When it is zero
our model has the best possible fit given the features
selected. The second term is the ratio between the true
distribution given the selected features, and the true
distribution of the labels given all the data. This mea-
sures the quality of the selected feature set θ, based on
how close the conditional distribution of y is to the one
conditioned on all the data. We can see that this term
is a finite sample approximation to the KL-Divergence
between p(y|x) and p(y|x,θ). Thus we can write −`
as the sum of information theoretic quantities plus the
prior over {θ, τ} like so

−` ≈ Ex,y

{
log

p(yi|xi,θ)

q(yi|xi,θ, τ)

}
+ Ex,y{p(y|x)||p(y|x,θ)}

+H(Y |X)− 1

N

(
log p(θ, τ)

)
. (6)

Assuming for the moment that we have the optimal
feature set or a superset thereof (i.e. X∗ ⊆ Xθ) then
p(y|x,θ) = p(y|x). Then as the expectation in the
first term is over p(y,x), the first term can be seen
as a finite sample approximation to the expected KL-
Divergence over p(x) representing how well the predic-
tive model fits the true distribution, given a superset
of the optimal feature set. It is interesting to note that
the second term in Eq (6) is precisely that introduced
by Koller & Sahami (1996) in their definitions of op-
timal feature selection. In their work, the term was
adopted as a sensible objective to follow—with Eq (6)
we show it to be a direct consequence of adopting the
discriminative model in Eq (1). As x = {xθ,x¬θ}, this

term can be developed thus:

∆KS = Ex,y{ p(y|xθ,x¬θ) || p(y|xθ) }

=
∑
x,y

p(x, y) log
p(y|xθ,x¬θ)

p(y|xθ)

p(x¬θ|xθ)

p(x¬θ|xθ)

=
∑
x,y

p(x, y) log
p(x¬θ, y|xθ)

p(x¬θ|xθ)p(y|xθ)

= I(X¬θ;Y |Xθ). (7)

This is the conditional mutual information between
the class label and the remaining features, given the
selected features.

Thus we can decompose the negative log-likelihood
into three data dependent terms and the prior term,

−` ≈ Ex,y

{
log

p(yi|xi,θ)

q(yi|xi,θ, τ)

}
+ I(X¬θ;Y |Xθ)

+H(Y |X)− 1

N
log p(θ, τ).

(8)

The first term is a measure of the difference between
the predictive model q, and the true distribution p.
When a superset of the optimal feature set has been
found, it becomes the KL-Divergence between p and
q. The second term, I(X¬θ;Y |Xθ), depends solely
on the choice of features, and is zero when the un-
selected features X¬θ contain no more useful infor-
mation about Y . Note that due to the chain rule,
I(AB;Y ) = I(A;Y ) + I(B;Y |A), and X = Xθ ∪X¬θ,

I(X;Y ) = I(Xθ;Y ) + I(X¬θ;Y |Xθ). (9)

Since I(X;Y ) is constant, minimizing I(X¬θ;Y |Xθ)
is equivalent to maximizing I(Xθ;Y ). The third term
in Eq (8) is H(Y |X), the conditional entropy of the
labels given all features; this is an irreducible constant,
independent of all parameters. This term bounds the
Bayes error rate (Fano, 1961), and measures the total
amount of information available in all of the features.

We now make an assumption made implicitly by all fil-
ter methods, that model fitting can be separated from
the feature selection process. We make this assump-
tion explicit by specifiying the prior p(θ, τ) factorizes
into p(θ)p(τ), thus decoupling model fitting from fea-
ture selection. We note that τ is independent of the
second term in our expansion, and by factorising the
prior we can select features before fitting the model.
This assumption is valid if our model q is a consistent
estimator of p, as with increasing N it will more closely
approximate the true distribution, and the ratio in Eq
(8) will approach zero. Then to maximize the like-
lihood of the feature set, we are only concerned with
how p(y|x,θ) approximates p(y|x,θ∗), and so we spec-
ify the optimization problem that defines the feature
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selection task for the model in Eq (1) as,

θ∗ = arg min
θ

(
I(X¬θ;Y |Xθ)− 1

N
log p(θ)

)
. (10)

Until this point we have worked with the true distri-
bution p. In practice we only have access to an esti-
mate of this distribution, p̂, where we have estimated
the various quantities from our training data; in our
experiments we use histogram estimators. The quality
of our estimate p̂ will depend upon the number of sam-
ples, and the dimensionality of the distribution, with
a poorer estimate in low sample, high dimensionality
spaces. We note that our estimated mutual informa-
tion Î, which is calculated based on p̂, is a Monte-Carlo
estimate and converges almost surely to the true mu-
tual information I in the limit of infinite samples. For
the remainder of this paper, we use notation I(X;Y )
to denote the ideal case of being able to compute the
mutual information, though in practice on real data
we use the finite sample estimate Î(X;Y ). For a de-
tailed study of entropy estimation we refer the reader
to Paninski (2003).

In the following section we consider an iterative min-
imization of Eq (10), and show how this fits with the
current filter feature selection literature.

2.3 Iterative minimization

Many filter feature selection techniques adopt a step-
wise maximization/minimization of their objective
functions (Peng et al., 2005; Brown, 2009). We derive
iterative update rules to minimize our objective func-
tion, Eq (10), and show how this links to the current
literature. We first introduce extra notation, θt and
θt+1, denoting the selected feature set at timesteps t
and t + 1. We use a sequential search, so only one
feature is added/removed at each timestep, so there
is exactly one bit different between θt and θt+1. The
flipped bit we denote as θk.

Theorem 1. The forward step that optimizes Eq (10)
at timestep t+ 1 from timestep t is to add the feature,

X∗k = arg max
Xk∈X¬θt

(
I(Xk;Y |Xθt) +

1

N
log

p(θt+1)

p(θt)

)
.

(11)

Proof. Denoting the objective at timestep t with Jt,
we wish to minimize Jt+1. This is equivalent to maxi-
mizing the difference (Jt − Jt+1). The objective at an
arbitrary timestep t is:

Jt = I(X¬θt ;Y |Xθt)− 1

N
log p(θt). (12)

We wish to add the feature Xk that minimizes Jt+1,

and thus maximizes the difference Jt − Jt+1,

Jt − Jt+1 = I(X¬θt ;Y |Xθt)− 1

N
log p(θt) (13)

− I(X¬θt+1 ;Y |Xθt+1) +
1

N
log p(θt+1).

After applying the chain rule of mutual information
we arrive at:

X∗k = arg max
Xk∈X¬θt

(
Jt − Jt+1

)
= arg max
Xk∈X¬θt

(
I(Xk;Y |Xθt) +

1

N
log

p(θt+1)

p(θt)

)
.

Theorem 2. The backward step that optimizes (10) at
timestep t+ 1 from timestep t is to remove the feature,

X∗k = arg min
Xk∈Xθt

(
I(Xk;Y |Xθt \Xk) +

1

N
log

p(θt+1)

p(θt)

)
.

(14)

Proof. Omitted due to space considerations, follows a
similar procedure to the forward step.

We note that with a flat uninformative prior p(θ) ∝ 1,
the prior term in the update cancels and we recover the
maximum likelihood estimate of the optimal feature
set, with the forward update becoming

X∗k = arg max
Xk∈X¬θt

I(Xk;Y |Xθt). (15)

In Brown et al. (2012) we present a review of filter cri-
teria based on mutual information based upon an ear-
lier version of this expansion. There we maximise the
conditional likelihood and show it leads to a framework
incorporating many common criteria (Yang & Moody,
2000; Fleuret, 2004; Peng et al., 2005). These crite-
ria are coupled with various termination conditions to
create feature selection algorithms, so as to avoid the
problems inherent in the maximum likelihood solution
to the feature selection problem, i.e. selecting all the
features. Given our probabilistic perspective we can
see that a natural solution to this problem would be
to impose a sparsity prior to regularize the feature se-
lection criteria. We note that Eq (15) is very similar
to the criteria in the IAMB algorithm, a topic we in-
vestigate in Section 4. We will now define sparsity and
factored domain knowledge priors for our framework.

3 Constructing a prior

We have derived general update rules for feature se-
lection incorporating priors, and now show a specific
case of an independent Bernoulli prior over each fea-
ture. We show how this prior can be used to impose
sparsity or to include prior knowledge.
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3.1 A factored prior

We will treat each feature independently, and assume
each p(θi) is a Bernoulli random variable. Therefore

p(θ) =

d∏
i

p(θi) =

d∏
i

βθii (1− βi)1−θi . (16)

We then define the success probability, βi of the
Bernoulli as a logistic function,

βi =
eαwi

1 + eαwi
=

1

1 + e−αwi
. (17)

We define α > 0 as a scaling factor and wi as a per-
feature weight with wi = 0 denoting no preference,
wi < 0 indicating we believe Xi /∈ X∗, and wi > 0
indicating we believe Xi ∈ X∗. We then define w
as the vector of wi elements. This is equivalent to
specifying p(θ) as

p(θ) ∝ eαw
T θ. (18)

We note that this formulation is of a similar exponen-
tial form to the priors given in Mukherjee & Speed
(2008), and we could extend our framework to incor-
porate many of their graph structure priors.

3.2 Update rules

When using the factored prior above, we can further
simplify the update rules in Equations (11) and (14),
as there is a single bit difference between each step,
the ratio of p(θt+1) to p(θt) in the forward case is

p(θt+1)

p(θt)
= eαwk (19)

where wk denotes the weight of the candidate feature.
The ratio in the backwards step is the same but with
a negated exponent. This gives the factored prior for-
ward update as:

X∗k = arg max
Xk∈X¬θt

(
I(Xk;Y |Xθt) +

αwk
N

)
(20)

with a similar update for the backward step.

3.3 Encoding sparsity or prior knowledge

Using the prior formulation in Eq (18) we can spec-
ify priors for sparsity or domain knowledge. We can
encode sparsity by setting all wi = −1, and using the
α parameter to decide how much sparsity we wish to
impose. Increasing α in this case lowers the success
probability of the Bernoulli, and it is this probability
that encodes how sparse a solution we impose. We will

denote sparsity priors using the notation ps(θ) and αs
leading to a sparsity prior where

ps(θ) ∝ e−αs|θ|. (21)

We use |θ| to represent the number of selected features
in θ. If we allow the wi values to range freely we
can encode varying levels of information into the prior,
as these again change the success probability of the
Bernoulli, thus encoding how useful a priori we think a
given feature is. We will denote such knowledge priors
with pd(θ) and αd leading to an knowledge prior where

pd(θ) ∝ eαdw
T θ. (22)

We have now described two kinds of priors which we
can integrate into any criterion derived from our dis-
criminative model assumption. We now demonstrate
the usefulness of this theoretical understanding by in-
corporating priors into the the IAMB (Tsamardinos &
Aliferis, 2003) algorithm, as it uses a direct implemen-
tation of Eq (15) as the selection criteria. We note
this process could be applied to many of the mutual
information based filters found in Brown et al. (2012).

4 Incorporating a prior into IAMB

IAMB (Tsamardinos & Aliferis, 2003), shown in Al-
gorithm 1, is a Markov Blanket (MB) discovery algo-
rithm that uses a conditional independence test to de-
cide variable inclusion. The test, f(X;Y |CMB), mea-
sures the association of a candidate feature X to the
target Y , in the context of the currently estimated
Markov Blanket. Tsamardinos & Aliferis recommend
that instead of a test against zero, a threshold value
is used—when the measured association is above this,
the variables are considered dependent. IAMB has
two phases, a greedy forward search of the feature
space until all remaining features are independent of
the class given CMB, and a backward search to remove
false positives. Equating the notation in Algorithm 1
with our own, we have Ω = X, CMB = Xθ, and the
independence test f(X;Y |CMB) = I(Xk;Y |Xθ).

Given our probabilistic perspective we can interpret
the threshold t in the IAMB algorithm as a sparsity
prior, ps, by rearranging the independence test in Al-
gorithm 1,

I(Xk;Y |Xθ) +
1

N
log

ps(θ
t+1)

ps(θt)
=⇒

−t =
1

N
log

ps(θ
t+1)

ps(θt)
. (23)

We can then see that the threshold t is a special case
of the sparsity prior in Eq (21) with αs = tN , where
the strength of the prior is dependent on the number
of samples N , and a parameter t.
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Algorithm 1 IAMB Tsamardinos & Aliferis (2003).

Phase 1 (forward)
CMB = ∅
while CMB has changed do

Find X ∈ Ω \ CMB to maximise f(X;Y |CMB)
if f(X;Y |CMB) > t then

Add X to CMB
end if

end while
Phase 2 (backward)
while CMB has changed do

Find X ∈ CMB to minimise f(X;Y |CMB \X)
if f(X;Y |CMB \X) < t then

Remove X from CMB
end if

end while

Theorem 3. Tsamardinos and Aliferis proved that
IAMB returns the true Markov Blanket under the con-
dition of a perfect independence test f(X;Y |CMB).
Given this condition is satisfied, then IAMB is an iter-
ative maximization of the discriminative model in Eq
(1), under a specific sparsity prior.

Proof. A perfect independence test comes as a result
of sufficient data to estimate all necessary distribu-
tions. In this situation, the first KL term in Eq (8)
will be zero. In the previous section we derived iter-
ative update steps for our model, in Equations (11)
and (14) — if we use a sparsity prior of the form in Eq
(21), these coincide exactly with the steps employed
by IAMB, therefore it is an iterative maximization of
the discriminative model specified in Eq (1).

We can now extend IAMB by introducing informa-
tive priors into the Markov Blanket discovery process.
First we define p(θ) ∝ ps(θ)pd(θ) where ps(θ) is the
sparsity prior (or threshold), and pd(θ) is our knowl-
edge prior specified in Eq (22). We can ignore the
normalisation constant as we only consider the ratio
of the prior terms. We then use

I(Xk;Y |Xθ) +
1

N
log

ps(θ
t+1)

ps(θt)
+

1

N
log

pd(θ
t+1)

pd(θt)
> 0

(24)
as the independence test having expanded out the
prior p(θ). Incorporating pd(θ) into IAMB lowers
the “threshold” for features we believe are in the
Markov Blanket and increases it for those we be-
lieve are not. We call this modified version IAMB-IP
(IAMB-Informative Prior).

In some cases the knowledge prior, pd, may be larger
than the sparsity prior, ps, causing the algorithm to
unconditionally include feature Xk without reference

to the data. In general we wish to blend prior domain
knowledge with statistical evidence from the data, so
this is undesirable and we recommend a bound on the
strength of the knowledge prior by fixing αd ≤ αs.
This bounds the knowledge prior from above and be-
low to ensure the prior is not strong enough to blindly
include a feature without some evidence from the data.

5 Empirical Evaluation

We compare our novel IAMB-IP against the original
IAMB algorithm using a selection of problems on MB
discovery in artificial Bayesian Networks; these pro-
vide a ground truth feature set to compare the selected
feature sets against. The networks used are standard
benchmarks for MB discovery: Alarm (37 nodes, av-
erage MB size is 4) (Beinlich et al., 1989), Barley (48
nodes, average MB size is 5.25) (Kristensen & Ras-
mussen, 2002), Hailfinder (56 nodes, average MB size is
4.3) (Abramson et al., 1996) and Insurance (27 nodes,
average MB size is 5.52) (Binder et al., 1997), down-
loaded from (Elidan, 1998).

As our datasets are Bayesian Networks from fields with
which we have no experience, we simulate the process
of prior elicitation by selecting certain features at ran-
dom. Features can be either upweighted, i.e. we be-
lieve them to be in the MB, or downweighted, i.e. we
believe they are not in the MB. Upweighting feature
Xi corresponds to wi = 1, while downweighting sets
wi = −1. With this process, we emulate two types of
correct prior knowledge: A true positive (TP) — a fea-
ture Xj ∈MB that we upweight. A true negative (TN)
— a feature Xj /∈ MB that we downweight. Real prior
knowledge is unlikely to be completely correct, hence
we must also test the resilience of IAMB-IP when pre-
sented with false information. A false positive (FP) —
a feature Xj /∈ MB that we upweight. A false negative
(FN) — a feature Xj ∈ MB that we downweight. We
will use the term correct priors to denote priors which
only contain True Positives and True Negatives (e.g.
2 TP, TPTN). We will use the term misspecified pri-
ors to denote priors which contain a mixture of true
and false information (e.g. TPFN, TPFP). We expect
that these misspecified priors more accurately reflect
the state of domain knowledge. In all experiments we
only consider nodes with a Markov Blanket containing
two or more features and we assess performance using
the F-Measure (harmonic mean of precision & recall),
comparing against the ground truth.

We use the protocol in Algorithm 2 to test the relative
performance for two groups of sample sizes: 10 to 100
samples in steps of 10 (small sample), and 200 to 1000
samples in steps of 100 (large sample). For the large
sample we perform 10 trials over independent data
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Algorithm 2 Experimental Protocol

for each valid feature do
for dataRepeats times do

data ← selectFold()
MB-I = IAMB(data,feature)
Calculate MB-I F-measure
for 40 repeats do

Generate random prior
MB-IP = IAMB-IP(data,feature,prior)
Calculate MB-IP F-measure

end for
Calculate mean and std. err. for IAMB-IP
Determine win/draw/loss

end for
end for
Average wins/draws/losses over the features

Figure 1: Toy problem, 5 feature nodes (X1 . . . X5)
and their estimated mutual information with the tar-
get node Y on a particular data sample. X1, X2, X5

form the Markov Blanket of Y .

samples, and for the smaller sizes we expect a greater
variance and thus use 30 trials. The wins/draws/losses
were assessed using a 95% confidence interval over
the IAMB-IP results, compared to the IAMB result.
The variance in IAMB-IP is due to the random selec-
tion of features which are included in the prior, which
was repeated 40 times. We set αd = log 99, except
when this was above the bound αd ≤ αs where we
set αd = αs. This is equivalent to setting individual
priors p(θi = 1) = 0.99 for upweighted features and
p(θi = 1) = 0.01 for downweighted features. We set
αs so t = 0.02 for both IAMB and IAMB-IP. We aver-
age these wins/draws/losses over all valid features in
a dataset, where a valid feature is one with a Markov
Blanket containing two or more features.

In Figure 1 we show a toy problem to illustrate the dif-
ferent effects prior knowledge can have on the Markov
Blanket discovery process. Features X1, X2, X5 are
in the Markov Blanket of Y and features X3 and X4

are not. IAMB (with the default threshold, t = 0.02)
would select only X1 as the MB, based upon the esti-
mated mutual informations given. The performance of
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Figure 2: Average results: varying sample size (Small,
Large) and prior (Correct, Flawed/Misspecified).

IAMB-IP will depend upon what knowledge is put into
the prior. If we upweight X1 it is a true positive, as
it actually lies in the MB, similarly if we downweight
X3 it is a true negative. If we upweight X4 it is a false
positive, as it does not lie in the MB of Y , and simi-
larly downweighting X2 is a false negative as it does lie
in the MB of Y . If we upweighted only X1 IAMB-IP
would perform similarly to IAMB, as X1 has a strong
measured association with Y , however upweighting X2

would include that variable and then X5, as X2 only
has a weak measured association with Y and so the
prior will increase it. If X4 is upweighted, (introduc-
ing a false positive into the prior) then it is unlikely to
be included, as it has no measured association with Y ,
however X3 would be included if it was upweighted.
If we downweight X2, (introducing a false negative)
we can see this would remove both X2 and X5, as X5

only becomes relevant when X2 is included. We can
see that false negatives in the prior are more problem-
atic for IAMB-IP, as they can cause multiple variables
to be incorrectly removed from the candidate MB.

We first investigate the performance of IAMB-IP when
using a correct prior. We tested priors that included 2
true positives, and 1 true positive and 1 true negative.
The average results over the 4 datasets are in the first
two columns of Figure 2. When we incorporate correct
priors IAMB-IP performs better than IAMB or equiv-
alently to it in the vast majority of cases. The draws
between IAMB and IAMB-IP are due to the overlap
between the statistical information in the data and the
information in the prior. When the prior upweights a
feature with a strong signal from the data, then the
behavior of IAMB-IP is the same as IAMB. It is when
the prior upweights a feature with a weak signal that
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the behavior of the two algorithms diverges, and sim-
ilarly for features that are downweighted.

We now investigate the more interesting case of mis-
specified priors, where the prior contains some incor-
rect information. We tested priors using 1 true positive
& 1 false negative, and 1 true positive & 1 false pos-
itive. These are presented in the last two columns of
Figure 2. We can see that IAMB-IP performs equiva-
lently or better than IAMB in four-fifths of the repeats,
on average. We present full results for Hailfinder in
Table 1 results for the other datasets are in the sup-
plementary material. We can see that the algorithm
is more sensitive to false negatives than false positives
especially when there are small amounts of data, as the
prior knowledge is more important in those situations,
hence any flaws impact performance more. This is
because false negatives may remove children from the
MB, which in turn means no spouse nodes (the other
parents of the common child node) will be included,
which magnifies the effect of the false information.

In summary we can see that the addition of infor-
mative priors into IAMB to give IAMB-IP improves
performance in many cases, even when half the prior
knowledge given is incorrect. This improvement can
be seen in extremely small sample environments with
as few as 10 datapoints and 56 features, and still pro-
vides a performance benefit with 1000 datapoints.

We have focused on adding true positives to the prior,
and how they interact with the false information. In
our datasets true positives are rarer than true nega-
tives and thus more important, because the Markov
Blankets are much smaller than the number of fea-
tures. Therefore when we construct the prior at ran-
dom, we are more likely to select true positives where
the prior information is useful (i.e. there is not enough
statistical information in the data to include the true
positive) as there are fewer true positives to select
from. When including true negatives the prior only
improves performance if the true negative appears to
be statistically dependent on the target (and then pe-
nalised by the prior and not included), if it does not
appear dependent, then the prior information has no
effect on its inclusion. Therefore when only including
true negatives IAMB-IP performs similarly to IAMB.

6 Conclusion & Future Work

We have developed a novel interpretation of informa-
tion theoretic feature selection as an optimization of
a discriminative model. This approach gives a theo-
retical grounding to the use of information theoretic
criteria, revealing the underlying function which they
optimise, namely the joint likelihood of a discrimina-
tive model under a flat prior. We show that in light of

Table 1: Win/Draw/Loss results on Hailfinder.
Size 2 TP TPTN TPFN TPFP
10 16/14/0 15/15/0 15/12/3 15/14/1
20 13/17/0 13/17/0 12/15/3 12/17/1
30 12/18/0 12/18/0 11/15/4 11/18/1
40 10/19/0 11/19/0 10/16/3 10/19/1
50 14/16/0 14/16/0 12/14/4 12/16/1
60 12/18/0 12/18/0 11/14/5 11/17/1
70 10/20/0 10/20/0 9/16/5 9/20/1
80 11/19/0 10/20/0 10/16/4 10/19/1
90 12/17/0 12/18/0 11/15/4 12/17/1
100 15/15/0 15/14/1 13/12/5 14/14/1

Mean 12/17/0 12/18/0 11/14/4 12/17/1

Size 2 TP TPTN TPFN TPFP
200 6/4/0 6/4/0 5/4/2 5/4/1
300 6/4/0 6/4/0 5/4/2 6/4/1
400 6/4/0 6/4/0 5/4/2 5/4/1
500 6/4/0 5/4/0 4/4/2 5/4/1
600 6/4/0 5/5/0 4/4/2 4/4/1
700 5/5/0 5/5/0 4/4/2 4/5/1
800 4/6/0 4/6/0 4/4/2 4/5/1
900 4/6/0 3/6/0 3/5/2 4/6/0
1000 4/6/0 3/6/0 3/6/2 3/6/0

Mean 5/5/0 5/5/0 4/4/2 4/5/1

our formulation, the well-known IAMB algorithm can
be seen as an iterative maximization of this discrim-
inative model, using a particular sparsity prior. We
then developed IAMB-IP, which incorporates informa-
tive priors into Markov Blanket discovery. We empir-
ically tested IAMB-IP against IAMB, and found it to
improve performance even when a misspecified prior
was used, in which half the supplied “knowledge” was
incorrect. This improvement was greatest when using
more complex datasets, and small amounts of data.

Our future efforts will be directed towards integrat-
ing our framework with other feature selection filters,
deriving new algorithms that can incorporate informa-
tive priors. This could be achieved either by investi-
gating using the network structure priors presented in
Mukherjee & Speed (2008) or more complex MB dis-
covery algorithms such as the one presented by Mar-
garitis (2009) or the GLL framework of Aliferis et al.
(2010) to incorporate informative priors. These algo-
rithms are not as closely linked to likelihood optimi-
sation as IAMB, as they do not strictly maximize Eq
(11) at each step, but they can use the mutual infor-
mation as a conditional independence test and thus
approximate an iterative maximisation of the model
likelihood. Nevertheless we believe the construction of
practical algorithms is facilitated by a sound theoreti-
cal framework, such as that presented in this paper.
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