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Abstract
Proteomics, the study of the protein complement of a biological system, is generating increasing quantities of data
from rapidly developing technologies employed in a variety of different experimental workflows. Experimental
processes, e.g. for comparative 2D gel studies or LC-MS/MS analyses of complex protein mixtures, involve a
number of steps: from experimental design, through wet and dry lab operations, to publication of data in reposi-
tories and finally to data annotation and maintenance. The presence of inaccuracies throughout the processing
pipeline, however, results in data that can be untrustworthy, thus offsetting the benefits of high-throughput tech-
nology.While researchers and practitioners are generally aware of some of the information quality issues associated
with public proteomics data, there are few accepted criteria and guidelines for dealing with them. In this article, we
highlight factors that impact on the quality of experimental data and review current approaches to information
quality management in proteomics. Data quality issues are considered throughout the lifecycle of a proteomics
experiment, from experiment design and technique selection, through data analysis, to archiving and sharing.
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INTRODUCTION
Proteomics can be defined as the study of the protein
complement of a biological system, for example an
organism, cell, or tissue. The gathering of informa-
tion about a proteome, indeed about any biological
component or system, requires both experimental
observation (‘wet lab’ procedures) and data analysis
(‘dry lab’ procedures). The quality of the final output
depends on several considerations including experi-
mental design, control of biological and analytical
variability, the recording of descriptive information

about the experiment (‘metadata’) along with the
results themselves, and the appropriate use of
bioinformatics tools and statistical significance tests
for data analysis [1–3].

Proteomics is generating increasing quantities of
data from rapidly developing technologies employed
in a variety of different experimental workflows.
Large-scale proteomics experiments have relied
mainly on the technologies of two-dimensional gel
electrophoresis (2DE) [4] and liquid chromatography-
tandem mass spectrometry (LC-MS/MS) [5].
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The high-throughput nature of some of these
experiments presents the scientist with significant
data handling challenges, not least of these being the
problem of false-positive results [6]. If proteomics data
is to be stored in public repositories for re-use by other
scientists or combined with other data sets to inform
systems biology studies [7], then the quality of that
data has wider importance still. Ways must be found
to measure, annotate and make accessible the quality
of proteomics data sets so that researchers can decide
whether they are suitable for their particular
application.

A framework for discussion of data
quality issues in proteomics
A typical proteomics experiment involves a wet lab
and a dry lab portion, as well as a final phase during
which the results are published and shared with the
scientific community.

We have identified a number of quality issues that
pertain to each of these phases, as illustrated in
Figure 1. Some of these issues relate to the determi-
nation of which proteins are relevant to the
experimental hypothesis (qualitative proteomics) or
concern the measurement of how much of these

proteins are present in the sample (quantitative
proteomics). These two are inter-linked, however,
because quantification of individual proteins in the
sample is a necessary prelude to the selection of the
subset of proteins whose expression levels are consid-
ered to be regulated as a result of the experimental
challenge. Other issues may only become apparent
once the experimental data have been published.

In this survey we present an analysis of how
technology and other factors, such as the adoption of
standardised descriptions of the experiments, affect
the quality of the outcome in the different phases of
the experiment, as well as the ability of the scientific
community to exploit those results. The separation
into technologies and phases within the workflow
facilitates this analysis and is reflected in the
organisation of the article.

In the following section, Quality issues in
experimental data generation, we discuss problems
affecting the quality of the data produced in the lab,
based on the following considerations:

" A number of factors may affect the quality of the
sample, including the environment in which the
experiment takes place and the adoption of
standard operating procedures.
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Figure 1: A framework illustrating where information quality issues (lower panel) can arise during typical
proteomics workflows (upper panel).
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" The choice of experimental technology affects
the number of proteins that can be successfully
identified, i.e. the completeness of the result, which
includes the ability to detect low-abundance
proteins (sensitivity).

" Reproducibility takes account of the biological
and technical variations inherent in the
experiment by including a number of replicates,
and using matched controls to minimise the
number of simultaneous biological variables.

Also, two main factors that affect errors in protein
identification, namely:

" The accuracy of the matches obtained using
algorithms (inaccurate matches may result in false
positives).

" The qualityof thereference protein databases used for the
match: an incomplete or inaccurate database may
result in false negatives, i.e. by failing to identify
proteins that are present in the sample.

Then, in the section on Archiving and sharing
proteomics data, we focus on the issues that affect the
potential exploitation of the result by the commu-
nity, namely:

" Uniformity of representation, i.e. the standardisation of
the data formats, as well as of the metadata that
describes the experiment.

" Accuracy and level of detail of the experiment
description, which is necessary to allow the
entire experiment to be repeated.

Finally, we will conclude by noting how software
environments for recording and annotating proteo-
mics experiments may alleviate some of the problems
in the last two phases of the workflow by providing
views of the data that make some of its quality
characteristics explicit to the user.

QUALITY ISSUES IN
EXPERIMENTALDATA
GENERATION
The quality of the final output from proteomics
studies intrinsically depends on the wet lab phase of
the workflow. We begin a discussion of the
importance of controlling the biological and techni-
cal variables within proteomics experiments by
considering the quality of the biological sample.

Sample quality control
As with all lab-based studies, the importance of
minimising variation by strict adherence to robust
experimental protocols, use of single batches of
reagents and use of matched controls should not
be underestimated in proteomics. Moreover, the
authors of a recent commentary state that ‘many
proteomics efforts suffer from a lack of rigor’ and
focus on sample preparation as an area that requires
more critical attention [8].

The experimental design should closely reflect
the scientific hypothesis being tested and it may be
important to control factors such as the genetic
background of microbial strains, the age and gender
profiles of patient populations, the cell type
composition of tissue extracts and the environmental
variables that might affect sample quality (tempera-
ture, constituents of growth media, timing of
collection, etc.). Checking sample quality at an
early stage and replacing poor-quality samples where
possible is preferable to having to deal with the
resulting quality issues during subsequent data
analysis steps. For example, 1D gels can be used to
test the quality of samples destined for 2DE by
revealing the effects of proteolytic degradation.

Simply recording, in a prescribed way, the details
of how the various experimental steps were carried
out may promote the use of standard operating
procedures, and is an argument for the development
of proteomics standards (see Standardisation of
experiment description section). Standard operating
procedures tend to be developed by individual
laboratories for a particular type of sample [9–11]
and may not be particularly successful when
transferred to other applications.

Wet lab quality issues for 2DE
The design of 2DE-based experiments is an
important factor determining the quality of the
output from such studies. The aims should be to
minimise biological and analytical variation, and to
avoid introducing bias between sample groups. It is
desirable to develop and use standard operating
procedures for protein extraction/solubilisation,
electrophoresis and gel image analysis, and to
determine the number of biological and technical
replicates necessary to detect a given difference
in protein expression level between sample groups
[12, 13].

Such a ‘power analysis’ is rarely, if ever, carried
out in proteomics because of the cost involved in

176 Stead et al.



setting up a pilot study. ‘How many replicate gels
should be run?’ is an often-asked question.
Unfortunately, there is no simple answer—it
depends on the variability of the biological material,
reproducibility of the technique and the degree of
difference between sample groups that is to be
detected (other things being equal, fewer replicates
would be required to confidently detect a 3-fold
change in spot volume than a 1.5-fold change). For
samples generated under well-controlled conditions,
it may be reasonable to run four (biological) replicate
gels per sample group and to include spots that are
detected and matched in at least three gels per set
when using software that allows for missing values.
For samples known to be variable, such as tissue, it
may be advantageous to run more replicates or pool
material within sample groups prior to 2DE.

A major advance in the reproducibility of 2DE
has been provided by immobilised pH gradient gels
(IPG strips) for the first dimension separation coupled
with pre-cast second dimension gels [14], as used
in the IPGphor and Ettan DALT systems (GE
Healthcare) [15]. 2DE remains one of the most
important technologies for separating complex
protein mixtures and continues to be developed.

The problem of under-representation of certain
classes of proteins in 2DE is well-known, for
example for membrane proteins (very hydrophobic),
DNA-binding proteins (very alkaline) and signalling
proteins (low abundance), and standard 2DE meth-
ods may not be suitable for proteins having such
characteristics [4].

Quantification in 2DE depends on visualising the
resolved protein spots with a suitable stain, scanning
the gel to produce a bitmapped image and using
software to select spots showing reproducible
changes in intensity [16]. Choice of staining
technique can markedly affect the sensitivity of
2DE, with silver-stains and fluorescent dyes better
able to detect low-abundance proteins than the
commonly used Coomassie blue. However, silver-
staining is less suitable for quantitative studies because
the reaction is non-stoichiometric and the end-point
is subjective [4].

Success of the subsequent image analysis is
strongly dependent on the similarity of the replicate
2D gels and also on the performance of the software
algorithms used for spot matching or gel image
alignment. Difference gel electrophoresis (DIGE)
technology, in which two samples are labelled
with different CyDyes and mixed prior to the

electrophoretic separation, reduces the number of
gels required and overcomes some of the problems
associated with gel-to-gel variability [17].

Dry lab quality issues for 2DE
The accuracy of comparative studies using 2D gels
depends on the success of matching spots within and
between groups of replicate gel images from different
experimental conditions. Recent developments in
2DE analysis software such as Progenesis SameSpots
(Nonlinear Dynamics) or Melanie 6.0 [Geneva
Bioinformatics (GeneBio) SA] focus on reducing
the amount of user editing (subjective input) and the
application of multivariate statistical methods for
analysing the spot data [18, 19]. For example, a
principal components analysis (PCA) plot can
provide a quality check showing that replicate gels
from a particular experimental condition group
together, and are separated from those generated
under different conditions. By way of illustration,
Figure 2 shows how the replicate 2DE gel images
from an experiment involving the growth of Candida
albicans in media containing different carbon sources
grouped together in a PCA plot, confirming that the
experimental challenge (changing the carbon source)
had a greater impact on the proteome than biological
and analytical variance. Some programs, e.g.
Progenesis SameSpots, depend on warping the
images so that the corresponding spots can be
superimposed—volume data is collected from every
replicate whether a protein spot is visible or not and
therefore missing values do not compromise the use
of statistical tests.

Wet lab quality issues for peptide mass
fingerprinting (MALDI-TOFMS)
Experimental design is equally important in MS-
based proteomics and has been discussed elsewhere
[1, 20]. Some technologies are less suitable for
detecting low-abundance proteins, as we have
already noted for 2D gel staining. Peptide mass
fingerprinting (MALDI-TOF MS) has typically been
employed for the identification of relatively abun-
dant proteins in 2D gel spots. It does not have the
power to identify proteins in more complex mixtures
because suppression effects in the ionisation source
limit the number of peptides that can be simulta-
neously analysed by MALDI-TOF MS, and success
depends on obtaining good sequence coverage from
a reasonable number of peptides (at least 4–6,
preferably more) matched to each protein.
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These suppression effects also make MALDI-TOF
MS susceptible to loss of sample peptide signals
caused by the presence of other abundant ions,
whether these come from extraneous sources (e.g.
keratin and polyethylene glycol) or from the sample
itself (e.g. albumin) if procedures to remove them
are inadequate. In practice it proves difficult to
confidently identify more than two or three proteins
in the same sample by peptide mass fingerprinting.
This was clearly illustrated by a comparative analysis
of 98 2DE gel spots from Methanococcus jannaschii [21].
By MALDI-TOF MS, 88% of spots contained a
single protein, 11% contained two and 1% a mixture
of three different proteins. In contrast, the same
samples analysed by LC-MS/MS revealed that 41%
were single-protein spots, with the majority
containing multiple proteins—as many as six per spot.

Dry lab analysis of MALDI-TOFMSdata
Despite the limitations mentioned in the previous
section, peptide mass fingerprinting remains a
popular protein identification technique and there

are a number of bioinformatics tools available for the
analysis of MALDI-TOF MS data [3].

The accuracy of protein identifications obtained
by peptide mass fingerprinting depends on the
successful matching of the experimental peptide
masses by a search algorithm to theoretical masses
derived from a protein sequence database. Various
outputs from the search result may help to indicate
whether a particular match is correct or not.
Different search engines calculate their search scores
in different ways, and interpreting this information
can be difficult. Three simple metrics; hit ratio, mass
coverage and excess of limit-digested peptides, have
been proposed as universal measures of the quality
of a protein identification by peptide mass finger-
printing that can be combined into a single score
and used to validate such protein identifications,
particularly in large data sets [22].

The Molecular & Cellular Proteomics journal guide-
lines suggest that, for peptide mass fingerprinting, the
number of masses matched to the identified protein,
the number of masses not matched in the spectrum
and the sequence coverage should be reported along
with the input parameters used in the database search
[6]. These guidelines advise the use of probability-
based scoring schemes or the reporting of the
expected false-positive rate. Of the various peptide
mass fingerprinting tools available, Aldente [23, 24],
Mascot [25] and ProFound [26] provide sufficient
information to fulfil these requirements. Aldente
gives statistics on random sequences and colour-
codes results depending on whether the score is
greater or lower than the best random score. It also
has a viewer (requires web browser Java plugin) that
displays peaks matched in the spectrum and their
peptide mass error distribution (Figure 3)—informa-
tion that is useful for validating the result. However,
the choice of database is limited to Swiss-Prot or
TrEMBL. Mascot has a ‘decoy’ database search
option that returns the score of the best random
hit, reports a probability-based Mowse score and
expectation value, and displays error distribution
plots but not the peptide mass spectrum. The public
web server allows searches to be run over the
MSDB, NCBInr and Swiss-Prot databases, while the
purchase of Mascot Server software allows the user
to install any database if a suitable FASTA sequence
(DNA or amino acid) file is available. ProFound can
report either an expectation value or a probability
value and Z-score, and displays the spectrum
coverage and mass error distribution. An evaluation
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Figure 2: PCA plot for replicate 2Dgels fromdifferent
samples groups.Candidaalbicans cells were grown onvar-
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were extracted and separated by 2DE. The gel images
from three biological replicates per condition were
subjected to a principal components analysis using
SIMCA-P (Umetrics).
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of search engines commonly used for peptide mass
fingerprinting concluded that ProFound provided
the best discrimination between random matches and
correct identifications [27].

Dry lab analysis of tandemmass
spectrometry (LC-MS/MS) data
Tandem mass spectrometry (LC-MS/MS) data
contains sequence information that can be used to
identify peptides (and from them, proteins) by denovo
sequencing [28], peptide fragment fingerprinting
[29], or peptide sequence tagging [30]. Of these,
only peptide fragment fingerprinting is used on a
large scale. Peptide fragment fingerprinting is an
analogous protein identification technique to peptide

mass fingerprinting in which peptide fragment, or
MS/MS, spectra are matched to theoretical masses of
peptide fragments generated in silico from a sequence
database [29]. Knowledge of which bonds in the
peptides break preferentially in the mass spectro-
meter is important in peptide fragment fingerprint-
ing, in the same way that the specificity of the
cleavage reagent (e.g. trypsin) is used to predict the
peptides generated in a peptide mass fingerprinting
experiment. Peptide fragmentation is dependent
upon the type of tandem mass spectrometer and
dissociation technique—these parameters should be
specified when conducting the database search.

Of the various search engines available and
reviewed in [3], Mascot [25] and SEQUEST [31]

2

1

Figure 3: Output from the BioGraph viewer of the Aldente peptide mass fingerprinting tool.Ovalbumin standard
was run on a1D gel, the band excised, and subjected to in-gel tryptic digestion. Peptidemasses determinedbyMALDI-
TOFMSwere input as a peak table (PKT) file to Aldente.Panel (1) shows the spectrum coverageview andpanel (2) the
mass error distribution plot, for the bestmatch in the Swiss-Prot database.
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are probably the most widely used. Evaluations of
different search engines, including Mascot and
SEQUEST, have reached variable conclusions
[27, 32, 33], suggesting that their relative perfor-
mance may depend on the nature of the data set used
for testing. Mascot MS/MS ions searches may be
performed using the public web server (which may
be quite slow and limits the size of the data file to a
maximum of 300 masses) or on a local Mascot server.
In order to achieve a significant gain in speed from a
local server, a powerful cluster of processors is
required. SEQUEST is exclusively marketed by
Thermo Scientific as part of the BioWorks software
designed for their instruments. Phenyx [34] provides
a public web interface for low-throughput submis-
sions [35], while the OMSSA web server [36] is
designed for higher-throughput use, but does not
consolidate the individual peptide identifications into
protein ‘hits’. X! Tandem [37] cannot be run via the
Internet but must be downloaded and installed on
a local web server—a process that may require
specialist knowledge. In practice, the choice of search
engine may depend on the type of instrument
because of the limited compatibility of certain MS
file formats. Only Mascot currently accepts proprie-
tary data files from a wide range of different
instruments. However, this situation will change as
the generic XML-based file format specified by the
mzData standard [38] becomes more widely imple-
mented—a tangible benefit of the Proteome
Standards Initiative (PSI) (see Standardisation of
experiment description section).

Because the output files produced from LC-MS/
MS experiments are large and complex, there is a
danger that protein identification software systems
are used as ‘black boxes’ by practitioners with little or
no validation of the results. This reinforces the
concerns over false-positive protein identifications
mentioned previously (see Introduction section).
Considerable attention has been focussed on the
fact that many of the spectra generated by LC-MS/
MS proteomics experiments cannot be confidently
assigned to known peptide sequences. It has been
argued that many of the MS/MS spectra are of
low quality and should be filtered out of the analysis
[39–42]. Another approach is to improve discrim-
ination between correct and random matches,
by using machine learning techniques to classify
database search results [43], average peptide scores
based on Mascot ion scores [44], or S-scores based
on sequence tag information [45]. Mass deviance has

been proposed as a suitable metric for assessing the
quality of a peptide assignment from MS/MS data
[46], and the excess of limit-digested peptides quality
metric proposed for peptide mass fingerprinting [22]
is also predicted to be of value for assessing
protein identifications by peptide fragment finger-
printing. A third approach, taken by commercial
software systems such as ProteinScape (Bruker
Daltonics), PEAKS (Bioinformatics Solutions Inc.)
and Spectrum Mill (Agilent Technologies)
(see Laboratory information management systems
section), is to send the input masses to more than one
search engine and to cross-validate or consolidate the
results in an attempt to increase confidence in the
protein identification. Identifications of peptides
from MS/MS data may be validated by comparing
the results with experimental peptide fragment
spectra from other labs, for which the probability
of correct identification has been uniformly tested.
This is the idea behind data repositories such as
the Global Proteome Machine (GPM) [47] and
PeptideAtlas [48, 49] (see Proteomics data reposi-
tories section).

‘Decoy’ databases, in which the protein sequences
are reversed or randomised, are particularly useful
for estimating false-positive identification rates in
peptide fragment fingerprint searches [50–52]. False-
negative identifications, caused by analytical incom-
pleteness, may be a serious problem in qualitative
differential display LC-MS/MS experiments [53].
Quantitative mass spectrometry-based approaches
overcome this problem.

Quantification can be achieved in LC-MS/MS by
using stable isotope mass-tagging techniques
(reviewed in [54–56]). Introducing mass tags and
pooling the different samples early in the workflow,
as in the SILAC technique (stable isotope labelling
by amino acids in cell culture) [57], has the advantage
of removing the effect of analytical variance in
subsequent processing steps (Figure 4).

An interesting recent advance is the virtual 2D
mapping of LC-MS data [60, 61]. This technique
can be used for comparative proteomics based on the
display of two separate LC-MS/MS runs. In this
case, the problem of spot matching in 2DE is
replaced by one of peak retention time matching.
While 2D gels display protein spots separated by
charge and molecular size, a virtual 2D map displays
LC-MS data as ion intensities distributed by mass-to-
charge ratio (m/z) and retention time. LC-MS
image analysis may also have potential applications
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in quality assessment (artifacts created during sample
processing may be recognised as characteristic
patterns on the virtual map) and post-translational
modification (PTM) discovery, and may prove to be
a powerful tool that helps the researcher to cope
with the size and complexity of the data produced
by LC-MS/MS experiments. The MSight mass
spectrometry imaging software (Figure 5) is freely
available [62] and supports MS and MS/MS data in a
variety of proprietary and generic data formats.

ARCHIVINGAND SHARING
PROTEOMICS DATA
This section describes the pragmatics of experimental
data management and sharing, with a view to
identifying the relationship between data quality
and information management systems, data standards
and public repositories.

Laboratory information management
systems
Many software tools for proteomics have been
developed to accomplish specific tasks, but there is

a need to support the whole data-gathering and
reporting process. Laboratory information manage-
ment systems (LIMS) have been used for many years
for sample tracking and reporting purposes, for
example in the clinical biochemistry laboratory
where maintaining an accurate sample audit trail is
essential. Similar systems are being developed for
proteomics laboratories that aim to combine sample
tracking and automated data analysis (including
protein identification and validation) with the
functionality to generate output files that are
compliant with proteomics standards and compatible
with data repositories [63]. Not only does this help to
increase throughput in the proteomics laboratory,
but it should also improve the consistency of data
processing and minimise failures in the sample audit
trail. These systems have been described as ‘pipeline
tools’ or ‘workflow systems’ [3, 64]. They include
the trans-proteomic pipeline (TPP) [65, 66],
ProteinScape (Bruker Daltonics) and Spectrum Mill
(Agilent Technologies). However, such systems
cannot be expected to work seamlessly with data
repositories until the proteomics standards that shape
them become mature and stable.
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Figure 4: Workflows for quantitative MS-based differential proteomics.Generalisedworkflows for the comparison
of two biological samples (1, 2) using stable isotope labelling by amino acids in cell culture (SILAC) [57], isotope coded
protein labelling (ICPL) [58] or isobaric tag for relative and absolute quantification (iTRAQ) [59]. Labelling certain
amino acids with light (grey) or heavy (black) mass tags then mixing (crossed circle) the samples is performed before
harvesting in the case of SILAC, after the extraction of proteins in the case of ICPL, and after digestion of the proteins
to peptides in the case of iTRAQ.For clarity, protein or peptide separation steps are not shown, but these are neces-
sary to reduce the complexity of the sample prior to mass spectrometry.
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Standardisation of experiment
description
Where a sufficiently large and organised community
exists, it is possible to prevent some of the more
common and serious information quality problems
by coming to agreement on how members of the
community will record and structure their experi-
mental results. A data set may be wholly accurate,
but if it is stored in an obscure format, using
undocumented conventions, then the information it
contains may still be unusable. Standardisation efforts
facilitate data archiving and sharing by defining data
formats that allow experimental data produced across
the community to be described consistently, and by
characterising and promoting good practice in data
collection and publishing.

The PSI [67] of the Human Proteome
Organisation (HUPO) [68] is the principal organisa-
tion associated with the development of proteomics
standards. Its goal is to facilitate the systematic
capture, comparison, exchange and verification of
proteomics data [69]. Three different kinds of
proteomics standard can be identified, as illustrated
in Figure 6:

Minimum information guidelines
In common with other standards bodies, the PSI is
defining a collection of documents under the MIAPE
heading (Minimum Information About a Proteomics
Experiment) that state what should be recorded
about a proteomics experiment [70]. The guidelines
take the form of a checklist, in which a collection

Figure 5: Screenshot from MSight mass spectrometry imaging software. Panel (1): Images of two related experi-
ments aligned in the same sheet (A). Panel (2):The same region of both images marked in panel (1) seen in a 3D view.
Panel (3): Mass spectrum view. Panel (4): Text report of both experiments. Panel (5): TheWorkspace window that is
used to organise experiments. Panel (6):The Status Bar indicates the number of MS runs in the current sheet and the
number of selected annotations. It also indicates coordinates in real value and intensity of the data located under
mouse cursor.
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of data properties are defined that together con-
stitute the minimum amount of information
required to carry out the stated tasks. For example,
in the case of protein identification by peptide mass
fingerprinting (see Dry lab analysis for MALDI-TOF
MS data section) the number of masses matched to
the identified protein, the number of masses not
matched in the spectrum (these two can be
combined together as the ‘hit ratio’) and the
sequence coverage are properties of the search
result that may be used to validate a protein
identification [22]. Minimum information guidelines
say nothing about the accuracy of the experimental
results reported; rather they seek to ensure
that sufficient information is recorded about each
experiment to allow informed observers to judge the
effectiveness of the approach adopted for the
problem at hand. In other words, they promote
completeness of information.

Good practice guidelines
When applying sophisticated experimental techni-
ques, considerable care is required in experiment
design and result interpretation. For example, see
‘Wet lab quality issues for 2DE’ section for a
discussion of how many replicate gels should be

run in a 2DE experiment. The journals Molecular and
Cellular Proteomics and Proteomics have developed
guidelines for authors that specify not only what
information should be provided, but also what
characterises a well-designed experiment [6, 53].
Good practice guidelines seek to encourage the
reporting of high quality results (e.g., results with a
small and known false-positive rate) by indicating
how experiments should be designed and carried
out. In other words, this form of standard promotes
credibility of information.

Data formats
Given minimum information guidelines, the
question remains as to how data should be described.
Both minimum information and good practice
guidelines tend to result in textual descriptions
suitable for manual access by scientists. Formats, in
contrast, are designed to support computational
searching and manipulation of the data. They
typically include some form of structured file
format, often represented using XML (eXtensible
Markup Language), and some form of terminology to
be used when populating data elements in the XML
file. In the PSI, there is normally a one-to-one
correspondence between MIAPE documents [70]
and data formats [71]. Proteomics data formats,
whether those produced by the PSI or by inde-
pendent researchers [72, 73], should increase the
consistency of the data, thereby allowing software to
use data from different sites in ways that influence the
quality of the data. For example, searches for
identifications can be repeated using consistent
software settings or underlying sequence databases,
thereby allowing results to be compared more
directly.

Proteomics data repositories
Public repositories of proteomics data seek to fulfil
one of the early hopes of these information-rich
experiments, i.e. that added value may be gained by
combining data sets from different studies and
enabling complex queries to be run over them
[74]. Realisation of the difficulties involved in
capturing the information that might be useful
from such experiments was the driving force
behind the proteomics standards movement (see
‘Standardisation of experiment description’ section).
It is important that principles and formats emerging
from standards-based approaches are used to shape
the structure of proteomics data repositories in order

Good Practice
Guidelines Formats

Means of
organisation

Means of
representation

Usage
principles

Experimental
good practice

Means of
representation

Minimum
Information
Guidelines

Figure 6: Relationships between types of standard
document. An overview of the relationships between
the different forms of standard, with the arrows indicat-
ing how each one benefits from the other. For example,
good practice guidelines provide a means of arguing for
the presence of a particular data item in minimum infor-
mation guidelines, while this latter form of standard
helps to provide the basic vocabulary and structuring
principles for the definition of the former. Similarly, mini-
muminformationguidelinesprovide a baseline setof con-
cepts for the designers of standard data formats, while
the formats themselves help the designers of minimum
information guidelines to state more precisely what
information is to be considered mandatory and that
which is not.
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to facilitate querying and re-use of the stored
information.

The various proteomics data repositories currently
available have been reviewed elsewhere from the
viewpoint of data integration [64]. PRIDE [75] is
unique in that it contains protein identifications
generated from both peptide mass fingerprinting and
peptide fragment fingerprinting, whereas the GPM
database [47], Open Proteomics Database (OPD)
[76] and PeptideAtlas [48] are limited to LC-MS/MS
data. The Gene Expression Omnibus (GEO) [77] is
mostly concerned with microarray data, but also
supports non-array techniques, including MS-based
proteomics.

The PRIDE database, as of January 2008, held
over 3000 experiments on 26 different species, with
370 000 identified proteins and over 2 million
identified peptides with rich experimental descrip-
tions. The ‘compare experiments’ function in
PRIDE produces a Venn diagram showing the
protein identifications unique to each experiment
and those common to both. PRIDE allows regis-
tered users to submit data files generated by the
Proteome Harvest Spreadsheet [78]—a Microsoft
Excel workbook with functionality that enforces
the inclusion of certain required data (mandatory
fields) and enables the user to select controlled
vocabulary terms from the Ontology Lookup
Service, thereby promoting data completeness
and consistency.

The OPD consists entirely of a collection of MS/
MS data files generated by the host laboratory
(University of Texas) together with descriptions of
the sample processing procedure and MS parameters
used in their generation. The only functionality
provided is downloading of the zipped data files.

The GPM contained over 40 million peptide
identifications from 14 different proteomes (as of
January 2008). It allows the user to search the
database with MS/MS data (DTA, PKL or MGF file
formats) and gives the option of adding the input
data to the database either as a named or anonymous
contribution. The GPM database does not store
contextual or experimental protocol information.

Although sharing and re-use of proteome data sets
is not yet widespread, projects have integrated data
from coordinated experiments in multiple labora-
tories [79], and studies have been undertaken
that seek to establish properties of experimental
techniques through systematic studies of large data
sets (e.g. [80, 81]).

Software tool support for managing
data quality in proteomics
It was recognised early in the work on establishing
proteomics data repositories that associated software
tools should have functionality built-in to help
scientists manage the quality of their data. The
PEDRo [74] repository was provided with a software
application (originally called the PEDRo Data
Collator, later renamed to simply ‘Pedro’ [82])
which helped ensure that data captured for entry
into the repository conformed to the constraints of the
XML Schema that defined the PEDRo data model.
Moreover, the Pedro tool was designed to allow users
to check entered data against controlled vocabularies,
to ensure that meaningful values were entered into
particular fields.

Developing this idea further, recent work has
exploited the ‘plug-in’ architecture of the Pedro tool
in order to allow users to access quality-checking
services appropriate for their data. This ‘quality-
aware’ Pedro plugin [83] uses the identifier of the
XML Schema (e.g. PEDRo) to look up available
quality-checking services on the Web, and allows
users to call those services (as Web services) to check
the data they have loaded into the tool. Currently, in
proteomics, services are available to apply the metrics
described earlier in this article [22]. The augmented
Pedro tool with quality-aware plugin is shown in
Figure 7 and is downloadable from [84].

The approach of making quality-checking ser-
vices available as Web services has the significant
benefit that they can then be re-used within other
software environments. As an example, such services
can be invoked as part of bioinformatics workflows
in the Taverna Workbench [85], to enable auto-
mated filtering or flagging of the data as it is
processed, according to criteria set by the user. An
example of this approach in the proteomics domain
is presented in [86].

CONCLUSIONS
The major proteomics technologies (2DE and
LC-MS/MS) and their associated data analysis systems
are continually under development in order to
improve the quality of information generated by
proteomics experiments. Increased automation, the
provision of well-designed experimental workflows
and robust (multivariate) statistical methods, should
increase confidence in the results generated by high-
throughput experiments. Information standards
offer a valuable mechanism by which certain forms
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of quality (in particular, completeness, credibility and
consistency) can be attained by the proteomics
community. Repositories, such as PRIDE, that are
closely linked to the standards initiatives, play an
important role in sharing experimental data and are
becoming another form of quality assurance, along-
side peer-review, for the publication of large-scale
functional genomic studies. Finally, the need for
scientists to apply their own measures of information
quality has been stated, and the importance of having
‘quality-aware’ software tools, which make quality
measures more explicit has been highlighted.
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