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1 Introduction

In this paper we introduce a new axiom scheme, the Relation Reflection
Scheme (RRS), for constructive set theory. Constructive set theory is an
extensional set theoretical setting for constructive mathematics. A formal
system for constructive set theory was first introduced by Myhill in [8]. In
[1, 2, 3] I introduced a formal system CZF that is closely related to Myhill’s
formal system and gave a natural interpretation of CZF and extensions of it
in Martin-Löf’s constructive type theory, [7]. The axiom system CZF can be
formulated in the same first order language as that of ZF, but uses intuition-
istic logic rather than classical logic. But when the law of excluded middle is
added the resulting classical theory has the same theorems as ZF. So, from
the classical point of view, CZF does not involve any choice principle. The
axiom CC of countable choice and even the stronger axiom DC of dependent
choices have been accepted principles of constructive mathematics that have
played an important role in the development of constructive analysis, partic-
ularly Bishop style constructive mathematics. In fact the interpretation of
CZF in constructive type theory actually also gives an interpretation of each
instance of the axiom scheme RDC of relative dependent choices; an axiom
scheme that implies DC. So it is natural to consider allowing the free use
of RDC in constructive set theory. But there are reasons for avoiding the
use of any choice principles, even of CC, when possible. The Boolean-valued
models of ZF generalise to Heyting-valued models of CZF. More precisely,
in CZF, given a set-presented frame, which will form a complete Heyting
algebra, Ω, there is a natural Ω-valued model construction that gives a rein-
terpretation of CZF, [5, 6], and, in general, these reinterpretations do not
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always model any choice principles, even the countable choice principle. For
example, countable choice fails in the Heyting valued model over the com-
plete Heyting algebra of open sets of real numbers; see Proposition 2.2 of
chapter 15 in volume II of [9]. So, if one wants to prove results that will
hold in all such Heyting-valued models one should try to avoid the use of any
choice principles in constructive set theory, when possible.

One of the axiom schemes of CZF is the subset collection scheme. In this
paper that scheme does not play a role so that we prefer to state our results
for the axiom system CZF− obtained from CZF by leaving out the subset
collection scheme.

The axiom scheme RRS can be derived in CZF− + RDC. In fact, in
CZF− the scheme RDC can be analysed as the combination of RRS with
DC. While RDC and DC are clearly choice principles I claim that RRS
is not a choice principle. Moreover, assuming CZF− + RRS as metatheory,
all Heyting-valued models using set-generated frames do reinterpret CZF−+
RRS, a property of CZF− + RRS that is not shared with CZF− + RDC.
It is plausible, but I have not seen a proof, that there are instances of RDC
that are not theorems of CZF + DC, and in that case RRS would also not
be a theorem of CZF + DC even though it is a theorem of ZF, as we will
show.

We will show that RRS is useful by proving a result, in CZF− + RRS,
about coinductive definitions of classes that is a dual to a basic result about
inductive definitions of classes. An earlier proof of the coinduction result
used RDC and it was as a consequence of my dissappointment with the
need to use a choice principle that I came to consider RRS. Coinductive
definitions promiss to be useful in constructive mathematics. For example,
when inductively generating a cover relation in formal topology it is natural
to also coinductively generate a binary positivity relation.

We introduce the new scheme, RRS, in Section 2 after giving the stan-
dard formulations of DC and RDC and show that in CZF− the scheme
RDC can be analysed as RRS + DC. We also show that RRS is a theo-
rem of ZF. In Section 3 we prove the result about coinductive definitions of
classes in CZF− + RRS. In Section 4 we review the Heyting-valued model
construction for CZF− and in Section 5 we show that each instance of RRS
holds in such a model.

We recall that the axiom system CZF− may be axiomatised in the same
first order language as the axiom system for classical axiomatic set theory,
but uses intuitionistic logic, the standard axioms of Extensionality, Pairing,
Union and Infinity and the axiom schemes of Restricted Separation, Set
Induction and Strong Collection. The reader should refer to [4] for more
information concerning constructive set theory. We will use standard class

2



notation and terminology as in [4]. For example we may state the Strong
Collection Scheme, used several times in this paper, in the following informal
way.

Definition: 1.1 (Strong Collection Scheme) Given a class R of ordered

pairs, for every set a such that

(∀x ∈ a) ∃y (x, y) ∈ R

there is a set b such that (∀x ∈ a)(∃y ∈ b) (x, y) ∈ R and (∀y ∈ b)(∃x ∈
a) (x, y) ∈ R.

2 The new scheme

We recall the axiom DC and the scheme RDC:

Definition: 2.1 (Axiom of Dependent Choices, DC) For sets A,R with

R ⊆ A×A, such that

(∀x ∈ A)(∃y ∈ A) (x, y) ∈ R,

if a0 ∈ A then there is f : N → A such that f(0) = a0 and for all n ∈ N,

(f(n), f(n+ 1)) ∈ R.

Definition: 2.2 (Scheme of Relative Dependent Choices, RDC) For

classes A,R with R ⊆ A×A, such that

(∀x ∈ A)(∃y ∈ A) (x, y) ∈ R,

if a0 ∈ A then there is f : N → A such that f(0) = a0 and, for all n ∈ N,

(f(n), f(n+ 1)) ∈ R.

Next we formulate the new scheme.

Definition: 2.3 (Relation Reflection Scheme, RRS) For classes A,R

with R ⊆ A× A, such that

(∀x ∈ A)(∃y ∈ A) (x, y) ∈ R,

if a is a subset of A then there is a subset b of A such that a ⊆ b and

(∀x ∈ b)(∃y ∈ b) (x, y) ∈ R.

This scheme is a consequence of RDC. In fact we have the following result.
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Theorem: 2.4 (CZF−) The scheme RDC is equivalent to RRS + DC.

Proof: Clearly DC can be proved using RDC as each set is a class. Next
we prove each instance of RRS using RDC. So let A,R be classes such that

(∀x ∈ A)(∃y ∈ A) (x, y) ∈ R,

and let a be a subset of A. Let A′ = Pow(A), the class of all subsets of A
and let R′ be the class of all pairs (X, Y ) ∈ A′ × A′ such that

(∀x ∈ X)(∃y ∈ Y ) (x, y) ∈ R.

Using Strong Collection we get that

(∀X ∈ A′)(∃Y ∈ A′) (X, Y ) ∈ R′.

As a ∈ A′ we may apply RDC to get a function f : N → A′ such that f(0) =
a and (f(n), f(n+1)) ∈ R′ for all n ∈ N. Now let b =

⋃
n∈N

f(n). Then a ⊆ b.
Also if x ∈ b then x ∈ f(n) for some n ∈ N and, as (f(n), f(n+1)) ∈ R′, there
is y ∈ f(n+ 1) ⊆ b such that (x, y) ∈ R. Thus (∀x ∈ b)(∃y ∈ b) (x, y) ∈ R.

Finally we prove each instance of RDC using RRS and DC. So let A,R
be classes with R ⊆ A× A, such that (∀x ∈ A)(∃y ∈ A) (x, y) ∈ R, and let
a0 ∈ A. Then, by RRS, there is a set b ⊆ A such that {a0} ⊆ b and

(∀x ∈ b)(∃y ∈ b) (x, y) ∈ R.

By Strong Collection there is a set r ⊆ R such that (∀x ∈ b)(∃y ∈ b) (x, y) ∈
r. So, by DC, there is f : N → b such that f(0) = a0 and, for all n ∈ N,
(f(n), f(n+ 1)) ∈ r ⊆ R.
�

We end this section with a proof of the result that the new scheme is a
theorem of classical set theory, the proof using a standard technique of classi-
cal set theory for proving reflection properties. This is to use the cumulative
hierarchy {Vα}α∈On of sets Vα indexed by ordinals α ∈ On. This hierarchy is
given by the recursive defining equation

Vα =
⋃

β<α

Pow(Vβ)

and has the property that Vβ ⊆ Vα for β < α. Moreover if V is the universe
class of all sets then V =

⋃
α∈On Vα.

Theorem: 2.5 Each instance of RRS is a theorem of ZF.
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Proof:
Let A,R be classes with R ⊆ A×A, such that (∀x ∈ A)(∃y ∈ A) (x, y) ∈

R, and let a be a subset of A. We must show that there is a subset b of A
such that a ⊆ b and

(∀x ∈ b)(∃y ∈ b) (x, y) ∈ R.

For each ordinal α ∈ On let Aα = A ∩ Vα. Then each Aα is a set, Aβ ⊆ Aα

for β < α and A =
⋃

α∈OnAα.
Let α ∈ On. If x ∈ Aα then there is β ∈ On such that (∃y ∈ Aβ)[(x, y) ∈

R] annd so we may let fα(x) be the least such β. Let g(α) = supx∈Aα
fα(x).

Then (∀x ∈ Aα)(∃y ∈ Ag(α))[(x, y) ∈ R]. As the set a is a subset of A it is
a subset of Aα0

for some ordinal α0. By primitive recursion we can define
a strictly increasing infinite sequence of ordinals α0 < α1 < · · · by letting
αn+1 = max(g(αn), αn + 1) for each n ∈ N. Let α = supn∈Nαn. Then

x ∈ Aα ⇒ x ∈ Aαn
for some n ∈ N

⇒ (x, y) ∈ R for some y ∈ Aαn+1

⇒ (x, y) ∈ R for some y ∈ Aα

Now if b = Aα then a ⊆ Aα0
⊆ Aα and (∀x ∈ b)(∃y ∈ b) (x, y) ∈ R, as

desired.
�

3 Coinductive definitions of classes

It has turned out there there are results which have been proved using RDC,
but in fact only need RRS. In particular we have a result concerning the
coinductive definition of classes in constructive set theory which is a dual to
a result concerning the inductive definition of classes. While the inductive
definitions result can be carried out in CZF− the dual result has seemed to
need RDC, but in fact can be proved using just RRS.

Recall from [4] that given a class Φ of pairs (X, a) it can be proved in
CZF− that there is a smallest Φ-closed class I, where a class Y is Φ-closed

if, for every (X, a) ∈ Φ,
X ⊆ Y ⇒ a ∈ Y.

We call I the class inductively defined by Φ.
As with inductive definitions a coinductive definition can also be given

by a class Φ of pairs (X, a). A class Y is defined to be Φ-progressive if, for
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every (X, a) ∈ Φ,
a ∈ Y ⇒ X)(Y,

where X)(Y if X ∩ Y is inhabited; i.e. has an element. If there is a largest
Φ-progressive class J then we call J the class coinductively defined by Φ.

Note that, using classical logic, a class Y is Φ-progressive iff its comple-
ment class {a | a 6∈ Y } is Φ-closed and hence when the smallest Φ-closed
class I exists then its complement is the largest Φ-progressive class J . So, in
ZF, J always exists. The following result seems to be the best we can do in
constructive set theory.

Theorem: 3.1 (CZF− + RRS) Let Φ be a class of pairs (X, a) such that

the class Φa = {X | (X, a) ∈ Φ} is a set for all sets a. Then there is a largest

Φ-progressive class J .

First observe that the union of any family of Φ-progressive classes is Φ-
progressive. In particular the class

J =
⋃

{Y | Y is a Φ-progressive set }

is a Φ-progressive class. We will show that any Φ-progressive class B is a
subclass of J . We will use the following lemma.

Lemma 3.2 If B is a Φ-progressive class then ∀Y ∈ Pow(B) ∃Y ′ ∈ Pow(B) ∀a ∈
Y ∀X ∈ Φa X)(Y ′.

Proof: Given Y ∈ Pow(B) let ΦY = {(X, a) ∈ Φ | a ∈ Y }. Then
ΦY =

⋃
a∈Y (Φa × {a}) is a set and, as B is Φ-progressive and Y ⊆ B,

(∀(X, a) ∈ ΦY ) ∃y [y ∈ X ∩B].

So, by Strong Collection, there is a set Y ′ such that

(∀(X, a) ∈ ΦY )(∃y ∈ Y ′)[y ∈ X ∩B] & (∀y ∈ Y ′)(∃(X, a) ∈ ΦY )[y ∈ X ∩ B].

So Y ′ ∈ Pow(B) and a ∈ Y ⇒ X)(Y ′, for all (X, a) ∈ Φ, completing the
proof of the lemma.
�
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Proof of Theorem 3.1: To show that a Φ-progressive class B is a sub-
class of J let b ∈ B. It suffices to show that b ∈ U for some Φ-progressive set
U , as then b ∈ U ⊆ J . By the lemma and RRS there is a set Z ⊆ Pow(B)
such that {b} ∈ Z and

(∗) ∀Y ∈ Z ∃Y ′ ∈ Z ∀a ∈ Y ∀X ∈ Φa X)(Y ′.

Note that, using RDC instead of RRS, a set Z such that {b} ∈ Z and
(∗) can be defined to be

⋃
n∈N

f(n) where f : N → Pow(B) is obtained using
the lemma and RDC, so that f(0) = {b} and, for all n ∈ N,

∀a ∈ f(n) ∀X ∈ Φa X)(f(n+ 1).

Let U = ∪Z. Then b ∈ U . Also if a ∈ U , with (X, a) ∈ Φ, then a ∈ Y

for some Y ∈ Z so that X)(Y ′ for some Y ′ ∈ Z and hence X)(U . Thus U is a
Φ-progressive set.

We have now shown that J is the largest Φ-progressive class.
�

4 Review of the Heyting algebra valued

Models of CZF−

While RDC is obviously a choice principle it would seem that RRS may not
be a choice principle. One evidence for this is the following fact. The choice
principles RDC and DC are not generally preserved in the cHa models for
CZF− but the scheme RRS is; i.e. we have the following result.

Theorem: 4.1 (CZF− + RRS) The scheme RRS holds in each cHa model

of CZF−.

We will sketch a proof of this theorem. But first we review the cHa model
construction.

Nicola Gambino, in his PhD thesis, [5], and subsequently in [6], has shown
how to carry over the apparatus of Boolean valued models of the classical
set theory ZF in the classical metatheory of ZF that uses complete Boolean
algebras, to the more general context of Heyting algebra valued models of
CZF− in the constructive metatheory of CZF−. For this it is necessary
to use a cHa (complete Heyting algebra) that is set generated. Moreover
Gambino assumes, without loss of generality, that the set-generated cHa is
given in terms of a poset S; i.e. a set that comes equipped with a partial
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ordering that is itself a set of ordered pairs. The elements of the cHa are
the j-closed subsets of a poset S, where j : Pow(S) → Pow(S) satisfies the
following conditions for a, b ∈ Pow(S) and a ∈ Pow(S) is j-closed if ja ⊆ a.
We call a a lower set if

s ≤ s′ ∈ a ⇒ s ∈ a.

1. ja is a lower set,

2. a ⊆ ja,

3. j(ja) ⊆ ja,

4. a ⊆ b ⇒ ja ⊆ jb,

5. ja ∩ jb ⊆ j(a ∩ b) if a, b are lower sets.

We will call an operator j satisfying the conditions 1−5 above a local closure

operator.
The class of lower sets of the poset S form a set-based topology on S and

so form a set-generated cHa, partially ordered by the subset relation, and
the local closure operator j, when restricted to the lower sets, is a nucleus.
It follows that the class ΩjS of j-closed sets also form a set-generated cHa,
when partially ordered by the subset relation. Every set-generated cHa is
isomorphic to one of the form ΩjS. So there is no real loss in just considering
such set-generated cHa ’s. The advantage in working with a cHa of the form
ΩjS is that there is a good notion of j-closed subclass of S. A class P ⊆ S

is defined to be a j-closed class if ja ⊆ P for every set a ⊆ P . For each class
P ⊆ S let JP =

⋃
{ja | a ⊆ P}. So P is j-closed iff JP ⊆ P . The indexed

sup and inf operations on the j-closed classes is defined as follows, where Pi

is a j-closed class for each i ∈ L, with I a class.

∨
i∈I Pi = J(

⋃
i∈I Pi)

∧
i∈I Pi =

⋂
′

i∈I Pi = {s ∈ S | (∀i ∈ I) s ∈ Pi}

Both
∨

i∈I Pi and
∧

i∈I Pi are j-closed classes and are sets when I and each Pi

are sets. We get the binary join and meet operations on the j-closed classes
by taking I = 2 to get P0 ∨ P1 =

∨
i∈2 Pi and P0 ∧ P1 =

∧
i∈2 Pi. We also

need the pseudo-complement operation on the j-closed classes. For j-closed
classes P,Q we let

P → Q = {s ∈ S | (∀s′ ≤ s)[s′ ∈ P ⇒ s′ ∈ Q]}.
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Then P → Q is also j-closed and is a set if P,Q are sets.
We are now ready to define the model. From now on we will just write Ω′

for ΩjS. The universe of the model is inductively defined to be the smallest
class V ′ such that

if a is a function a : δa→ Ω′ with domain δa a subset of V ′ then
a ∈ V ′.

If a ∈ V ′ and Pb is a j-closed class for each b ∈ δa then let

∨
b:a Pb =

∨
b∈δa[a(b) ∧ Pb]

∧
b:a Pb =

∧
b∈δa[a(b) → Pb]

We define Eq(a, b) ∈ V ′ for a, b ∈ V ′ by a double recursion on the inductive
definition of V ′ using the following equation.

Eq(a, b) =
∧

a′:a

∨

b′:b

Eq(a′, b′) ∧
∧

b′:b

∨

a′:a

Eq(a′, b′)

Let L be the following first order language of set theory. As well as
the logical constants ⊤,⊥, binary connectives ∧,∨,→, quantified variables
∀x, ∃x and equality predicate symbol = the language has primitive restricted
quantifiers (∀x ∈ y), (∃x ∈ y). For any class A let LA be the language
obtained from L by adding an individual constant for each element of A. It
will be convenient to identify the element with its constant. So the terms of
LA are either the variables of L or the constants from A and the formulae
of LA are generated using the following rules.

1. Every atomic formula (s = t) is a formula where s, t are terms of LA,

2. ⊤,⊥ are formulae.

3. If φ, ψ are formulae then so are φ ∧ ψ, φ ∨ ψ and φ→ ψ.

4. If φ is a formula so are (∀x ∈ y)φ, (∃x ∈ y).

5. If φ is a formula so are ∀xφ, ∃xφ.

The ∆0 formulae are those generated using only rules 1 − 4. We use the
usual definitions for ¬φ and (φ ↔ ψ) as (φ → ⊥) and (φ → ψ) ∧ (ψ → φ)
respectively. In addition we use the definition

(x ∈ y) ≡ (∃z ∈ y)[x = z].
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We now associate a j-closed class [[φ]]V ′ to each sentence φ of LV ′ by
recursion following the way the sentence φ is generated. In these equations
we have left off the subscript V ′ from [[ ]]V ′ and added a subscript Ω′ to the
elements ⊤,⊥ of Ω′ and the three binary Ha operations ∧,∨,→ on the j-
closed classes so as to avoid any possible confusion with the logical constants
and binary connectives.

1. [[a = b]] = Eq(a, b) for a, b ∈ V ′,

2. [[⊤]] = ⊤Ω′ and [[⊥]] = ⊥Ω′ ,

3. [[φ ∧ ψ]] = [[φ]] ∧Ω′ [[ψ]], [[φ ∨ ψ]] = [[φ]] ∨Ω′ [[ψ]] and [[φ → ψ]] =
[[φ]] →Ω′ [[ψ]],

4. [[(∀x ∈ a)φ(x)]] =
∧

a′:a[[φ(a′)]] and [[(∃x ∈ a)φ(x)]] =
∨

a′:a[[φ(a′)]],

5. [[∀xφ(x)]] =
∧

a′∈V ′ [[φ(a′)]], and [[∃xφ(x)]] =
∨

a′∈V ′[[φ(a′)]].

Note that [[φ]] is a set and so in Ω′ when φ is a ∆0 sentence of LV ′.
A sentence φ of LV ′ is valid in V ′, written |=V ′ φ, if [[φ]]V ′ = ⊤Ω′. A

formula φ(x1, . . . , xn) of LV ′ is valid in V ′, written |=V ′ φ(x1, . . . , xn), if its
universal closure ∀x1 · · · ∀xnφ(x1, . . . , xn) is valid in V ′; i.e. |=V ′ φ(a1, . . . , an)
for all a1, . . . , an ∈ V ′.

The following result is essentially Theorem 3.15 of [6].

Theorem: 4.2 Assuming CZF− in the metatheory, each theorem of CZF−

is valid in V ′. Moreover, if CZF is assumed in the metatheory and Ω′ is

set-presented then each theorem of CZF is valid in V ′.

5 The proof of Theorem 4.1

We want to show, in CZF− +RRS, that every instance of the scheme RRS
is valid in the cHa semantics over Ω′. So let θ(x) and φ(x, y) be formulae
of LV ′ having at most the free variables displayed. We want to prove the
validity in V ′ of the sentence

∀u[φ′ ∧ θ′(u) → ∃v(u ⊆ v ∧ θ′(v) ∧ (∀x ∈ v)(∃y ∈ v)φ(x, y))],

where φ′ ≡ ∀x[θ(x) → ∃y(θ(y) ∧ φ(x, y))] and θ′(u) ≡ ∀x ∈ uθ(x). To do
that it is sufficient to prove the following result.

Theorem: 5.1 Let p ∈ Ω′ and a0 ∈ V ′ such that

1 p ⊆ [[∀x[θ(x) → ∃y(θ(y) ∧ φ(x, y))]]],
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2 p ⊆ [[∀x ∈ a0 θ(x)]].

Then there is b ∈ V ′ such that

3 p ⊆ [[a0 ⊆ b]],

4 p ⊆ [[∀x ∈ b θ(x)]],

5 p ⊆ [[(∀x ∈ b)(∃y ∈ b)φ(x, y)]].

Proof: Let p ∈ Ω′ such that 1 and let A = {a ∈ V ′ | p ⊆ [[∀x ∈ a θ(x)]]}.

Claim: (∀a ∈ A)(∃b ∈ A) p ⊆ [[(∀x ∈ a)(∃y ∈ b)φ(x, y)]].

Proof of Claim: Let a ∈ A. Then, by 1, p ⊆ [[(∀x ∈
a)(∃y)(θ(y) ∧ φ(x, y))]]. As in the proof of Proposition 5.17 of
[5] or Proposition 3.11 of [6] we get b ∈ V ′ such that p ⊆
[[(∀x ∈ a)(∃y ∈ b)(θ(y) ∧ φ(x, y))]] and p ⊆ [[(∀y ∈ b)(∃x ∈
a)(θ(y)∧φ(x, y))]]. It follows that b ∈ A and p ⊆ [[(∀x ∈ a)(∃y ∈
b)φ(x, y)]].

�

Now let a0 ∈ V ′ such that 2; i.e. a0 ∈ A. Let a = {a0}. So a ⊆ A and,
using the claim, we may apply RRS to get a set b ⊆ A such that a ⊆ b and

(∗) (∀a ∈ b)(∃a′ ∈ b) p ⊆ [[(∀x ∈ a)(∃y ∈ a′) φ(x, y)]].

Define b ∈ V ′ as follows. Let δb =
⋃
{δa | a ∈ b}. Then δb is a subset of

V ′ and we can define b : δb → Ω′ as follow. For c ∈ δb let b(c) =
∨

a∈bc

a(c),

where bc = {a ∈ b | c ∈ δa}. It only remains to prove 3, 4, 5.

Proof of 3 Note that a0 ∈ b and [[a0 ⊆ b]] =
∧

c∈δa0
(a0(c) →

∨
c′∈δb(b(c

′) ∧

[[c = c′]])). But, for c ∈ δa0, if c′ = c then c′ ∈ δb and, as a0 ∈ bc and
[[c = c′]] = ⊤,

a0(c) ⊆ (b(c′) ∧ [[c = c′]]) ⊆
∨

c′∈δb

(b(c′) ∧ [[c = c′]])).

So p ⊆ ⊤ = [[a0 ⊆ b]] and, in fact, |= a0 ⊆ b.
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Proof of 4 Observe that

[[∀x ∈ b θ(x)]] =
∧

c∈δb(b(c) → [[θ(c)]])

=
∧

c∈δb(
∨

a∈bc

a(c) → [[θ(c)]])

=
∧

c∈δb

∧
a∈bc

(a(c) → [[θ(c)]])

=
∧

a∈b

∧
c∈δa(a(c) → [[θ(c)]])

=
∧

a∈b[[∀x ∈ a θ(x)]].

But, as b ⊆ A, p ⊆ [[∀x ∈ a θ(x)]] for all a ∈ b so that p ⊆ [[∀x ∈
b θ(x)]].

Proof of 5 It suffices to show that, for c ∈ δb, (p ∧ b(c)) ⊆
∨

c′∈δb(b(c
′) ∧

[[φ(c, c′)]]). As b(c) =
∨

a∈bc

a(c) it suffices to show that, for each a ∈ bc,

p ∧ a(c) ⊆
∨

c′∈δb

(b(c′) ∧ [[φ(c, c′)]]).

Now if a ∈ bc then a ∈ b so that, by (∗), there is a′ ∈ b such that

p ⊆ [[(∀x ∈ a)(∃y ∈ a′) φ(x, y)]].

It follows that, as c ∈ δa,

p ∧ a(c) ⊆ [[∃y ∈ a′ φ(c, y)]]

=
∨

c′∈δa′(a′(c′) ∧ [[φ(c, c′)]])

⊆
∨

c′∈δb(b(c
′) ∧ [[φ(c, c′)]]),

as was wanted.

�
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