
Identity Types and Type Setups
Uppsala, February 18th, 2009

Stockholm-Uppsala Logic Seminar

and

Gothenberg, February 19th, 2009 .

Peter Aczel

petera@cs.man.ac.uk

SCAS and Manchester University

Part I: Identity Types

Part II: Type Setups
Identity Types and Type Setups – p.1/42

Some References:
[1] Homotopy Theoretic Models of Identity Types, Steve Awodey

and Michael A. Warren

[2] The Identity Type Weak Factorisation System, Nicola Gambino
and Richard Garner

[3] Two-dimensional Models of Type Theory, Richard Garner

[1] Nice categories with weak factorisation systems can be
used to model type theories with identity types.

[2] The category C(T) of contexts of a type theory T with
identity types has a natural weak factorisation system.

[3] A type theory with identity types has identity contexts.

The result in [3] is exploited in [2].

Identity Types and Type Setups – p.2/42

Weak Factorisation Systems
A map g : C → D has the right lifting property with respect
to f : A → B, written f∩| g if, whenever given maps A → C
and B → D such that

A → C → D = A → B → D

then there is a diagonal filler B → C; i.e.
A → B → C = A → C and B → C → D = B → D.

Given a set M of maps let

M∩| = {g | ∀f ∈ M f∩| g}
∩|M = {f | ∀g ∈ M f∩| g}

(A,B) is a weak factorisation system if

1. every map A → B has a factorisation A → Y → B with
A → Y in A and Y → B in B, and

2. A∩| = B and A = ∩|B.

Identity Types and Type Setups – p.3/42

Theorem of Gambino and Garner
Let T be the set of context projections Γ,∆ → Γ in the
category of contexts of a type theory T.

Let A = ∩|T and B = A∩| .

Assume that T has identity types.

Theorem: (A,B) is a weak factorization system.

Main Lemma: Every context map Γ′ → Γ has a factorization

Γ′ → (Γ,∆) → Γ where Γ′ → (Γ,∆) is in ∩|T and (Γ,∆) → Γ

is in T .

Identity Types and Type Setups – p.4/42

Part I: Identity Types
Identity Propositions

Identity types with Π and Σ types

Avoiding Π types

Also avoiding Σ types

Identity Types and Type Setups – p.5/42

Identity Propositions

Identity Types and Type Setups – p.6/42

Liebnitz Identity: [a = b] ⇐⇒ ∀P [P(a) ⇔ P(b)]

It suffices to assume: [a = b] ⇐⇒ ∀P [P (a) ⇒ P (b)].

∀P [P (a) ⇒ P (b)]

P ′(x) ≡ [P (x) ⇒ P (a)]

P ′(a) ⇒ P ′(b)

P ′(a)

P ′(b)

P (b) ⇒ P (a)

P (a) ⇔ P (b)

∀P [P (a) ⇔ P (b)]

Identity Types and Type Setups – p.7/42

Singleton Class Definition
Impredicative: [a = b] ⇐⇒ b ∈ Ia,
where

Ia =
⋂

{X | a ∈ X}.

Inductive:

Ia is the smallest class X such that a ∈ X.

Identity Types and Type Setups – p.8/42

Reflexive Relations Definition

[a =A b] ⇐⇒ ∀R [R reflexive ⇒ (a, b) ∈ R].

Impredicative: The identity relation IA = {(x, x) | x ∈ A} on
a class A is the intersection of all reflexive relations on A.

Inductive: IA is the smallest reflexive relation on A; i.e. the
smallest relation R on A such that

∀x ∈ A (x, x) ∈ R.

Identity Types and Type Setups – p.9/42

Adjoint characterisations of =A

Reflexive Relations:

[x =A y] `x,y Q(x, y)

`x Q(x, x)

Singleton Class:

[a =A y] `y P (y)

` P (a)
(a ∈ A)

Identity Types and Type Setups – p.10/42

Type Theoretical Logical Rules,1
Singleton Class: For a : A

[a =A y] prop (y : A)

[a =A a] true

D(y) prop (y : A, [a =A y] true)

D(a) true

D(y) true (y : A, [a =A y] true)

Identity Types and Type Setups – p.11/42

Type Theoretical Logical Rules,2
Reflexive Relations:

[x =A y] prop (x, y : A)

[x =A x] true (x : A)

C(x, y) prop (x, y : A, [x =A y] true)

C(x, x) true (x : A)

C(x, y) true (x, y : A, [x =A y] true)

Identity Types and Type Setups – p.12/42

Identity Types with Π and Σ types

Identity Types and Type Setups – p.13/42

Identity Types,1: Given A type:
Formation:

IA(x, y) type(x, y : A)

Introduction:
rA(x) : IA(x, x) (x : A)

Elimination/Computation

C(x, y, z) type (x, y : A, z : IA(x, y))

d(x) : C(x, x, rA(x)) (x : A)

Jd(x, y, z) : C(x, y, z) (x, y : A, z : IA(x, y))

Jd(x, x, rA(x)) = d(x) : C(x, x, rA(x)) (x : A)

These are the standard rules for Identity types.

Identity Types and Type Setups – p.14/42

Identity Types,2: Given a : A:
Formation:

Ia(y) type(y : A)

Introduction:
ra : Ia(a)

Elimination/Computation

D(y, z) type (y : A, z : Ia(y))

e : D(a, ra)

J ′
a,e(y, z) : D(y, z) (y : A, z : Ia(y))

J ′
a,e(a, ra) = e : D(a, ra)

These rules are due to Christine Paulin-Mohring.

Identity Types and Type Setups – p.15/42

J versusJ ′

It is easy to define J using J ′.

But it is not so easy to define J ′ using J .

Martin Hoffman showed that this could be done. A
construction is presented as an appendum in Thomas
Streicher’s Habilitation Thesis. But it is almost unreadable
because of the awful syntax used.

The construction uses Π-types and Σ-types. But by using a
parametric strengthening of the J-rule, due to Richard
Garner, Π-types can be avoided and, by using ideas also
due to Garner, and more work Σ-types can also be avoided.

The following is essentially Hofmann’s construction.
Identity Types and Type Setups – p.16/42

Definition of J ′ usingJ , 1:

Given IA and a : A:

Step 1: Define, for x, y : A, z : IA(x, y),
Ia(y) ≡ IA(a, y)

ra ≡ rA(a)

A0(x) ≡ (Σx′ : A)IA(x, x′)

C(x, y, z) ≡ IA0(x)(< x, rA(x) >,< y, z >)

d(x) ≡ rA0(x)(< x, rA(x) >) : C(x, x, rA(x))

Use the J rule with C, d to define

f(x, y, z) ≡ Jd(x, y, z) : C(x, y, z)

such that f(x, x, rA(x)) = d(x) : C(x, x, rA(x)).

Identity Types and Type Setups – p.17/42

Definition of J ′ usingJ , 2:

Given also D(y, z) type (y : A, z : Ia(y)) :

Step 2: Define A1 ≡ A0(a) and, for
x1, y1 : A1, z1 : IA1

(x1, y1),
B1(x1) ≡ D(π1(x1), π2(x1))

C1(x1, y1, z1) ≡ B1(x1) → B1(y1)

d1(x1) ≡ (λu : B1(x1))u : C1(x1, x1, rA1
(x1)

Use the J rule with C1, d1 to define

g(x1, y1, z1) ≡ Jd(x1, y1, z1) : C1(x, y, z)

such that

g(x1, x1, rA1
(x1)) = d1(x1) : C1(x1, x1, rA1

).

Identity Types and Type Setups – p.18/42

Definition of J ′ usingJ , 3:

Given a,D as before and e : D(a, ra):

Step 3: Define, for y : A, z : Ia(y),
a1 ≡< a, ra >: A1

J ′
a,e(y, z) ≡ app(g(a1, < y, z >, f(a, y, z)), e) : D(y, z)

Then

J ′
a,e(a, ra) = app(g(a1, a1, f(a, a, ra)), e)

= app(g(a1, a1, rA1
(a1)), e)

= app((λu : B1(a))u, e)

= e : D(a, ra).

Identity Types and Type Setups – p.19/42

Avoiding Π types

Identity Types and Type Setups – p.20/42

The parametric J-rule:

For x, y : A, z : IA(x, y),

C(x, y, z, ~u) type (~u : ~E(x, y, z)))

d(x, ~u) : C(x, x, rA(x), ~u) (~u : ~E(x, x, rA(x))))

Jd(x, y, z, ~u) : C(x, y, z, ~u) (~u : ~E(x, y, z))

Jd(x, x, rA(x), ~u) = d(x, ~u) : C(x, x, rA(x), ~u)) (~u : ~E(x, x, rA(x)))

~u : ~E(x, y, z) is the context of parameters relative to the
declarations of x, y, z.

~u : ~E(x, x, rA(x)) is the resulting context of parameters rela-

tive to the declaration of x after substituting x for y and rA(x)

for z.

Identity Types and Type Setups – p.21/42

The parametric substitution rule:

For x, y : A, z : IA(x, y), ~u : ~E(x),

B(x, ~u) type

sub(x, y, z, ~u, v) : B(y, ~sub(x, y, z, ~u)) (v : B(x, ~u))

sub(x, x, rA(x), ~u, v) = v : B(x, ~u) (v : B(x, ~u))

where, if ~u ≡ u1, . . . , un then ~sub(x, y, z, ~u) ≡ u′
1, . . . , u

′
n with

u′
i ≡ sub(x, y, z, u′

1, . . . , u
′
i−1, ui) (i = 1, . . . , n).

This can be derived using the parametric J-rule with

C(x, y, z, ~u, v) ≡ B(y, ~sub(x, y, z, ~u)) and d(x, ~u, v) ≡ v.

Identity Types and Type Setups – p.22/42

Definition of J ′ using the parametricJ-rule

The aim here is to avoid Π-types by using the parametric
J-rule. As in the earlier Step 1, we can use the J-rule to
define, for x, y : A, z : IA(x, y),

f(x, y, z) : IA0(x)(x1, < y, z >),

where A0(x) ≡ (Σx′ : A)IA(x, x′) and x1 ≡< x, rA(x) >, such
that f(x, x, rA(x)) = rA0(x)(x1).

Given a,D, e we can now use substitution (without
parameters) to define, for y : A, x : IA(a, y),

J ′
a,e(y, z) ≡ sub(< a, rA(a) >,< y, z >, f(a, y, z), e) : D(y, z).

We have still used Σ-types, which we want to avoid.

Identity Types and Type Setups – p.23/42

Also avoiding Σ types

Identity Types and Type Setups – p.24/42

Definition of J ′ avoiding Σ-types,1

Given A,D, e we first use parametric substitution with one
parameter v1 : IA(a, x) and B(y, v1) ≡ D(y, v1). So we get,
with x, y : A, z : IA(x, y) and v1 : IA(a, x),

sub(x, y, z, v1, u) : B(y, sub(x, y, z, v1)) (u : B(x, v1))

such that sub(x, x, rA(x), v1, u) = u : B(x, v1) (u : B(x, v1))
Here sub(x, y, z, v1) : IA(a, y) such that

sub(x, x, rA(x), v1) = v1 : IA(a, x).

Now put x = a, v1 = rA(a), u = e and define, for
y : A, z : IA(a, y),

ha,e(y, z) ≡ sub(a, y, z, rA(a), e)

f1
a (y, z) ≡ sub(a, y, z, rA(a)).

Identity Types and Type Setups – p.25/42

Definition of J ′ avoiding Σ-types,2

For y : A, z : IA(a, y), we have ha,e(y, z) : D(y, f1
a (y, z)) and

f1
a (y, z) : IA(a, y) such that

ha,e(a, rA(a)) = e : D(a, rA(a))

f1
a (a, rA(a)) = rA(a) : IA(a, a).

We use the J-rule with C(x, y, z) ≡ IIA(x,y)(sub(x, y, z, v1), z)

and d(x) ≡ rIA(x,x)(rA(x)) to get

f2
a (y, z) = Jd(a, y, z) : IIA(a,y)(f

1
a (y, z), z)

such that f2
a (a, rA(a)) = rIA(a,a)(rA(a)).

Identity Types and Type Setups – p.26/42

Definition of J ′ avoiding Σ-types,3

Given y : A, let A′ = IA(a, y). For z : A′, we use substitution,
with B(z) ≡ D(y, z) to get

sub(z′, z, w, u) : B(z) (z′, w : IA′(z′, z), u : B(z′))

such that sub(z′, z′, rA′(z′), u) = u : B(z′) (z′ : A′, u : B(z′)).
We can now define, for y : A, z : A′,

J ′
a,e(y, z) ≡ sub(f1

a (y, z), z, f2
a (y, z), ha,e(y, z)) : D(y, z),

and get, as ha,e(a, rA(a)) = e,

J ′
a,e(a, rA(a)) = sub(f1

a (a, rA(a)), rA(a), f2
a (a, rA(a)), e)

= sub(rA(a), rA(a), rIA(a,a)(rA(a)), e)

= e : D(a, rA(a))

Identity Types and Type Setups – p.27/42

Part II: Type Setups

Identity Types and Type Setups – p.28/42

A Motivation for Type Setups,1
If Γ ≡ x1 : A1, x2 : A2, . . . , xn : An is a context it is natural to
write Γ ≡ ~x : ~A, where

~x ≡ x1, x2, . . . , xn and ~A ≡ A1, [x1]A2, . . . , [x1, . . . , xn−1]An.

We then write ~a : ~A for the sequence of judgments

a1 : A1, a2 : A2[a1/x1], . . . , an : An[a1, . . . , an−1/x1, . . . , xn−1]

where ~a ≡ a1, . . . , an. So

~A is like a single type,

~x : ~A is like a single variable declaration

~a : ~A is like a single judgement

Identity Types and Type Setups – p.29/42

A Motivation for Type Setups,2
Let ∆ ≡ y1 : B1, . . . , ym : Bm such that Γ,∆ is a context. It is
natural to write ∆ ≡ ~y : ~B(~x), where

~B(~x) ≡ B1, [y1]B2, . . . , [y1, . . . , ym]Bm.

Then, if ~a : ~A,

∆[~a/~x] ≡ y1 : B1[~a/~x], . . . , ym : Bm[~a/~x]

≡ ~y : ~B(~a)

So ~B(~x) is like a family of types over the type ~A. We
have a new type theory. To make this precise we need an
abstract notion of type theory. This is the notion of a

TYPE SETUP.

Identity Types and Type Setups – p.30/42

A Motivation for Type Setups,3
If T is a type setup let T

∗ be the new type setup,
constructed along the lines we have described.

Some conjectured results:

T
∗ is indeed a type setup and has Σ-types. It is the

‘free’ type setup with Σ-types generated from T.

(Garner) If T has identity types then so does T
∗.

T and T
∗ have equivalent categories of contexts.

Conclusion:

We may as well assume that a type theory/setup has Σ-

types.

Identity Types and Type Setups – p.31/42

Category notions for the semantics of type dependency

Category with attributes Cartmell 1978, Moggi 1991,
Type category Pitts 1997

Contextual category Cartmell 1978, Streicher 1991

Category with families Dybjer 1996, Hoffman 1997

Category with display maps (less general) Taylor 1986,
Lamarche 1987, Hyland and Pitts 1989

Comprehension category (more general) Jacobs 1991

other relevant notions: locally cartesian closed
categories, fibrations, indexed categories

Type setups (for syntax) new notion

Identity Types and Type Setups – p.32/42

Category with families (CwF)
a category Ctxt of contexts Γ and substitutions
σ : ∆ → Γ, with a distinguished terminal object (),

a functor T : Ctxtop → Fam mapping
Γ 7→ {Term(Γ, A)}A∈Type(Γ)

and, if σ : ∆ → Γ then

A ∈ Type(Γ) 7→ Aσ ∈ Type(∆)

a ∈ Term(Γ, A) 7→ aσ ∈ Term(∆, Aσ)

an assignment, to each context Γ and each
A ∈ Type(Γ), of a comprehension (Γ.A, pA, vA) such that

pA : Γ.A → Γ and vA ∈ Term(Γ.A,ApA);

i.e. a terminal object in the category of (Γ′, θ, a) such
that θ : Γ′ → Γ and a ∈ Term(Γ′, Aθ).

Identity Types and Type Setups – p.33/42

The large CwF of sets
Ctxt = Set and, for each set I,

Type(I) is the class of families of sets
A = {Ai}i∈I ∈ SetI ,

Term(I, A) =
∏

i∈I Ai and, if σ : J → I in Set,

Aσ = {Aσj}j∈J ,

aσ = {aσj}j∈J , for a = {ai}i∈I .

I.A =
∑

i∈I Ai,

pA(i, x) = i for (i, x) ∈ I.A,

vA = {x}(i,x)∈I.A.

Identity Types and Type Setups – p.34/42

Type Setups, 1
The notion of a type setup abstracts away from the details
of how terms and types are formed, but keeps the following
notions.

contexts Γ,

substitutions σ : ∆ → Γ, between contexts, the contexts
and substitutions forming a category Ctxt,

ιΓ : Γ → Γ is the identity on Γ and σ ◦ τ : Λ → Γ is the
composition of σ : ∆ → Γ and τ : Λ → ∆.

For each context Γ, there is the set Type(Γ) of Γ-types A
and the set Term(Γ, A) of Γ-terms a of type A, for each
Γ-type A.

Substitutions must ‘act’ on types and terms to give a
functor T : Ctxtop → Fam, where Fam is the category of
set-indexed families of sets.

Identity Types and Type Setups – p.35/42

Type Setups, 2
• For each context Γ

T (Γ) = {Term(Γ, A)}A∈Type(Γ)

• For each substitution σ : ∆ → Γ , T (σ) : T (Γ) → T (∆)
maps

A ∈ Type(Γ) 7→ Aσ ∈ Type(∆)

a ∈ Term(Γ, A) 7→ aσ ∈ Term(∆, Aσ)

• such that
AιΓ = A and aιΓ = a

and if also τ : Λ → ∆ then

A(σ ◦ τ) = (Aσ)τ and a(σ ◦ τ) = (aσ)τ.

Identity Types and Type Setups – p.36/42

Type Setups, 3
• Each context Γ is a finite sequence

x1 : A1, . . . , xn : An

of typed variable declarations.

• The empty sequence () is a context.

• If Γ ≡ x1 : A1, . . . , xn : An then

Γ′ ≡ Γ, x : A ≡ x1 : A1, . . . , xn : An, x : A is a context iff

Γ is a context,

x is a variable, not in {x1, . . . , xn} and

A ∈ Type(Γ).

Identity Types and Type Setups – p.37/42

Type Setups, 4
• If Γ,∆ are contexts, with

Γ ≡ x1 : A1, . . . , xn : An

the each substitution ∆ → Γ has the form

[x1 := a1, . . . , xn := an]∆→Γ.

• If Γ′ ≡ x1 : A1, . . . , xn : An, x : A is a context then

σ′ ≡ [σ, x := a]∆→Γ′ ≡ [x1 := a1, . . . , xn := an, x := a]∆→Γ′

is a substitution ∆ → Γ′ iff

σ ≡ [x1 := a1, . . . , xn := an]∆→Γ is a substitution, and
a ∈ Term(∆, Aσ).

Identity Types and Type Setups – p.38/42

Type Setups, 5
• If Γ ≡ x1 : A1, . . . , xn : An is a context then, for i = 1, . . . , n,

Ai ∈ Type(Γ) and xi ∈ Term(Γ, Ai).

• If σ ≡ [x1 := a1, . . . , xn := an]∆→Γ is a substitution then it is

the unique substitution ∆ → Γ such that, for i = 1, . . . , n,

xiσ = ai.

Identity Types and Type Setups – p.39/42

Type Setups, 6
• If Γ,∆ are contexts such that Γ ⊆ ∆ (i.e. every declaration
in Γ is also a declaration in ∆) then

Type(Γ) ⊆ Type(∆) and Term(Γ, A) ⊆ Term(∆, A)

for each A ∈ Type(Γ).

• Also, if Γ ≡ x1 : A1, . . . , xn : An then
ι∆→Γ ≡ [x1 := x1, . . . , xn := xn]∆→Γ

is an inclusion substitution; i.e. for A ∈ Type(Γ) and
a ∈ Term(Γ, A),

Aι∆→Γ = A and aι∆→Γ = a.

• If Γ′ ≡ Γ, x : A then (Γ′, ιΓ′→Γ, x) is a comprehension.

Identity Types and Type Setups – p.40/42

Π-types, 1
• We say that a type setup has Π-types if the standard
formation, introduction, elimination and computation rules
for Π-types are correct for the type setup; i.e. if Γ′ ≡ Γ, x : A
is a context then there are the following assignments:

B ∈ Type(Γ′) 7→ (Πx : A)B ∈ Type(Γ),

b ∈ Term(Γ′, B) 7→ (λx)b ∈ Term(Γ, (Πx : A)B),

f ∈ Term(Γ, (Πx : A)B)

a ∈ Term(Γ, A)

}

7→ app(f, a) ∈ Term(Γ, B[a/x])

such that if f = (λx)b then app(f, a) = b[a/x].

Identity Types and Type Setups – p.41/42

Π-types, 2
• These must commute with substitution; i.e. for each
σ : ∆ → Γ,

((Πx : A)B)σ = (Πx : Aσ)Bσ′,

((λx)b)σ = (λx)bσ′,

app(f, a)σ = app(fσ, aσ),

where σ′ ≡ [σ, x := x]∆→Γ′ : ∆ → Γ′.

• Also, if y 6∈ var(Γ) then

(Πx : A)B = (Πy : A)B[y/x] and (λx)b = (λy)b[y/x].

• The requirement that the type setup has other forms of
type can be explained in a similar way.

Identity Types and Type Setups – p.42/42

	�lue Some References:
	�lue Weak Factorisation Systems
	�lue Theorem of Gambino and Garner
	$;$
	$;$
	�lue small Liebnitz Identity:{small sf $sf �f ;;;; [a=b]ifff �orall P; [P(a)Lra
P(b)]$}
	�lue Singleton Class Definition
	�lue Reflexive Relations Definition
	�lue Adjoint characterisations of $=_A$
	�lue Type Theoretical Logical Rules,1
	�lue Type Theoretical Logical Rules,2
	$;$
	�lue Identity Types,1: {ed Given $A; type$:}
	�lue Identity Types,2: {ed Given $a:A$:}
	�lue small J versus J'
	�lue small Definition of J' using J, 1:
	�lue small Definition of J' using J, 2:
	�lue small Definition of J' using J, 3:
	$;$
	�lue small The parametric J-rule:
	�lue small The parametric substitution rule:
	�lue small Definition of J' using the parametric J-rule
	$;$
	�lue small Definition of J' avoiding $Sigma $-types,1
	�lue small Definition of J' avoiding $Sigma $-types,2
	�lue small Definition of J' avoiding $Sigma $-types,3
	�lue $;$
	�lue A Motivation for Type Setups,1
	�lue A Motivation for Type Setups,2
	�lue A Motivation for Type Setups,3
	�lue small Category notions for the semantics of type dependency
	�lue Category with families (CwF)

	�lue The large CwF of sets
	�lue Type Setups, 1
	�lue Type Setups, 2
	�lue Type Setups, 3
	�lue Type Setups, 4
	�lue Type Setups, 5
	�lue Type Setups, 6
	�lue $Pi $-types, 1
	�lue $Pi $-types, 2

