Explicit Set Existence

3-16 July, 2009, Leeds Symposium on Proof Theory and Constructivism

Peter Aczel

petera@cs.man.ac.uk

Manchester University

Explicit Set Existence

- I Inexplicitness of AC over ZF?
- **II** Core Mathematics
- III Fullness
- IV The reals
- v Explicit Fullness
- **vi** Deterministic Inductive Definitions

I: Inexplicitness of AC over ZF?

- All the set existence axioms and schemes of ZF are explicit; e.g.
- Pairing: The class {a, b} = {x | x = a ∨ x = b} is a set, for all sets a, b.
- **•** Replacement: For all sets $a, \ldots,$

 $\forall x \in a \exists ! y \phi(x, y, \ldots) \Rightarrow \{y \mid \exists x \in a \phi(x, y, \ldots)\}$ is a set.

- AC seems to be essentially inexplicit over ZF; i.e. every explicit theorem of ZFC seems to be 'equivalent' to an explicit theorem of ZF.
- Can this idea be made precise?
- $ZFC \vdash \{x \mid \neg AC\}$ is a set', but if ZF is consistent $ZF \nvDash \{x \mid \neg AC\}$ is a set'.

Some brands of mathematics

- Classical, with AC
- Classical, without any choice
- Jopos
- Constructive, Brouwer style Intuitionism
- Constructive, Markov style Recursive
- Constructive, Bishop style
- Constructive, Richman style (= Bishop without any choice)

II: Core Mathematics

- All these, and others, are brands of mathematics.
- They are open conceptual frameworks.
- A lot of constructive mathematics can be derived in all these brands.
- Some mathematical principles are brand-essential.
 - Choice principles: AC, CC, DC, RDC, PA, ... etc
 - Logical: EM, REM, LPO, LLPO, MP, ... etc
 - Impredicative: Powerset, Full Separation, ...

Some criteria for Core Mathematics

- Extensional
- Adequate
- Compatible
- Local
- Explicit
- Some problems with CZF for a core system:
 - Strong Collection is inexplicit.
 - Subset Collection (Fullness) is inexplicit.
 - Set Induction is not local.
- **Problems** with $\mathbf{CZF}_{R,E}^{-}$:
 - Cannot show that \mathbb{R}_d is a set.
 - Do not have apparatus to define the class of hereditarily countable sets, etc.

III: The Fullness Axiom, 1

- The Fullness axiom is an inexplicit set existence axiom that can be used instead of the Subset Collection Scheme in axiomatizing CZF.
- In CZF the axiom has been used to prove Myhill's Exponentiation axiom and also to prove that the class of Dedekind reals, \mathbb{R}_d , is a set and several other results.
- **Some notation, for classes** A, B, R:
 - R: A > B if $\forall x \in A \exists y \in B (x, y) \in R$.
 - $R: A \rightarrow B$ if $R: A \rightarrow B \& R^{-1}: B \rightarrow A$.
 - $mv(A,B) = \{r \in Pow(A \times B) \mid r : A \succ B\}.$
 - $B^A = \{f \in mv(A, B) \mid f \text{ is single valued}\}.$

• Exponentiation Axiom: Exp(A, B) for all sets A, B, where

$$Exp(A, B) \equiv B^A$$
 is a set.

• Fullness Axiom: Full(A, B) for all sets A, B, where

 $Full(A, B) \equiv mv(A, B)$ has a full subset,

where, for a class $C \subseteq X$,

C is a full subclass of X if $\forall r \in X \exists s \in C \ s \subseteq r$.

- Strong Collection Scheme: For each class R and every set A, if R : A > V then R : A > K for some set B.
- **•** AC(A,B): B^A is a full subclass of mv(A,B).

Fullness and Exponentiation

- The axiom system BCST has Extensionality, Pairing, Union, Δ_0 -Separation and Replacement.
- **•** Theorem: In BCST,
 - 1. $Full(A, B) \Rightarrow Exp(A, B)$,
 - **2.** $AC(A, B) + Exp(A, B) \Rightarrow Full(A, B)$.

IV: The Dedekind Reals,1: Weak cuts

- $X \subseteq \mathbb{Q}$ is a weak left cut if 1-I: $\exists r(r \in X) \& \exists s(s \notin X),$ 2-I: $r \in X \Leftrightarrow \exists s \ r < s \in X.$
- $Y \subseteq \mathbb{Q}$ is a weak right cut if 1-r: $\exists r(r \in Y) \& \exists s(s \notin Y),$ 2-r: $r \in Y \Leftrightarrow \exists s \ r > s \in Y.$
- (*X*, *Y*) is a weak cut if
 - X is a weak left cut and Y is a weak right cut,

•
$$X \cap Y = \emptyset$$
,

- $\ \, \bullet \ \, r < s \Rightarrow (r \not\in X \Rightarrow s \in Y) \ \& \ (s \not\in Y \Rightarrow r \in X).$
- (X,Y) is located if $r < s \Rightarrow (r \in X \lor s \in Y)$.
- X is located if $r < s \Rightarrow (r \in X \lor s \notin X)$.

The Dedekind Reals,2

- A (left) cut is a located weak (left) cut.
- Note: Classically every weak (left) cut is located.
- Proposition: The following are equivalent:
 - X is a left cut,
 - (X, Y) is a cut for some Y,
 - (X, Y) is a cut, where $Y = \{s \in \mathbb{Q} \mid \exists r < s \ r \notin X\}$.
- Definition: The class \mathbb{R}_d of Dedekind reals is the class of all left cuts. Note: \mathbb{R}_d is a Δ_0 -class.
- **Prop:** A weak left cut X is located (and so in \mathbb{R}_d) iff

$$\forall \epsilon > 0 \ \exists r \in X \ r + \epsilon \notin X; \quad \text{i.e.} \ R_X \in \underline{mv}(\mathbb{Q}^{>0}, \mathbb{Q}),$$

where $R_X = \{(\epsilon, r) \in \mathbb{Q}^{>0} \times X \mid r + \epsilon \notin X\}.$

The Dedekind Reals,3

- Theorem: Assuming $Full(\mathbb{N}, \mathbb{N})$, the class of Dedekind reals is a set.
- Proof: Assuming $Full(\mathbb{N}, \mathbb{N})$, as $\mathbb{Q}^{>0} \sim \mathbb{N}$ and $\mathbb{Q} \sim \mathbb{N}$, we also have $Full(\mathbb{Q}^{>0}, \mathbb{Q})$.
- So we may choose a full subset C of $mv(\mathbb{Q}^{>0},\mathbb{Q})$

● For
$$R \in mv(\mathbb{Q}^{>0})$$
 let

$$X_R = \{ r \in \mathbb{Q} \mid r < s \text{ for some } (\epsilon, s) \in R \},\$$

• Now let $C_X = \{R \in \mathcal{C} \mid X_R \in \mathbb{R}_d\}$ and

 $\mathbb{R}' = \{ X_R \mid R \in \mathcal{C} \& X_R \in \mathbb{R}_d \} = \{ X_R \mid R \in \mathcal{C}_X \}$

• Then, by Δ_0 -Separation and Replacement \mathbb{R}' is a set.

The Dedekind Reals,4

- If $R \in C$, $X_R = \{r \in \mathbb{Q} \mid r < s \text{ for some } (\epsilon, s) \in R\}.$
- It suffices to show that $\mathbb{R}_d = \mathbb{R}'$.
- $\mathbb{R}_d \supseteq \mathbb{R}'$ trivially.
- If $X \in \mathbb{R}_d$, $R_X = \{(\epsilon, r) \in \mathbb{Q}^{>0} \times X \mid r + \epsilon \notin X\} \in mv(\mathbb{Q}^{>0}, \mathbb{Q}).$
- For $\mathbb{R}_d \subseteq \mathbb{R}'$ it suffices to prove
- Lemma (ECST): Let $X \in \mathbb{R}_d$ and $R \in \mathcal{C}$. Then $R \subseteq R_X \Rightarrow X = X_R$.
- $X \in \mathbb{R}_d \Rightarrow R_X \in mv(\mathbb{Q}^{>0}, \mathbb{Q}), \text{ as } X \text{ is located}$ $\Rightarrow R \subseteq R_X \text{ for some } R \in \mathcal{C}, \text{ as } \mathcal{C} \text{ is a full subset}$ $\Rightarrow X = X_R, \text{ by the lemma }.$

V: Explicit Fullness; the scheme

For classes *F*, *X*, *A* such that *F* : *X* → *V* and *A* ⊆ *X*,
 F is *A*-powerful if, for all *r* ∈ *A* there is r' ∈ A such that

(*) $\forall s \in X[s \subseteq r' \Rightarrow s \in A \& Fs = Fr].$

- The Explicit Fullness Scheme (EFS): If $F: mv(B, C) \rightarrow V$ is A-powerful, where B, C are sets and A is a Δ_0 -subclass of mv(B, C) then $FA = \{Fr \mid r \in A\}$ is a set.
- Note that EFS is an explicit set existence scheme.
- Theorem: In BCST, Fullness implies each instance of EFS. In fact Full(B,C) implies the above instances, EFull(B,C), of EFS.
- Lemma: If $F: X \to V$ is A-powerful, A is a Δ_0 -subclass of X and X has a full subset D then FA is a set.

V: Explicit Fullness; applications

- Theorem(BCST+EFS): Exponentiation
- Proof: Given sets B, C, to show that C^B is a set, apply EFS with $A = C^B$ and Fr = r for $r \in mv(B, C)$.
- Theorem(BCST+EFS): Let Q, A be sets such that $A \subseteq Q \times Q$. Then \mathcal{R} is a set, where \mathcal{R} is the class of subsets X of Q such that
 - X is open; i.e. $\forall x \in X \exists y \in X(x, y) \in A$, and
 - X is located; i.e. $\forall (x, y) \in A[x \in X \lor y \notin X]$.
- Note: The proof only uses EFS(A,2).
- Corollary(ECST+EFS($\mathbb{N}, 2$)): \mathbb{R}^{e}_{d} and \mathbb{R}_{d} are sets.
- Here \mathbb{R}_d^e is the class of open, located subsets of \mathbb{Q} ,
 where $A = \{(r, s) \in \mathbb{Q} \times \mathbb{Q} \mid r < s\}$.
- Note that $\mathbb{R}_d \subseteq \mathbb{R}_d^e$.

VI: Deterministic Inductive Definitions, 1

■ Let Φ be a class. A Φ -step, X/y, is a pair $(X, y) \in \Phi$. A class A is Φ -closed if

 $X \subseteq A \Rightarrow y \in A$, for all Φ -steps X/y.

- Theorem (CZF-Subset Collection): For each class Φ there is a smallest Φ -closed class $I(\Phi)$.
- The proof makes essential use of Strong Collection and Set Induction.
- Φ is deterministic if

If X_1/y and X_2/y are Φ -steps then $X_1 = X_2$.

ECST is BCST+Strong Infinity.

Deterministic Inductive Definitions, 2

- Theorem(ECST+Set Induction): The smallest class $I(\Phi)$ exists for each deterministic class Φ .
- Examples:
 - 1. For each class A, $H(A) = I(\Phi_A)$, where Φ_A is the class of steps y/y such that y is an image of a set in A. So $H(\omega)$ is the class of hereditarily finite sets and $H(\omega \cup \{\omega\})$ is the class of hereditarily countable sets; i.e hereditarily finite or an image of ω . Here ω is the smallest inductive set, given by Strong Infinity.
 - 2. If A, R are classes, with $R \subseteq A \times A$ such that $R_y = \{x \in A \mid (x, y) \in R\}$ is a set for each $y \in A$, the class $WF(A, R) = I(\{R_y/y \mid y \in A\})$ is the well-founded part of R in A.
 - 3. Also the W-classes are given by deterministic inductive definitions.

CONCLUSION

- A possible useful axiom system for my core mathematics might be ECST+EFS+DIDS, where DIDS is a scheme in an extension of the language so as to obtain a class I(Φ) from a class Φ.
- The scheme should express that if Φ is deterministic then $I(\Phi)$ is the smallest Φ -closed class.
- The Replacement scheme and EFS need to be extended to the extended language.
- I conjecture that it has the same logical strength as CZF.