
A Little Semantic Web Goes a Long Way

in Biology

K. Wolstencroft, A. Brass, I. Horrocks, P. Lord, U. Sattler, D. Turi, and
R. Stevens

School of Computer Science, University of Manchester, UK

Abstract. We show how state-of-the-art Semantic Web technology can
be used in e-Science, in particular, to automate the classification of pro-
teins in biology. We show that the resulting classification was of compara-
ble quality to that performed by a human expert, and how investigations
using the classified data even resulted in the discovery of significant infor-
mation that had previously been overlooked, leading to the identification
of a possible drug-target.

1 Introduction

Semantic Web research has seen impressive strides in the development of lan-
guages, tools, and other infrastructure. In particular, the OWL ontology lan-
guage, the Protégé ontology editor, and OWL reasoning tools such as FaCT++
and Racer are now in widespread use.

In this paper, we report on an application of Semantic Web technology in
the domain of biology, where an OWL ontology and an OWL classification tool
called the Instance Store were used to automate the classification of protein
data. We show that the resulting classification was of comparable quality to one
performed by a human expert, and how investigations using the classified data
even resulted in either the discovery of new information or that which had been
overlooked.

While this example focuses on a particular protein family and a particular
set of model organisms, the technique should be applicable to other protein
families, and to data from any sequenced genome—in fact we believe that similar
techniques should be applicable to a wide range of investigations in biology, and
in e-Science more generally. If this proves to be the case, then Semantic Web
technology is set to have a major impact on e-Science.

Background and Motivation The volume of genomic data is increasing at a seem-
ingly exponential rate. In particular, high throughput technology has enabled the
generation of large quantities of DNA sequence information. This sequence data,
however, needs further analysis before it is useful to most biologists. This pro-
cess, called annotation, augments the raw DNA sequence, and its derived protein
sequence, with significant quantities of additional information describing its bi-
ological context.
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One important process during annotation is the classification of proteins
into different families. This is an important step in understanding the molecular
biology of an organism. Attempts to automate this procedure have, however,
not generally matched the gold-standard set by human experts. Human expert
classification has been more accurate because their expertise allows them to
recognise the properties that are sufficient, for example, to place an individual
protein into a specific subfamily class. Automated methods have, in contrast,
often failed to achieve the same level of specificity. Our goal, therefore, was to
improve the precision of automatic protein classification, and bring it up to the
same level as that achieved by human experts.

Overview of Our Technique Given a set of proteins, each with a (partial) de-
scription of its properties, the objective is to find, for each of these proteins, the
most specific protein family classes of which it is an instance. To describe protein
family classes, we use an OWL-DL ontology; this enables us to specify necessary
and sufficient conditions for a protein to be an instance of a given protein class.
The ontology models the biology community’s view of the current knowledge of
protein classification. We then take protein data derived using standard bioinfor-
matics analysis tools, translate these data into OWL-DL instance descriptions
that use terms from the ontology, and use the Instance Store to classify these
instances.

Empirical Evaluation We have tested our system using data sets from both the
human and Aspergillus fumigatus (a pathogenic fungus) genomes. We found that
our automatic classification process performed at least as well as a human expert:
it allows a fast and repeatable classification process, and the explicit representa-
tion of human expert knowledge means that there is a clear and explicit evidence
base for the classification. Moreover, the precise and methodical classification of
the data led to the discovery of new information about these proteins, including
a protein subclass that seems to be specific to pathogenic fungi, and could thus
be an important drug-target for pharmaceutical investigations.

2 Science and Technology

In this section, we describe the biology problem we have tackled and the Semantic
Web technology that we used to achieve an appropriate solution.

2.1 Classifying Proteins

The process of annotation follows the “central dogma” of molecular biology.
In broad outline, this process consists of the following steps: firstly DNA is
sequenced; then genes are identified in this DNA; the DNA is then translated
into a protein sequence; the proteins are then analysed and annotated with
information useful for further biological investigation. As the majority of the
functions of a cell are carried out by proteins, it is those proteins in which most
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biologists are interested. Proteins are classified into families that both reflect the
functions they carry out in the cell, as well as often giving clear indications as to
the biological processes in which they are involved. It is this classification, along
with other and diverse kinds of information, which makes up the annotation
of a protein and makes the large data sets manageable, enabling biologists to
perform more thorough investigations.

In the last decade, various steps of this process have been automated, and
thus their speed has increased enormously. Sequencing of whole genomes1 is
now routine. Gene discovery is technically challenging, but responds well to the
increasing availability of CPU cycles. However, this still leaves a large number of
protein sequences—approximately 30 000 in the human genome, a quantity that
is more or less in other species. This quantity is far more than that with which
the individual biologist can cope.

The automation of the annotation process has, however, lagged behind ad-
vances in other parts of this process. To date, automated approaches have proven
to be quicker than human expert annotation, but the level of detail is often re-
duced [26, 6]. As a consequence, many protein sequences are not annotated with
the accurate, specific information necessary for bioinformatics analyses. Thus
useful resources for further biological discovery remain untapped.

In this investigation, we have used one protein family, the protein phosphatase

family, as a case study to demonstrate a new, ontology-based method for auto-
mated annotation. This method was designed to combine the speed of automated
annotation with some of the detailed knowledge that experts use in annotation.

Protein phosphatases are a large and varied protein family. Together with
another family, the protein kinases, they are critically involve in controlling the
activity of many other proteins, thereby forming an essential part of the feedback
control mechanism within the cell.

Given this pivotal role, it is perhaps unsurprising that many protein phos-
phatases have been implicated in various diseases of great medical importance,
including diabetes, cancer, and neurodegenerative conditions. Phosphatases are
therefore a major subject of medical and pharmaceutical research.

In general, proteins are relatively modular and comprise of a number of dif-
ferent protein domains. Using a protein sequence, it is often possible to com-
putationally determine the protein domains of which it is composed. For many
protein families, including the protein phosphatases, it is possible to classify
their members based on the protein domains of which they are composed. To
avoid confusion with interpretation domains or the domain of a property, for the
remainder of this paper, we use “p-domain” for protein domain.

The different p-domain composition of proteins suggests the specific function
of a protein. , Individual p-domains, however, often have specific and separate
functions from the protein as a whole. For example, an enzyme will have a
catalytic p-domain that performs the catalysis on the substrate molecule, but it
will also contain structural p-domains and binding p-domains that ensure that

1 A genome is the entirety of DNA in a cell.
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the substrate can interact with the catalytic p-domain. Therefore, a specific
combination of p-domains is required for a protein to function correctly. In some
cases, the presence of a certain p-domain is diagnostic for membership in a
particular protein family, i.e., some p-domains only occur in a single protein
family. If a protein contains one of these diagnostic p-domains, it must belong
to that particular family. For example, the protein tyrosine kinase catalytic p-
domain is diagnostic for the tyrosine kinases.

Most protein families are, however, defined by a non-trivial combination of
p-domains. For example, as you descend the hierarchical structure, extra p-
domains (and therefore more specific functional properties) are observed in the
protein class definitions. For example, an R5 phosphatase is a type of classical
receptor tyrosine phosphatase. As a tyrosine phosphatase, it contains at least
one phosphatase catalytic p-domain and, as a receptor tyrosine phosphatase, it
contains a transmembrane region. The R5 type actually contains two catalytic
p-domains and a fibronectin p-domain, identifying it as an instance of even more
specific subclasses.

Identifying the p-domain composition of a protein is, therefore, a first step to-
wards its classification. There are databases describing functional p-domains, for
example, PROSITE [17], SMART [20] and InterPro [23], and these databases
come with specific tools, such as InterProScan, which can report the presence
of these p-domains in a novel protein sequence. Bioinformaticians are, however,
usually required to perform the analysis that places a protein (with its set of
p-domains) into a particular protein family. The whole process of classifying
proteins from a genome can be accomplished with the following steps:

1. Given a genome, we extract DNA gene sequences, which we then translate
into the set of protein sequences. If we are interested in a particular protein
family, we can sub-select sequences containing p-domains diagnostic of that
family.

2. On each of the extracted proteins, we use InterProScan to determine its
p-domain composition.

3. For each of these compositions, we identify the protein family or subfamily
to which it belongs by comparing them to the available biological knowledge.

The final step currently requires the most human analysis and expert knowl-
edge. Manual classification methods are carried out by protein family experts
to interpret these data and use their expert knowledge to classify proteins to a
fine-grained level. To the best of our knowledge, no automated method has yet
been able to replicate this expert level of detail and precision.

2.2 Ontologies and the Instance Store

Ontologies, with their intuitive taxonomic structure and class based semantics,
are widely used in domains like bio- and medical-informatics, where there is a
tradition of establishing taxonomies of terms. The recent W3C recommendation
of OWL2 as the language of choice for web ontologies also underlines the long

2 See http://www.w3.org/2004/OWL/ or [11].
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term vision that ontologies will play a central role in the Semantic Web. Most
importantly, as shown in [4], most of the available OWL ontologies can be cap-
tured in OWL-DL—a subset of OWL for which highly optimised Description
Logic [2] reasoners can be used to support ontology design and deployment.

Unfortunately, existing reasoners (and tools), while successful in dealing with
the (relatively small and static) class level information in ontologies, fail when
presented with the large volumes of instance level data often required by realistic
applications, hampering the use of reasoning over ontologies beyond the class
level. The system we have used—the instance Store (iS) [14]—addresses this
problem using a hybrid database/reasoner architecture: a relational database is
used to make instances persistent, while a class level (“TBox” in Description
Logic terms) reasoner is used to infer ontological information about the classes
to which they belong. Moreover, part of this ontological information is also made
persistent in the database. The iS currently only supports a rather limited form
of reasoning about individuals: it takes an ontology (without instances), a set of
axioms asserting class-instance relationships, and answers queries asking for all
the instances of a class description. The classes in both axioms and queries can be
arbitrarily complex OWL-DL descriptions, and a DL reasoner is used to ensure
that all instances (explicit and implicit) of the query concept are returned. In the
remainder of this paper, we use “class-level ontology” for an ontology in which no
instances occur. From a theoretical perspective, this might seem un-interesting;
the iS is, however, able to deal with much larger numbers of individuals than
would be possible using a standard DL reasoner. More importantly, this kind of
reasoning turns out to be useful in a range of applications, in particular those
such as the one presented here where a domain model is used to structure and
classify large data sets.3

There is a long tradition of coupling databases to knowledge representation
systems in order to perform reasoning, most notably the work in [5]. However, in
the iS, we do not use the standard approach of associating a table (or view) with
each class and property. Instead, we have a fixed and relatively simple schema
that is independent of the structure of the ontology and of the instance data.
The iS is, therefore, agnostic about the provenance of data, and uses a new,
dedicated database for each ontology (although the schema is always the same).

The basic functionality of the iS system are illustrated in Figure 1. At start-
up, the initialise method is called with a relational database, an OWL-DL
class reasoner such as Racer [9] or Fact++ [30], and a class-level OWL-DL
ontology. The method creates the schema for the database if needed (i.e., if the
iS is new), parses the ontology, and loads it into the reasoner. To populate the
iS, the addAssertion method is called repeatedly. Each assertion states that an
instance (identified by a URI) belongs to class (which is an arbitrary OWL-DL
description). Once the iS has been populated with some—possibly millions of—
instances, it can be queried using the retrieve method. A query again consists
of an arbitrary (possibly complex) OWL-DL class description; the result is the

3 The iS was initially developed for use in a Web Service registry application, where
it was used to classify and retrieve (large numbers of) descriptions of web services.
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set of all instances belonging to the query class, and is returned by retrieve

as a set of URIs. The iS uses database queries to return individuals that are
“obviously” instances of the query class, and to identify those instances where
the DL reasoner is needed in order to determine if they form part of the answer
set.

initialise(database: Database, reasoner: OWLReasoner, ontology: OWLOntology)

addAssertion(instance: URI, class: OWLDescription)

retrieve(query: OWLDescription): Set 〈URI〉

Fig. 1. The iS API

3 Description of the Experiments Undertaken

The method we present could be applicable in general to many protein families,
but to demonstrate the technique and the fine-grained classification possible, we
present the analysis of one family, the protein phosphatases, in the human and
Aspergillus fumigatus genomes.

We have combined automated reasoning techniques [9, 14] with elements of
a service-oriented architecture [27, 19] to produce a system to automatically ex-
tract and classify the set of protein phosphatase from an organism.4 Figure 2
shows the components in our protein classification experiment. An OWL class-
level ontology describes the protein phosphatase family, and this ontology is
pre-loaded into the Instance Store. Protein instance data is extracted from the
protein set of a genome, and the p-domain composition is determined using
InterProScan. These p-domain compositions are then translated into OWL
descriptions and compared to the OWL definitions for protein family classes us-
ing the Instance Store which, in turn, uses a DL reasoner (Racer in this case), to
classify each such instance. For each protein class from our ontology, it returns
those proteins that can be inferred to be an instance of this class.

In the remainder of this section, we will describe the relevant components
of this architecture in more detail, and explain the outcomes of this experiment
from a biology perspective. In the next section, we describe the experience gained
and lessons learnt from a computer science perspective.

3.1 The Ontology

In this section, we describe how we capture the expert knowledge for phosphatase
classification in an OWL-DL ontology. All the information used for developing

4 Due to the relatively small test-set used, the case study reported here could have
been carried out using Racer [9] only, i.e., without the iS. However, larger sets of
protein data will necessitate the use of iS or a similar tool.
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Fig. 2. The Ontology Classification System Architecture.

our ontology comes from peer-reviewed literature from protein phosphatase ex-
perts. The family of human protein phosphatases has been well characterised
experimentally, and detailed reviews of the classification and family composition
are available [1, 7, 18]. These reviews represent the current community knowl-
edge of the relevant biology. If, in the future, new subfamilies are discovered, the
ontology can easily be changed to reflect these changes in knowledge; we will
comment on this in Section 4.

Fortunately for this application, there are precise rules,5 based on p-domain
composition, for protein family membership, and we can express these rules as
class definitions in an OWL-DL ontology. The use of an ontology to capture
the understanding of p-domain composition enables the automation of the final
analysis step which had previously required human intervention, thus allowing
for full automation of the complete process. In biology, the use of ontologies to
capture human knowledge of a particular domain and to answer complex queries
is becoming well established [8, 28]. Less well established is the use of reasoning
systems for data interpretation. In this study, we present a method which makes
use of ontology reasoning and illustrates the advantages of such an approach.

5 We use “rules” here in a completely informal way.
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Fig. 3. A screenshot of the phosphatase ontology in the OWL ontology editor Protégé.

The ontology was developed in OWL-DL using the Protégé editor,6 and
currently contains 80 classes and 39 properties; it is available at http://www.

bioinf.man.ac.uk/phosphabase/download. Part of the subsumption hierarchy
inferrred from these descriptions can be seen in the left-hand panel of Figure 3,
which shows the OWL ontology in the Protégé editor.

More precisely, for each class of phosphatase, this ontology contains a (nec-
essary and sufficient) definition. For this family of proteins, this definition is,
in most cases, a conjunction of p-domain compositions, i.e., a typical case of a
phosphatase class definition looks as follows, where Xi are p-domains:

If a Y protein contains at least n1 p-domains of type X1 and . . . and at least

nm p-domains of type Xm, then this protein also belongs to class Z.

For example, receptor tyrosine phosphatases contain one or two phosphatase cat-
alytic p-domains, and receptor tyrosine R2B phosphatases contain exactly 2 tyro-
sine phosphatase catalytic p-domains, one transmembrane p-domain, at least one
fibronectin p-domain, and at least one immunoglobulin p-domain. In some cases,
Xi is a disjunction of p-domains. P-domains come with a rather “flat” structure,
i.e., only few p-domains are specialisations of others. Clearly, “counting” state-
ments such as the one above go beyond the expressive power of OWL since

6 We used Protégé 3.0 with OWL plugin 1.3, build 225.1.
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they would require (the OWL equivalent of) qualified cardinality restrictions
[10], whereas OWL only provides unqualified cardinality restrictions through its
restriction(U minCardinality(n)) and restriction(U maxCardinality(n))

constructs. In contrast, this kind of expressive means was provided by DAML+OIL
[15], i.e., we could have defined the above mentioned receptor tyrosine phos-
phatases using the expression

IntersectionOf(Restriction(contains minCardinality(1) PhCatalDoms)

Restriction(contains maxCardinality(2) PhCatalDoms)

To overcome this problem, we used a well-known work-around.7 For each Xi

that we would have liked to use in a qualified number restriction, we introduced
a subproperty containsX i of contains, and set the range of containsX i to
the class Xi. In addition, we added sub-property assertions so that the hier-
archy of newly introduced properties containsX i reflects the class hierarchy
of the classes Xi used. Unfortunately, this work-around is not always correct.
That is, assume there are two ontologies, one with qualified number restrictions
and one that resulted from the application of this work-around. Then there are
cases where the first one implies a subsumption relationship between two classes,
whereas the second one does not imply this subsumption. Similarly, a class may
be unsatisfiable w.r.t. the first one, but satisfiable w.r.t. the second. We used
this work-around believing that it was correct and, when we learned that it
sometimes is not, were quite surprised—we had “cluttered” our ontology with
a large number of new properties without this guaranteeing the desired effect.
However, we then checked that, in the special case of our experiment, this work-
around is indeed correct, even though we are not going to prove this here. We
will comment more on this in Section 4 and 5.

Having captured the expert knowledge in this way, we are left with the prob-
lem of dealing with the potentially very large numbers of protein instances that
need to be classified according to the corresponding ontology. This requirement
motivated our use of the iS.

3.2 The Data Sets

This study focuses on the previously identified and described human phos-
phatases [1, 24], and the less well characterised A.fumigatus protein phosphatases.
The human phosphatases, having been carefully hand-classified, form a control
group for our automated protein phosphatase classification. Previous classifica-
tion of human phosphatases by biological experts provides a substantial test-set
for our approach. If the iS can classify the characterised proteins (at least)
as well as human experts, then this would increase our confidence when using
our method on unknown genomes. The A.fumigatus genome falls between these
extremes, and thus offers a unique insight into the comparison between the au-
tomated method and the manual. The A.fumigatus genome has been sequenced,
and annotation is currently underway by a team of human experts [22]. We have
considered 118 human phosphatases and 45 from A.fumigatus.

7 See, e.g., http://www.cs.vu.nl/~guus/public/qcr.html
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Pre-Screening Isolation of the protein phosphatase sequences from the protein
set of the genome was achieved by screening for diagnostic phosphatase motifs,
i.e. for specific patterns. These are

1. the protein tyrosine phosphatase active site motif H-C-X(5)-R
2. the protein serine/threonine phosphatase motif [LIVMN]-[KR]-G-N-H-E
3. the protein phosphatase C signature motif [LIVMFY]-[LIVMFYA]-[GSAC]-

[LIVM]-[FYC]-D-G-H-[GAV].

The EMBOSS program, PatMatDB [25] was used to perform the pre-screening
process. Performing an InterProScan on every protein sequence from the
genome would also have isolated the protein phosphatase sequences, but each
InterProScan can take several minutes. PatMatDB can screen the whole
genome in the time taken to run one InterProScan, so we decided to use In-

terProScan only for the detailed analysis of each sequence identified as being
a protein phosphatase.

3.3 Queries Asked and Results

The purposes of the human and A.fumigatus studies were different. The human
study was a proof of concept to demonstrate the effectiveness of the automated
method. The A.fumigatus study was more focused towards biological discovery.

For the human phosphatases, we were interested in comparing the auto-
mated classification with the thorough, human expert classification. Therefore,
we browsed the class hierarchy of our phosphatase ontology and, for each class,
we retrieved those proteins for which the iS inferred that this class was the most
specific one. We were also interested in identifying instances that did not fit any
of the ontology class definitions (i.e., whose most specific class was the top class).

For the A.fumigatus phosphatases, we browsed the class hierarchy in a sim-
ilar way but, as the phosphatases from this organism were less well charac-
terised, we were particularly interested in the differences between the human
and A.fumigatus set, i.e., we were interested in finding classes that had instances
of the human proteins, but not of the A.fumigatus proteins, and vice versa. All
these queries could be answered easily and quickly using the iS.

The results of this experiment were three-fold. Firstly, we found that the
automated classification of the human protein phosphatases performed as well
as the manual classification by phosphatase experts. Since the same protein in-
stances were used in the automated and manual studies, we could compare these
two classifications, and it turned out that both classifications put almost all phos-
phatases into the same place in the class hierarchy. This evidence shows proof of
concept, and suggests that the automated approach could be used to solve the
current annotation bottleneck. Secondly, in the few cases where the automatic
and the manual classification differed, detailed investigations by a domain expert
revealed that the automatic one was actually “more correct”: we discovered two
proteins for which no appropriate class was available, i.e. they were classified by
the automatic classification as instances of the top phosphatases class.
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This discovery lead to a modification of the ontology, and thus of the expert
knowledge on proteins. One of these phosphatases was DUSP10 (Dual specificity
phosphatase 10). It was found to contain an extra p-domain, a disintegrin. This
particular p-domain is not found in any other protein phosphatase and poses
interesting questions about possible protein functions to the biologists. Our au-
tomated classification method was able to find these mis-classifications because
the iS applied the expert knowledge systematically and consistently.

The automated classification of the A.fumigatus phosphatases revealed large
differences from the human phosphatases. Not only were there fewer individual
proteins, but whole subfamilies were missing. Some of these differences can be
attributed to the differences in the two organisms. Many phosphatases in the
human classification were tissue-specific variations of tissue-types that do not
occur in A.fumigatus. Since A.fumigatus is pathogenic to humans, these differ-
ences are important avenues of investigation for potential drug targets. The most
interesting discovery in the A.fumigatus data set was the identification of a novel
type of calcineurin phosphatase, i.e., again, a phosphatase that was classified au-
tomatically only as an instance of the top class. Calcineurin is well conserved
throughout evolution and performs the same function in all organisms. However,
in A.fumigatus, it contains an extra functional p-domain. Further bioinformatics
analyses revealed that this extra p-domain also occurs in other pathogenic fun-
gus species, but in no other organisms, suggesting a specific functional role for
this extra p-domain. Previous studies have identified divergences in the mecha-
nism of action of calcineurin in pathogenic fungi as being linked to virulence, so
this protein is an interesting drug-target for future study.

4 Lessons Learnt

As we have seen, we have successfully used Semantic Web technology in a bioin-
formatics application. Besides finding new protein families that are of interest
to biologists, we have shown that automated classification can indeed compete
with manual classification, and is sometimes even superior. Our approach to
automated classification combines the advantages of speed of the automated
methods and accuracy of human expert classification, the latter being due to
the fact that we captured the expert knowledge in an OWL ontology. The com-
bination of the two, namely speed and expert knowledge, provides a quick and
efficient method for classifying proteins on a genomic scale, and offers a solution
to the current annotation bottleneck.

Our approach was made possible by the development of state-of-the-art Se-
mantic Web technology, such as the OWL ontology language, the Protégé OWL
ontology editor, the OWL Instance Store, and the Racer OWL reasoner; this
technology did not emerge overnight, but is based on decades of research in
logic-based knowledge representation and reasoning. Although neither Racer nor
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the iS support all of OWL-DL,8 these tools proved more than adequate for our
experiment.

In contrast, a limitation in the expressive power of OWL-DL did cause con-
siderable problems: the lack of qualified number restrictions (also called qualified
cardinality restrictions). In order to overcome this limitation, we had to employ
a work around and verify that this work around, even though not correct in
general, was correct for our ontology and instance data. This work around intro-
duced a significant overhead, and was only possible through a close co-operation
between the biologists and computer scientists. We, therefor, cannot recommend
such an approach in general. Additionally, we observe that, from a theoretical
and practical perspective, this work around should not be necessary since (a)
reasoners such as Racer and Fact [9, 13] support qualified number restrictions,
(b) for all Description Logics we are aware of that support (unqualified) number
restrictions, the worst-case complexity of reasoning remains the same when they
are extended with qualified number restrictions (see, e.g., [29]), and (c) the latest
version of Protégé-OWL now supports qualified number restrictions. Hence we
can, in the future, run similar experiments without having to resort to this work
around, provided that we are willing to diverge from the current OWL standard.

The ability to run such experiments is of considerable importance since there
is a wealth of unannotated and partially annotated data in the public domain,
to which we plan to apply our approach. New genomes are being sequenced
continually, and some existing genomes have not been annotated to any degree
of detail. Now that the ontology system architecture is in place, new proteins
can be quickly and successfully classified as members of protein phosphatase
subfamilies. Development of other ontologies, would enable the application of
this technique to some of the 1,000’s of other protein families.

This paper demonstrates a proof of concept for the automated classification
of proteins using automated reasoning technologies. From a study involving a
single protein family and two species, we were able to identify a new protein
subclass. As this class of protein appears to be specific to pathogenic fungi, it is
potentially useful for further pharmaceutical investigations. Automated reason-
ing over instance data has therefore enabled us to generate new hypotheses which
will require significiant further laboratory experimentation, which, in turn, will
potentially improve our understanding of protein phosphorylation.

Finally, we would like to point out that the ontology definitions are pro-
duced from expert protein family knowledge. Therefore, they reflect what is
currently known in the research community, and are made explicit in a machine-
understandable format, namely OWL-DL. This has several important conse-
quences. Firstly, the construction of such an ontology can help in the develop-
ment of a consensus from within the community [3], and even if the community
fails to agree on a single ontology, automated classification could be used to en-

8 Racer does not support individual names in complex class descriptions (so-called
nominals—see [16]), and the current version of iS does not support role assertions
between individuals.
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able “parallel” alternative annotations. Secondly, if the community knowledge of
the protein family changes, the ontology can easily be altered, and the protein
instances can be re-classified accordingly. Lastly, if the definitions are based on
what is known, proteins that do not fit into any of the defined classes are easily
identified, making the discovery of new protein subfamilies possible.

5 Outlook and Future Work

Our plans for future work are manifold. Basically, we want to do more “auto-
mated” biology, but we are thereby pushing the current state-of-art in logic-based
knowledge representation, automated reasoning, and Semantic Web technology.
Within this section, we only discuss three of the related issues.

Firstly, we observe that a protein is a sequence of amino acids, and thus
sequences can be seen as strings over a twenty letter alphabet since there are
only twenty amino acids. In our current ontology, we do not capture this sequence
information, and thus cannot answer queries related to these sequences. From a
biology perspective, however, queries such as “give me all proteins whose amino
acid sequence contains an M followed by some arbitrary sub string, which is
then followd by a NEN” would be really valuable. From a computer science
perspective, we could easily express (and query over) these strings using a simple
form of concrete domains, so-called datatypes [21, 12]. However, the datatypes
currently available in OWL do not provide predicates that compare a given string
with a regular expression, a comparison that would reflect the above example
query.

Secondly, we are currently concerned with a single class of components of an
organism, namely the proteins. In the future, we want to use the available tech-
nology to automate investigations into their interaction, and also represent and
reason about larger structures such as genomes and cells. We could easily model
interactions between proteins using a property interact to make statements
such as “proteins of class X only interact with proteins of class Y”. However, we
would also need to make statements on an instance level such as “this protein
instance interacts with that protein instance”, which is possible in OWL-DL, but
goes beyond the capabilities of the current iS. We are currently extending the
iS to handle statements of this kind, and we will see if this extension is able to
cope with the large volumes of data that will be needed in biology applications.9

Thirdly, we will “roll back” the work-around we used to cope with the absence
of qualified number restrictions, both in our ontology and in the instance data,
instead using the form of qualified number restrictions provided by Protégé,
Racer, and the iS. This will greatly enhance the interpretability of the current
ontology and also make its extension to other families of proteins more straight-
forward.

9 Racer can already handle such statements, but can only deal with a relatively small
number of individuals.
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