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Plan of lectures

1: Background to CST

2: The axiom system CZF

3: The number systems in CZF

4: Inductive definitions in CST
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1: Background to CST
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Some brands of constructive mathematics

B1: Intuitionism (Brouwer, Heyting, ..., Veldman)
B2: ‘Russian’ constructivism (Markov,...)
B3: ‘American’ constructivism (Bishop, Bridges,...)
B4: ‘European’ constructivism (Martin-Löf, Sambin,...)

B1,B2 contradict classical mathematics; e.g.
B1 : All functions R → R are continuous,
B2 : All functions N → N are recursive (i.e. CT).

B3 is compatible with each of classical maths, B1,B2
and forms their common core.

B4 is a more philosophical foundational approach to B3.
All B1-B4 accept RDC and so DC and CC.
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Some liberal brands of mathematics using intuitionistic logic

B5: Topos mathematics (Lawvere, Johnstone,...)

B6: Liberal Intuitionism (Mayberry,...)

B5 does not use any choice principles.

B6 accepts Restricted EM.

B7: Core explicit Mathematics (CeM)
i.e. a minimalist, non-ideological approach. The aim is
to do as much mainstream constructive mathematics as
possible in a weak framework that is common to all
brands, and explore the variety of possible extensions.

Introduction to Constructive Set Theory – p.5/46



Some settings for constructive mathematics

type theoretical

category theoretical

set theoretical
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Some contrasts
classical logic versus intuitionistic logic

impredicative versus predicative

some choice versus no choice

intensional versus extensional

consistent with EM versus inconsistent with EM
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Mathematical Taboos
A mathematical taboo is a statement that we may not
want to assume false, but we definately do not want to be
able to prove.
For example Brouwer’s weak counterexamples provide
taboos for most brands of constructive mathematics; e.g.
if

DPow(A) = {b ∈ Pow(A) | (∀x ∈ A)[(x ∈ b) ∨ (x 6∈ b)]}

then

(∀b ∈ DPow(N))[ (∃n)[n ∈ b] ∨ ¬(∃n)[n ∈ b] ]

is the Limited Excluded Middle (LEM) taboo.
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Warning!
There are two meanings of the word theory in
mathematics that can be confused.

mathematical topic: e.g. (classical) set theory

formal system: e.g. ZF set theory

I will use constructive set theory (CST) as the name of a
mathematical topic and constructive ZF (CZF) as a

specific first order axiom system for CST.
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Introducing CST
It was initiated (using a formal system called CST) by
John Myhill in his 1975 JSL paper.
In 1976 I introduced CZF and gave an interpretation of
CZF+RDC in Martin-Löf’s dependent type theory. In my
view the interpretation makes explicit a constructively
acceptable foundational understanding of a constructive
iterative notion of set.
By not assuming any choice principles, CZF allows
reinterpretations in sheaf models so that mathematics
developed in CZF will apply to such models.
CST allows the development of constructive
mathematics in a purely extensional way exploiting the
standard set theoretical representation of mathematical
objects.
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2: The axiom system CZF
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The axiom systemsZF and IZF

These axiom systems are formulated in predicate logic
with equality and the binary predicate symbol ∈.

ZF uses classical logic and IZF uses Intuitionistic logic
for the logical operations ∧,∨,→,⊥,∀,∃.

ZF = IZF + EM

ZF has a ¬¬-translation into IZF (H. Friedman).
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The non-logical axioms and schemes ofZF and IZF

Extensionality

Pairing

Union

Separation

Infinity

Powerset

Collection (classically equivalent to Replacement)

Set Induction (classically equivalent to Foundation)

Collection (∀x ∈ a)∃yφ(x, y) → ∃b(∀x ∈ a)(∃y ∈ b)φ(x, y)

Set Induction ∀a[(∀x ∈ a)θ(x) → θ(a)] → ∀aθ(a)
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The axiom systemCZF

This is the axiom system that is like IZF except that

the Separation scheme is restricted,

the Collection scheme is strengthened,

and the Powerset axiom is weakened to the Subset
Collection scheme.

CZF ⊆ IZF and CZF + EM = ZF .

CZF has the same proof theoretic strength as
Kripke-Platek set theory (KP ) or the system ID1 (i.e.
Peano Arithmetic with axioms for an inductive definition
of Kleene’s second number class O).
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The Restricted Separation Scheme
Restricted Quantifiers We write

(∀x ∈ a)θ(x) ≡ ∀x[x ∈ a → θ(x)]

(∃x ∈ a)θ(x) ≡ ∃x[x ∈ a ∧ θ(x)]

A formula is restricted (bounded,∆0) if every quantifier in
it is restricted.

The Scheme: ∃b∀x[x ∈ b ↔ (x ∈ a ∧ θ(x, . . .))]
for each restricted formula θ(x, . . .).

• We write {x ∈ a | θ(x, . . .)} for the set b.
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Collection Principles ofCZF, 1

We write (∀∃ x∈a
y∈b )θ for

(∀x ∈ a)(∃y ∈ b)θ ∧ (∀y ∈ b)(∃x ∈ a)θ.

Strong Collection

(∀x ∈ a)∃yφ(x, y) → ∃b(∀∃ x∈a
y∈b )φ(x, y).

Subset Collection

∃c∀z[(∀x ∈ a)(∃y ∈ b)φ(x, y, z)

→ (∃b′ ∈ c)(∀∃ x∈a
y∈b′ )φ(x, y, z)].
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Collection Principles ofCZF, 2

Strong Collection can be proved in IZF using Collection
and Separation.

For if b is the set given by Collection then we get the set

{y ∈ b | ∃x ∈ a φ(x, y)}

by Separation, which gives Strong Collection if used
instead of b.

Replacement can be proved in CZF using Strong
Collection.

For if ∀x ∈ a ∃!y φ(x, y) and b is a set such that
(∀∃ x∈a

y∈b )φ(x, y) then

b = {y | ∃x ∈ a φ(x, y)}.
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Classes
Class terms: {x | φ(x, . . .)}

a ∈ {x | φ(x, . . .)} ↔ φ(x, . . .)

Identify each set a with the class {x | x ∈ a}.

[A = B] ≡ ∀x[x ∈ A ↔ x ∈ B]

Some Examples

V = {x | x = x}
⋃

A = {x | ∃y ∈ A x ∈ y}
⋂

A = {x | ∀y ∈ A x ∈ y}

Pow(A) = {x | x ⊆ A}

A×B = {x | (∃a ∈ A)(∃y ∈ B)x = (a, b)}

where (a, b) = {{a}, {a, b}}.

Introduction to Constructive Set Theory – p.18/46



Classes -more examples

{x ∈ A | φ(x, . . .)} = {x | x ∈ A ∧ φ(x, . . .)}

{. . . x . . . | x ∈ A} = {y | ∃x ∈ A y = . . . x . . .}

Class functions For classes F,A,B let F : A → B if
F ⊆ A× B such that

(∀x ∈ A)(∃!y ∈ B)[(x, y) ∈ F ].

Also, if a ∈ A then let F (a) be the unique b ∈ B such that
(a, b) ∈ F . By Replacement, if A is a set then so is

{F (x) | x ∈ A}.
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The Fullness axiom
For classes A,B,C let C : A >− B if C ⊆ A× B such
that

(∀x ∈ A)(∃y)[(x, y) ∈ C].

For sets a, b let

mv(a, b) = {r ∈ Pow(a× b) | r : a >− b}.

The Axiom

(∃c ∈ Pow(mv(a, b)))(∀r ∈ mv(a, b))(∃s ∈ c)[s ⊆ r]

Theorem: Given the other axioms and schemes of CZF,
the Subset Collection scheme is equivalent to the

Fullness axiom.
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Myhill’s Exponentiation Axiom
If a is a set and B is a class let aB ≡ {f | f : a → B}.

If F : a → B then {F (x) | x ∈ a} is a set, and so is F , as

F = {(x, F (x)) | x ∈ a}.

So F ∈ aB.

The axiom: ab is a set for all sets a, b.

This is an immediate consequence of the Fullness
axiom and so a theorem of CZF.

For if c ⊆ mv(a, b) is given by Fullness then
ab = {f ∈ c | f : a → b} is a set by Restricted Separation.
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‘Truth Values’
Let 0 = ∅, 1 = {0} and Ω = Pow(1).

For each formula θ we may associate the class
< θ >= {x ∈ 1 | θ}, where x is not free in θ. Then

θ ↔ < θ >= 1

and if θ is a restricted formula then < θ > is a set in Ω.

It is natural to call < θ > the truth value of θ.

the Powerset axiom is equivalent to
“The class Ω is a set”,

the full Separation scheme is equivalent to
“Each subclass of 1 is a set and so in Ω”.

With classical logic each subclass of 1 is either 0 or 1,
so that the powerset axiom and the full separation
scheme hold; i.e. we have ZF.
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Set Terms, 1
We can conservatively extend CZF to a theory CZFst by
adding set terms, t, given by the syntax equation:

t ::= x | ∅ | {t, t} | ∪t | t ∩ t | {t | x ∈ t},

where free occurrences of x in t1 are bound in
{t1 | x ∈ t2}, and adding the following axioms.

y ∈ ∅ ↔ ⊥

y ∈ {t1, t2} ↔ [y = t1 ∨ y = t2]

y ∈ ∪t ↔ (∃x ∈ t) y ∈ x

y ∈ t1 ∩ t2 ↔ [y ∈ t1 ∧ y ∈ t2]

y ∈ {t1 | x ∈ t2} ↔ (∃x ∈ t2) y = t1
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Set Terms, 2
Theorem: For each restricted formula θ(x) and set term a
there is a set term t such that

CZFst ⊢ t = {x ∈ a | θ(x)}.

Corollary: Given the other axioms and schemes of CZF,
the Restricted Separation Scheme is equivalent to the
conjunction of the axioms

Emptyset: the empty class ∅ is a set,

Binary Intersection: the intersection class a ∩ b of sets a, b is
a set.
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The Infinity Axiom

Call a class A inductive if ∅ ∈ A and (∀x ∈ A)[x+ ∈ A],
where x+ = x ∪ {x}.

Infinity Axiom: There is an inductive set.

Strong Infinity Axiom: There is a smallest inductive
set, ω = ∩{x | x is an inductive set}.

Full Infinity Scheme: There is a smallest inductive set
that is a subset of each inductive class.

In CZF, by making essential use of the Set Induction
Scheme, each instance of the full infinity scheme can be

derived.
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3: The number systems in
CZF

N 7→ Z 7→ Q 7→ R
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Peano structures,1
Call (N, 0, S) a Peano structure if the Dedekind-Peano
axioms hold; i.e. N is a set, 0 ∈ N, S : N → N is injective
such that (∀n ∈ N)[S(n) 6= 0] and, for all sets A ⊆ N

[0 ∈ A] ∧ (∀n ∈ A)[S(n) ∈ A] → (∀n ∈ N)[n ∈ A].

It is a full Peano structure if this holds for all classes A.

In CZF, (ω, ∅, s) is a Peano structure, where s : ω → ω is
given by s(n) = n+ for n ∈ ω.
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Peano structures,2
Theorem: In CZF, any Peano structure (N, 0, S) is full
and functions can be defined on N by iteration and,
more generally by primitive recursion.

Iteration Scheme: For classes A and F : A → A, if
a0 ∈ A then there is a unique H : N → A such that
H(0) = a0 and (∀n ∈ N)[H(S(n)) = F (H(n))].

Corollary 1: In CZF, given a Peano structure (N, 0, S)
all the primitive recursive functions on N exist. So
Heyting Arithmetic can be interpreted in CZF.

Corollary 2: In CZF, any two Peano structures are
isomorphic. So the axioms for a Peano structure form a
categorical axiom system.
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Number setsZ andQ in CST, 1
Starting with the Peano structure (N, 0, S), the
successive construction of first the ordered ring (Z, . . .)
of integers and then the ordered field (Q, . . .) of
rationals can be carried out in weak systems of CST
much as in classical set theory.

Both the constructions N 7→ Z and Z 7→ Q can be
obtained using a quotient (A× B)/R, where A,B are
suitably chosen sets and R is a set equivalence relation
on the set A× B.
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Number setsZ andQ in CST, 2
A× B is the set X = ∪{∪{(a, b) | a ∈ A} | b ∈ B} and the
quotient X/R is the set {[x] | x ∈ X} where
[x] = {x′ ∈ X | (x, x′) ∈ R}.

Only the Union and Pairing axioms and the
Replacement and Restricted Separation schemes are
needed to get these sets.
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Archimedean pseudo-ordered rings
A relation < on a set R is a pseudo-ordering if, for all
x, y, z ∈ R,

1. ¬[x < y ∧ y < x],

2. [x < y] → [x < z ∨ z < y],

3. ¬[x < y ∨ y < x] → [x = y].
A pseudo-ordered ring is a ring R with a pseudo-ordering
compatible with the ring structure; i.e. for all x, y, z ∈ R,

1. [x < y] → [x+ z < y + z],

2. [x < y ∧ 0 < z] → [xz < yz].
It is Archimedean if, for all a ∈ R there is n ∈ N such that

a <

n
︷ ︸︸ ︷

1 + · · · + 1 .
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More on pseudo-orderings
Let < be a pseudo-ordering of a set R. Define ≤ on R:

x ≤ y ↔ ¬[y < x].

Then ≤ is a partial ordering of R; i.e. it is reflexive,
transitive and antisymmetric.
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Cauchy Completeness
Theorem (CZF+CC): (Rc, . . .) is the unique, up to
isomorphism Archimedean pseudo-ordered field that is
Cauchy complete.

A pseudo-ordered ring, R, is Cauchy complete if every
Cauchy sequence of elements of R converges to an
element of R.

f : N → R is a Cauchy sequence if

(∀ǫ > 0)(∃n)(∀m ≥ n) [f(n)− ǫ < f(m) < f(n) + ǫ],

and converges to a ∈ R if

(∀ǫ > 0)(∃n)(∀m ≥ n) [a− ǫ < f(m) < a+ ǫ].
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Dedekind Completeness
An Archimedean pseudo-ordered field, R, is Dedekind
complete if every upper-located subset has a
supremum.

A subset X of R is upper-located if

(∀ǫ > 0)(∃x ∈ X))(∀y ∈ X)[y < x+ ǫ].

and a ∈ R is a supremum of X if

(∀x ∈ X)[x ≤ a] ∧ (∀ǫ > 0)(∃x ∈ X)[a < x+ ǫ].

Note: If a is a supremum of X then it is the lub of X;
i.e.

(∀x ∈ X)[x ≤ a] ∧ (∀b ∈ R)[(∀x ∈ X)[x ≤ b] → [a ≤ b].
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The continuum without choice
Proposition (CZF): Let R be an Archimedean
pseudo-ordered field. Then
1. If R is Dedekind complete then it is Cauchy

complete.
2. Assuming CC, if R is Cauchy complete then R is

Dedekind complete.

Theorem (CZF): There is a unique, up to isomorphism
Dedekind complete, Archimedean, pseudo-ordered
field.

An upper-located X ⊆ Q is a Dedekind cut if X = X<,
where X< = {y ∈ Q | (∃x ∈ X)[y < x]}.

Theorem (CZF): The class Rd of all Dedekind cuts
forms a set that can be made into a Dedekind complete,
Archimedean, pseudo-ordered field.
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4: Inductive Definitions
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Examples of inductive definitions
ω is the smallest class I such that ∅ ∈ I and

(∀x ∈ I) x+ ∈ I, where x+ = x ∪ {x}.

HF is the smallest class I such that, for all n ∈ ω,
(∀f ∈ nI) ran(f) ∈ I.

HC is the smallest class I such that, for all a ∈ ω+

(∀f ∈ aI) ran(f) ∈ I.

For each class A, H(A) is the smallest class I such
that, for all a ∈ A, (∀f ∈ aI) ran(f) ∈ I.

ω = H(2), HF = H(ω), HC = H(ω+)

Recall 0 = ∅, 1 = 0+ and 2 = 1+. Note that ω and HF , but
not HC, can be proved to be sets in CZF.
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What is an inductive definition?
An inductive definition is a class of pairs. A pair (X, a) in
an inductive definition will usually be written X/a
and called an (inference) step of the inductive definition,
with conclusion a and set X of premisses.

If Φ is an inductive definition, a class I is Φ-closed if
X ⊆ I implies a ∈ I for each step X/a of Φ.

Theorem: There is a smallest Φ-closed class;
i.e. a class I such that (i) I is Φ-closed and, for each class
B, (ii) if B is Φ-closed then I ⊆ B. class.
The smallest Φ-closed class is unique and is called the

class inductively defined by Φ and is written I(Φ).
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More Examples
The Set Induction Scheme expresses that V is the
smallest class I such that a ⊆ I ⇒ a ∈ I.

If R is a subclass of A×A such that Ra = {x | (x, a) ∈ R}
is a set for each a ∈ A then Wf(A,R) is the smallest
subclass I of A such that ∀a ∈ A [Ra ⊆ I ⇒ a ∈ I].

Note that Wf(A,R) = I(Φ), where Φ is the class of
steps Ra/a for a ∈ A.

If Ba is a set for each a ∈ A then Wx∈ABx is the smallest
class I such that a ∈ A & f : Ba → I ⇒ (a, f) ∈ I.

Note that Wx∈ABx = I(Φ), where Φ is the class of steps
ran(f)/(a, f) for a ∈ A and f : Ba → V .
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Proof of the theorem
Given a class Φ of steps X/a, for each class Y let ΓY
be the class of a such that there is a step X/a of Φ with
X ⊆ Y . So Y is Φ-closed iff ΓY ⊆ Y .

Γ is monotone; i.e. Y1 ⊆ Y2 ⇒ ΓY1 ⊆ ΓY2 and what is
wanted is a least pre-fixed point of Γ.

The idea for the proof is to iterate the operator Γ into the
transfinite so that it ultimately closes up.

Call a class J of pairs an iteration class for Φ if, for all
sets a, Ja = ΓJ∈a where Ja = {x | (a, x) ∈ J} and
J∈a =

⋃

x∈a J
x.

Lemma: Every inductive definition has an iteration

class.
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Proof of the lemma
A set G of ordered pairs is defined to be good if

(∗) Ga ⊆ ΓG∈a for all sets a.
Let J be the union of all good sets.
• We must show that Ja = ΓJ∈a.
• If y ∈ Ja then, for some good set G,

y ∈ Ga ⊆ ΓG∈a ⊆ ΓJ∈a.

Thus Ja ⊆ ΓJ∈a. For the converse let y ∈ ΓJ∈a so that
X/a is a step of Φ for some X ⊆ J∈a. So

∀y′ ∈ X ∃G [ G is good and y′ ∈ G∈a ].

By Strong Collection there is a set Z of good sets
such that

∀y′ ∈ X ∃G ∈ Z y′ ∈ G∈a.

Let G = {(a, y)} ∪
⋃

Z. Then G is good so that y ∈ Ga ⊆

Ja. Thus ΓJ∈a ⊆ Ja.
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Definition of I(Φ)
We show that J∞ =

⋃

a∈V Ja is the smallest Φ-closed
class.
• To show that J∞ is Φ-closed let X/y be a step of Φ for
some set X ⊆ J∞. We must show that y ∈ J∞.
−− As ∀y′ ∈ X ∃x y′ ∈ Jx, by Collection, there is a set a
such that ∀y′ ∈ X ∃x ∈ a y′ ∈ Jx; i.e. X ⊆ J∈a. Hence
y ∈ ΓJ∈a = Ja ⊆ J∞. Thus J∞ is Φ-closed.
• Let I be Φ-closed, to show that J∞ ⊆ I we show that
Ja ⊆ I by set-induction on a. So we may assume the
induction hypothesis that Jx ⊆ I for all x ∈ a. It follows that
J∈a ⊆ I so that Ja = ΓJ∈a ⊆ ΓI ⊆ I, the inclusions holding
because Γ is monotone and I is Φ-closed. Thus J∞ ⊆ I

So we define I(Φ) = J∞.
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Local Inductive Definitions
An inductive definition Φ is defined to be local if ΓY is a
set for each set Y .
Proposition: If Φ is local then Ja and J∈a are sets for all a.

This has an easy proof by Set Induction.
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When is the classI(Φ) a set?
A class B is a bound for Φ if, whenever X/y is a step of
Φ then X = ran(f) for some f ∈

⋃

b∈B
bX.

Φ is bounded if Φ has a set bound and, for each set X,
the class of conclusions y of steps X/y in Φ is a set.

Note that if Φ is a set then it is bounded.

CZF+ = CZF +REA, where REA is the
Regular Extension Axiom

Theorem (CZF+): If Φ is bounded then it is local and
I(Φ) is a set. Examples: For each set A,

H(A) is a set,

Wf(A,R) is a set, if R is a set,

Wx∈ABx is a set, if Bx is a set for each x ∈ A.
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Regular Extension Axiom (REA)
A set A is regular if (A,∈ ∩(A× A) is a transitive model
of the Strong Collection Scheme; i.e. it is an inhabited
set such that A ⊆ Pow(A) and if a ∈ A and R : a >− A
then there is b ∈ A such that

∀x ∈ a ∃y ∈ b (x, y) ∈ R and ∀y ∈ b ∃x ∈ a (x, y) ∈ R

The axiom REA: Every set is a subset of a regular set.

Classically, if α is a regular ordinal then Vα is a regular
set.
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Set Compactness

Theorem (CZF+): For each set S and each set
P ⊆ Pow(S) there is a set B of subsets of P × S such that,
for each class Φ ⊆ P × S,

a ∈ I(Φ) ⇐⇒ a ∈ I(Φ0) for some Φ0 ∈ B such that Φ0 ⊆ Φ.

Definition: For each class X let

I(Φ, X) = I(Φ ∪ ({∅} ×X)).

Theorem (CZF+): If Φ is a subset of Pow(S)× S, where
S is a set, then there is a set B of subsets of S such that,
for each class X,

a ∈ I(Φ, X) ⇐⇒ a ∈ I(Φ, X0) for some X0 ∈ B

such that X0 ⊆ X.
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