
Predicate logic over a type setup

Peter Aczel

petera@cs.man.ac.uk

Manchester University and SCAS

Philosophy and Foundations of Mathematics:

Epistemological and Ontological Aspects-

a conference dedicated to Per Martin-Löf

on the occasion of his retirement May 5-8, 2009

Swedish Collegium for Advanced Study (SCAS), Uppsala, Sweden

Predicate logic over a type setup – p.1/33

Type setups and logic enriched type theories

• Dependent type theories often use a fixed interpretation
of the logical notions; e.g. props-as-types or some variant.
• Logic enriched type theories leave logic uninterpreted.

Plan of Talk

Some dependent type theories and their logics

Some category notions for type dependency

Type setups

Logic over a type setup

The disjunction and existence properties

Propositions as types

Predicate logic over a type setup – p.2/33

Some dependent type theories and their logics, 1

• Basic Martin-Lof type theory, with the forms of type

(Πx : A)B(x), (Σx : A)B(x), A1+A2, Nk(k = 0, 1, . . .), I(A, a1, a2)

with A1 → A2 =def (Π_ : A1)A2, A1 × A2 =def (Σ_ : A1)A2.

Propositions-as-Types (à la Curry-Howard)
Proposition = Type

Prop ⊥ > A1 ⊃ A2 A1 ∧ A2 A1 ∨ A2

Type N0 N1 A1 → A2 A1 ×A2 A1 + A2

Prop (∀x : A)B(x) (∃x : A)B(x) (a1 =A a2)

Type (Πx : A)B(x) (Σx : A)B(x) I(A, a1, a2)

Predicate logic over a type setup – p.3/33

Some dependent type theories and their logics, 2

• Martin-Lof type theory in a logical framework
This has a predicative type universe of sets/propositions:

Proposition = Set = Datatype
(∀x : A)B(x) : Prop can only be formed if A : Set.
• Coq type theory (a calculus of inductive constructions)
This has a predicative type universe Set of datatypes and
an impredicative type Prop where (Πx : A)B(x) : Prop can
be formed even when we do not have A : Set.
• The impredicative Russell-Prawitz representation of logic
in Prop is used; This representation can be given in terms
of the Russell-Prawitz modality, J , where J assigns to each
type A the type JA : Prop, where

JA ≡ (Πp : Prop)((A→ p) → p).

Predicate logic over a type setup – p.4/33

Some dependent type theories and their logics, 3

Propositions-as-Types (à la Russell-Prawitz)
Proposition = type in Prop

Prop ⊥ > A1 ⊃ A2 A1 ∧ A2 A1 ∨ A2

Type JN0 JN1 A1 → A2 J(A1 × A2) J(A1 + A2)

Prop (∀x : A)B(x) (∃x : A)B(x) (a1 =A a2)

Type (Πx : A)B(x) J(Σx : A)B(x) JI(A, a1, a2)

JA ≡ (Πp : Prop)((A→ p) → p).

JA : Prop

Predicate logic over a type setup – p.5/33

Some dependent type theories and their logics, 4

• So the propositions-as-types- à-la-Russell-Prawitz
representation of intuitionistic logic is the result of applying
the propositions-as-types-à-la-Curry-Howard representation
of intuitionistic logic followed by the j-translation of
intuitionistic logic into itself.
• The j-translation generalises the ¬¬-translation for any
unary connective j satisfying the laws

φ ⊃ jφ and (φ ⊃ jψ) ⊃ (jφ ⊃ jψ).

• Note: For types A,B,
j1 : A→ JA and j2 : (A→ JB) → (JA→ JB)

where
j1 ≡ (λx : A, p : Prop, y : A→ p) y(x)

j2 ≡ (λx : A→ JB, y : JA) y(JB)(x)
.

Predicate logic over a type setup – p.6/33

Logic enriched type theories
These are obtained from type theories by simply adding a
logic ‘on top’, using the types of a type theory as the
possible ranges of the free and bound variables.
• Dependently Sorted Logic is obtained as a logic
enrichment of an elementary type theory whose types and
typed terms are just the sorts and sorted terms built up
using sort and term constructors that may be dependent.
• Each sort has the form F (t1, . . . , tn), where F is a sort
constructor and t1, . . . , tn are terms whose types match the
argument types of F .

• Makkai’s FOLDS is dependently sorted logic without func-

tion symbols.

Predicate logic over a type setup – p.7/33

Category notions for the semantics of type dependency

Category with attributes Cartmell 1978, Moggi 1991,
Type category Pitts 1997

Contextual category Cartmell 1978, Streicher 1991

Category with families Dybjer 1996, Hoffman 1997

Category with display maps (less general) Taylor 1986,
Lamarche 1987, Hyland and Pitts 1989

Comprehension category (more general) Jacobs 1991

other relevant notions: locally cartesian closed
categories, fibrations, indexed categories

Type setups (for syntax) new notion

Predicate logic over a type setup – p.8/33

Category with families (CwF)
a category Ctxt of contexts Γ and substitutions
σ : ∆ → Γ, with a distinguished terminal object (),

a functor T : Ctxtop → Fam mapping
Γ 7→ {Term(Γ, A)}A∈Type(Γ)

and, if σ : ∆ → Γ then

A ∈ Type(Γ) 7→ Aσ ∈ Type(∆)

a ∈ Term(Γ, A) 7→ aσ ∈ Term(∆, Aσ)

an assignment, to each context Γ and each
A ∈ Type(Γ), of a comprehension (Γ.A, pA, vA) such that

pA : Γ.A→ Γ and vA ∈ Term(Γ.A,ApA);

i.e. a terminal object in the category of (Γ′, θ, a) such
that θ : Γ′ → Γ and a ∈ Term(Γ′, Aθ).

Predicate logic over a type setup – p.9/33

Type Setups, 1
The metamathematical notion of a type setup is an
abstraction of the syntactic notion of a dependent type
theory, as is the notion of a CwF . The notion keeps

variables, x, types A and terms a,

contexts Γ as finite sequences of variable declarations ,
x : A,

substitutions, σ : ∆ → Γ, as finite sequences of variable
assignments x := a,

forms of judgement
(Γ) A type A ∈ Type(Γ)

(Γ) A = B A ∼Γ B

(Γ) a : A a ∈ Term(Γ, A)

(Γ) a = b : A a ∼Γ,A b

Predicate logic over a type setup – p.10/33

Type Setups, 2
But it does not require judgements to be generated using
rules of inference or types and terms to be generated using
rules of expression formation. Like a CwF , contexts and
substitutions form a category Ctxt and there is a functor
T : Ctxtop → Fam such that

for each context Γ

T (Γ) = {Term(Γ, A)}A∈Type(Γ)

for each substitution σ : ∆ → Γ , T (σ) : T (Γ) → T (∆)
maps

A ∈ Type(Γ) 7→ Aσ ∈ Type(∆),

a ∈ Term(Γ, A) 7→ aσ ∈ Term(∆, Aσ).

Predicate logic over a type setup – p.11/33

Type Setups, 3
• The relations ∼Γ and ∼Γ,A are equivalence relations on
Type(Γ) and Term(Γ, A) respectively, that are invariant
under substitutions.
• In extensional set-theoretical mathematics they can be
taken to be identity relations on sets, while in Martin-Löf’s
type theory they can be taken to be definitional equalities
on sets.
• If Γ and ∆ are contexts such that Γ ⊆ ∆; i.e. every
variable declaration of Γ is a variable declaration of ∆, then

(Γ) · · · ⇒ (∆) · · ·

and there is an inclusion substitution map ι∆→Γ : ∆ → Γ
such that

(Γ) A type ⇒ (∆) Aι∆→Γ = A

(Γ) a : A type ⇒ (∆) aι∆→Γ = a : A

Predicate logic over a type setup – p.12/33

Type Setups, 4
• A finite sequence of variable declarations

Γ ≡ x1 : A1, . . . , xn : An

is a context iff, for i = 1, . . . , n,

1. Γ<i ≡ x1 : A1, . . . , xi−1 : Ai−1 is a context,

2. Ai ∈ Type(Γ<i), and

3. xi is Γ<i-free.

and then xi ∈ Term(Γ, Ai) for i = 1, . . . , n.
• Also a finite sequence of variable declarations

σ ≡ [x1 := a1, . . . , xn := an]∆→Γ

is a substitution, ∆ → Γ, iff, for i = 1, . . . , n,

1. σ<i ≡ [x1 := a1, . . . , xi−1 := ai−1]∆→Γ<i
,, and

2. ai ∈ Term(∆, Aiσ<i).

Predicate logic over a type setup – p.13/33

Type Setups, 5
• Suppose that Γ and ∆ are contexts, with

Γ ≡ x1 : A1, . . . , xn : An.

If σ ≡ [x1 := a1, . . . , xn := an]∆→Γ is a substitution ∆ → Γ,
then for i = 1, . . . , n,

(∆) xiσ = ai : Aiσ.

• If also σ′ : ∆ → Γ such that, for i = 1, . . . , n,

(∆) xiσ
′ = ai : Aiσ

′

then, for each A ∈ Type(Γ), (∆) Aσ′ = Aσ

and, for each a ∈ Term(Γ, A), (∆) aσ′ = aσ : Aσ.

Predicate logic over a type setup – p.14/33

Type Setups, 6: Some notation
• If Γ ≡ x1 : A1, . . . , xn : An is a context, A ∈ Type(Γ) and x is
Γ-free then we write

(Γ, x : A)

for the context x1 : A1, . . . , xn : An, x : A.
• If ∆ is a context such that (· · · (∆, x1 : A1), · · · , xn : An) is
also a context then we write this context

(∆,Γ)

where Γ ≡ x1 : A1, . . . , xn : An.

Predicate logic over a type setup – p.15/33

Type Setups, 7: Some notation
• If σ ≡ [x1 := a1, . . . , xn := an]∆→Γ is a substitution ∆ → Γ
and a ∈ Term(∆, Aσ) then we write

[σ, x := a]∆→(Γ,x:A)

for the substitution [x1 := a1, . . . , xn := an, x := a]∆→(Γ,x:A).
• More generally, if (Γ,Λ) is a context then we can define a
substitution [σ, τ]∆→(Γ,Λ) for suitable sequences τ of variable
assignments.
• If (Γ) a : A then we write

[a/x]

for the substitution [ιΓ→Γ, x := a]Γ→(Γ,x:A).

Predicate logic over a type setup – p.16/33

Logic over a type setup
• We assume given a type setup with a predicate signature
consisting of a set of predicate symbols, each assigned a
context as its arity. We define the formulae and inference
rules of a formal system of dependently sorted intuitionistic
predicate logic with equality, whose sorts are the types of
the type setup and whose individual terms are the terms of
the setup.
• We use the predicate signature to define the atomic
Γ-formulae to have the form

P (b1, . . . , bm)

where P is a predicate symbol of arity
∆ ≡ (y1 : B1, . . . , ym : Bm)

and b1, . . . , bm are the terms of a substitution
[y1 := b1, . . . , ym := bm]Γ→∆.

Predicate logic over a type setup – p.17/33

The Γ-Formulae
• The formulae are inductively generated using the
following rules.

Every atomic Γ-formula P (b1, . . . , bm) is a Γ-formula.

If a1, a2 ∈ Term(Γ, A), where A ∈ Type(Γ), then
(a1 =A a2) is a Γ-formula.

⊥ and > are Γ-formulae.

If ψ1, ψ2 are Γ-formulae then so is (ψ12ψ2), where
2 ∈ {∧,∨,⊃}.

If ψ0 is a (Γ, x : A)-formula then (∇x : A)ψ0 is a
Γ-formulae where ∇ ∈ {∀,∃}.

Predicate logic over a type setup – p.18/33

Substitution
We can define substitution into formulae in more or less the
usual way by structural recursion on the formula. So, for
each Γ-formula φ, we associate with each substitution
τ : Λ → Γ a Λ-formula φτ using the following equations.

If φ ≡ P (b1, . . . , bm) then φτ ≡ P (b1τ, . . . , bmτ).

If φ ≡ (a1 =A a2) then φτ ≡ (a1τ =Aτ a2τ).

If φ ≡ ⊥ or > then φτ ≡ ⊥ or > respectively.

If φ ≡ (ψ12ψ2), where 2 ∈ {∧,∨,⊃}, then
φτ ≡ (ψ1τ2ψ2τ).

If φ ≡ (∇x : A)ψ0, where ∇ ∈ {∀,∃}, then
φτ ≡ (∇x : Aτ)ψ0τ

′, where τ ′ ≡ [τ, x := x](Λ,x:Aτ)→(Γ,x:A).

Predicate logic over a type setup – p.19/33

The rules of inference, 1
• These are essentially the standard sequent formulation of
the natural deduction rules for intuitionistic predicate logic
with equality, using sequents of the form (Γ) Φ → φ where Γ
is a context, Φ is a finite sequence of Γ-formulae and φ is a
Γ-formula.
• e.g. here are the quantifier rules:

(∀I)
(Γ, x : A) Φ ⇒ ψ0

(Γ) Φ ⇒ (∀x : A)ψ0
(∀E)

(Γ) Φ ⇒ (∀x : A)ψ0

(Γ, x : A) Φ ⇒ ψ0[a/x]

(∃I)
(Γ) Φ ⇒ ψ0[a/x]

(Γ) Φ ⇒ (∃x : A)ψ0 (∃E)

(Γ) Φ ⇒ (∃x : A)ψ0

(Γ, x : A) Φ, ψ0 ⇒ φ

(Γ) Φ ⇒ φ

• Here a ∈ Term(Γ, A) and [a/x] ≡ [ιΓ→Γ, x := a]Γ→(Γ,x:A).
Predicate logic over a type setup – p.20/33

The rules of inference, 2
• And here are the equality rules:

(= I)
(Γ)Φ ⇒ (a =A a) (= E)

(Γ)Φ ⇒ (a1 =A a2)

(Γ)Φ ⇒ ψ0[a1/x]

(Γ)Φ ⇒ ψ0[a2/x]

where A ∈ Type(Γ) and a, a1, a2 ∈ Term(Γ, A).

Predicate logic over a type setup – p.21/33

The disjunction and existence properties, 1

Let Φ be a finite sequence of ∆-formulae.
• (∆,Φ) has the disjunction property if, for all ∆-formulae
ψ1, ψ2,

` (∆) Φ ⇒ (ψ1∨ψ2) implies ` (∆) Φ ⇒ ψi for some i ∈ {1, 2}.

• (∆,Φ) has the existence property if, for all A ∈ Type(∆)
and every (∆, x : A)-formula ψ0,

` (∆) Φ ⇒ (∃x : A)ψ0 implies ` (∆) Φ ⇒ ψ0[a/x]

for some a ∈ Term(∆, A).

• (∆,Φ) is saturated if it has both properties.

• When is (∆,Φ) saturated?

Predicate logic over a type setup – p.22/33

The disjunction and existence properties, 2

Given a finite sequence Φ of ∆-formulae let
X0 = {ψ | ` (∆) Φ ⇒ ψ}. We define (∆) Φ|ψ iff ψ ∈ X ,
where ψ ∈ X is defined by the following structural recursion
on the number of logical symbols in the ∆-formula ψ.
ψ ∈ X iff one of the following hold.

ψ is atomic, an equality or ⊥ or > and ψ ∈ X0.

ψ ≡ (ψ1 ∧ ψ2) and [ψ1 ∈ X and ψ2 ∈ X].

ψ ≡ (ψ1 ∨ ψ2) and [ψ1 ∈ X or ψ2 ∈ X].

ψ ≡ (ψ1 ⊃ ψ2) ∈ X0 and [ψ1 ∈ X implies ψ2 ∈ X].

ψ ≡ (∀x : A)ψ0 ∈ X0 and [ψ0[a/x] ∈ X for all
a ∈ Term(∆, A)].

ψ ≡ (∃x : A)ψ0 and [ψ0[a/x] ∈ X for some
a ∈ Term(∆, A)].

Predicate logic over a type setup – p.23/33

The saturation theorem, 1
Theorem: The following are equivalent:

1. (∆,Φ) is saturated.

2. (∆) Φ|φ for all φ in Φ.

3. For every ∆-formula ψ

` (∆) Φ ⇒ ψ ⇐⇒ (∆) Φ|ψ.

Corollary: (∆, ∅) is saturated

Proof of Theorem:

3 ⇒ 1&2 : Trivial.

1 ⇒ 3 : By Lemma 1.

2 ⇒ 3 : By Lemma 2.

Predicate logic over a type setup – p.24/33

The saturation theorem, 2
Lemma 1:

1. (∆) Φ|ψ implies ` (∆)Φ ⇒ ψ,

2. ` (∆)Φ ⇒ ψ implies (∆) Φ|ψ, if (∆,Φ) is saturated.

Proof: By structural induction on ψ.

• If (∆,Γ) is a context let τ ∈ Subst(∆; Γ) if τ is a substitution
∆ → (∆,Γ) of the form [ι∆→∆, ρ]∆→(∆,Γ).

Lemma 2: If ` (∆,Γ) Φ ⇒ ψ then, for all τ ∈ Subst(∆; Γ),

(∆) Φτ |φτ for all φ in Φ implies (∆) Φτ |ψτ.

Proof: By induction following the derivation of (∆,Γ) Φ ⇒ ψ.

Predicate logic over a type setup – p.25/33

Types as propositions
• Think of a type A as a proposition which is true if there is
a term of type A.

• For each A ∈ Type(∆), where ∆ is a context, let !A be the
∆-formula (∃_ : A)>.

Theorem: If A1, . . . , An, A ∈ Type(∆) and x1, . . . , xn are
distinct variables, so that (∆, x1 : A1, . . . , xn : An) is a
context, then the following are equivalent:

1. ` (∆) !A1, . . . , !An ⇒ !A,

2. ` (∆, x1 : A1, . . . , xn : An) ⇒ !A,

3. there is a term in Term((∆, x1 : A1, . . . , xn : An), A).

Proof: 3 ⇒ 2 ⇔ 1 is trivial. 2 ⇒ 3 uses Saturation.

Predicate logic over a type setup – p.26/33

Π-types, 1
• We say that a type setup has Π-types if the standard
formation, introduction, elimination and computation rules
for Π-types are correct for the type setup; i.e. if
Γ′ ≡ (Γ, x : A) is a context then there are the following
assignments:

B ∈ Type(Γ′) 7→ (Πx : A)B ∈ Type(Γ),

b ∈ Term(Γ′, B) 7→ (λx)b ∈ Term(Γ, (Πx : A)B),

f ∈ Term(Γ, (Πx : A)B)

a ∈ Term(Γ, A)

}

7→ app(f, a) ∈ Term(Γ, B[a/x])

such that if f ∼(Πx:A)B (λx)b then app(f, a) ∼B[a/x] b[a/x].

Predicate logic over a type setup – p.27/33

Π-types, 2
• These must commute with substitution; i.e. for each
σ : ∆ → Γ,

((Πx : A)B)σ ∼∆ (Πx : Aσ)Bσ′,

((λx)b)σ ∼∆ (λx)bσ′,

app(f, a)σ ∼∆ app(fσ, aσ),

where σ′ ≡ [σ, x := x]∆→Γ′ : ∆ → Γ′.

• Also, if y is Γ-free then

(Πx : A)B ∼Γ (Πy : A)B[y/x] and (λx)b ∼Γ (λy)b[y/x].

• The requirement that the type setup has other forms of
type can be explained in a similar way.

Predicate logic over a type setup – p.28/33

Propositions as types, 1
• We assume given a type setup with predicate signature
that has the forms of type (Πx : A)B, (Σx : A)B, with the
defined forms A→ B and A×B, the forms of type
A1 + A2, Nk(k = 0, 1, . . .), I(A, a1, a2) and also has
associated with each predicate symbol P , of arity the
context ∆, a type P] ∈ Type(∆).
• Then the propositions-as-types interpretation recursively
associates with each Γ-formula φ a type Pr(φ) ∈ Type(Γ)
using the following rules.

If φ is the atomic Γ-formula P (b1, . . . , bm) then Pr(φ) is
the type P][y1 := b1, . . . , ym := bm]Γ→∆ ∈ Type(Γ).

If φ is (a1 =A a2) then Pr(φ) is the type
I(A, a1, a2) ∈ Type(Γ).

If φ is ⊥ or > then Pr(φ) is N0 or N1 respectively.
Predicate logic over a type setup – p.29/33

Propositions as types, 2
If φ is (ψ12ψ2), where 2 is one of ∧,∨,⊃ then Pr(φ) is
(Pr(ψ1)2

′Pr(ψ2)) where 2
′ is the corresponding one of

×,+,→.

If φ is (∇x : A)ψ0 where ∇ is one of ∀,∃ then Pr(φ) is
(∇′x : A)Pr(ψ0) where ∇′ is the corresponding one of
Π,Σ.

Proposition: The interpretation is sound; i.e. if
` (∆) φ1, . . . , φk ⇒ φ then there is a term in

Term((∆, x1 : Pr(φ1), . . . , xk : Pr(φk)), Pr(φ)),

where x1, . . . , xk are distinct ∆-free variables.

• But the interpretation is not complete as the type theoretic

axiom of choice holds; i.e.

Predicate logic over a type setup – p.30/33

Propositions as types, 3
If Γ is a context, x, y are distinct Γ-free variables,
A ∈ Type(Γ), B ∈ Type((Γ, x : A)) and θ is a
(Γ, x : A, y : B)-formula then let ac(Γ, x : A, y : B, θ) be the
sequent

(Γ) (∀x : A)(∃y : B)θ ⇒ (∃z : (Πx : A)B)(∀x : A)θ[app(z, x)/y],

and let AC be the set of all such sequents.
Proposition: If ` ac(Γ, x : A, y : B, θ) then there is a term in

Term((Γ,_ : Pr((∀x : A)(∃y : B)θ)),

Pr((∃z : (Πx : A)B)(∀x : A)θ[app(z, x)/y])).

Predicate logic over a type setup – p.31/33

Propositions as types, 4
• If Σ is a set of sequents we write Σ ` (Γ) Φ ⇒ φ if the
sequent (Γ) Φ ⇒ φ can be derived using the rules of
inference for intuitionistic predicate logic and the sequents
in Σ as additional axioms.
• Let PaT be the set of all sequents having one of the forms

(Γ) φ⇒ !Pr(φ) or (Γ) !Pr(φ) ⇒ φ.

• Let PaTatomic be the set of all those sequents in PaT where

φ is an atomic formula P (b1, . . . , bm).

Predicate logic over a type setup – p.32/33

Propositions as types, 5
Theorem: The following are equivalent

1. There is a term in

Term((∆, x1 : Pr(φ1), . . . , xk : Pr(φk)), Pr(φ)),

2. PaT ` (∆) φ1, . . . , φk ⇒ φ,

3. AC ∪ PaTatomic ∪ Σ ` (∆) φ1, . . . , φk ⇒ φ,

where Σ is the set of sequents having one of the forms:

(Γ) ⇒ (∀_ : N0)⊥,

(Γ) ⇒ (∀_ : A+B) (!A ∨ !B),

(Γ) ⇒ (∀_ : I(A, a1, a2)) (a1 =A a2).

Here A,B ∈ Type(Γ) and a1, a2 ∈ Term(Γ, A).

Predicate logic over a type setup – p.33/33

	small �lue Type setups and logic enriched type theories
	small �lue Some dependent type theories and their logics, 1
	small �lue Some dependent type theories and their logics, 2
	small �lue Some dependent type theories and their logics, 3
	small �lue Some dependent type theories and their logics, 4
	�lue Logic enriched type theories
	�lue small Category notions for the semantics of type dependency
	�lue Category with families (CwF)

	�lue Type Setups, 1
	�lue Type Setups, 2
	�lue Type Setups, 3
	�lue Type Setups, 4
	�lue Type Setups, 5
	�lue Type Setups, 6: Some notation
	�lue Type Setups, 7: Some notation
	�lue Logic over a type setup
	�lue The $Gamma $-Formulae
	�lue Substitution
	�lue The rules of inference, 1
	�lue The rules of inference, 2
	small �lue The disjunction and existence properties, 1
	small �lue The disjunction and existence properties, 2

