Identity Types and Type Setups

Uppsala, February 18th, 2009

Stockholm-Uppsala Logic Seminar

and

Gothenberg, February 19th, 2009.

Peter Aczel

petera@cs.man.ac.uk

SCAS and Manchester University

Part I: Identity Types Part II: Type Setups

Some References:

- [1] Homotopy Theoretic Models of Identity Types, Steve Awodey and Michael A. Warren
- [2] The Identity Type Weak Factorisation System, Nicola Gambino and Richard Garner
- [3] Two-dimensional Models of Type Theory, Richard Garner
- [1] Nice categories with weak factorisation systems can be used to model type theories with identity types.
- [2] The category $C(\mathbb{T})$ of contexts of a type theory \mathbb{T} with identity types has a natural weak factorisation system.
- [3] A type theory with identity types has identity contexts.

The result in [3] is exploited in [2].

Weak Factorisation Systems

A map $g: C \to D$ has the right lifting property with respect to $f: A \to B$, written $f \uparrow g$ if, whenever given maps $A \to C$ and $B \to D$ such that

$$A \to C \to D = A \to B \to D$$

then there is a *diagonal filler* $B \rightarrow C$; i.e.

 $A \to B \to C = A \to C \text{ and } B \to C \to D = B \to D.$

Given a set \mathcal{M} of maps let

$$\mathcal{M}^{\Uparrow} = \{ g \mid \forall f \in \mathcal{M} \ f \Uparrow \ g \}$$
$$^{\Uparrow} \mathcal{M} = \{ f \mid \forall g \in \mathcal{M} \ f \Uparrow \ g \}$$

 $(\mathcal{A}, \mathcal{B})$ is a *weak factorisation system* if

1. every map $A \to B$ has a factorisation $A \to Y \to B$ with $A \to Y$ in \mathcal{A} and $Y \to B$ in \mathcal{B} , and 2. $\mathcal{A}^{\uparrow} = \mathcal{B}$ and $\mathcal{A} = {}^{\uparrow}\mathcal{B}$.

Theorem of Gambino and Garner

Let \mathcal{T} be the set of context projections $\Gamma, \Delta \to \Gamma$ in the category of contexts of a type theory \mathbb{T} .

```
Let \mathcal{A}=^{\pitchfork}\mathcal{T} and \mathcal{B}=\mathcal{A}^{\Uparrow} .
```

Assume that \mathbb{T} has identity types.

Theorem: $(\mathcal{A}, \mathcal{B})$ is a weak factorization system.

Main Lemma: Every context map $\Gamma' \to \Gamma$ has a factorization $\Gamma' \to (\Gamma, \Delta) \to \Gamma$ where $\Gamma' \to (\Gamma, \Delta)$ is in $^{\uparrow}\mathcal{T}$ and $(\Gamma, \Delta) \to \Gamma$ is in \mathcal{T} .

Part I: Identity Types

- Identity Propositions
- Identity types with Π and Σ types
- **9** Avoiding Π types
- $\textbf{ Also avoiding } \Sigma \text{ types }$

Identity Propositions

Liebnitz Identity: $[a = b] \iff \forall P[P(a) \Leftrightarrow P(b)]$ It suffices to assume: $[a = b] \iff \forall P [P(a) \Rightarrow P(b)].$ $\forall P \left[P(a) \Rightarrow P(b) \right]$ $P'(x) \equiv [P(x) \Rightarrow P(a)]$ $P'(a) \Rightarrow P'(b)$ P'(a)P'(b) $P(b) \Rightarrow P(a)$ $P(a) \Leftrightarrow P(b)$ $\forall P \left[P(a) \Leftrightarrow P(b) \right]$

Singleton Class Definition

Impredicative:
$$[a = b] \iff b \in I_a$$
,
where
 $I_a = \bigcap \{X \mid a \in X\}.$

Inductive:

 I_a is the smallest class X such that $a \in X$.

Reflexive Relations Definition

$$[a =_A b] \iff \forall R \ [R \text{ reflexive } \Rightarrow (a, b) \in R].$$

Impredicative: The identity relation $I_A = \{(x, x) \mid x \in A\}$ on a class A is the intersection of all reflexive relations on A.

Inductive: I_A is the smallest reflexive relation on A; i.e. the smallest relation R on A such that

 $\forall x \in A \ (x, x) \in R.$

Adjoint characterisations of $=_A$

Reflexive Relations:

$$\frac{[x =_A y] \vdash_{x,y} Q(x,y)}{\vdash_x Q(x,x)}$$

Singleton Class:

$$\frac{[a =_A y] \vdash_y P(y)}{\vdash P(a)} (a \in A)$$

Type Theoretical Logical Rules,1

Singleton Class: For a : A

$$[a =_A y] prop (y : A)$$

 $[a =_A a] true$

 $D(y) \ prop \ (y : A, [a =_A y] \ true)$ $D(a) \ true$ $D(y) \ true \ (y : A, [a =_A y] \ true)$

Type Theoretical Logical Rules,2

Reflexive Relations:

$$[x =_A y] prop (x, y : A)$$

$$[x =_A x] true (x : A)$$

$$C(x, y) \ prop \ (x, y : A, [x =_A y] \ true)$$

$$C(x, x) \ true \ (x : A)$$

$$C(x, y) \ true \ (x, y : A, [x =_A y] \ true)$$

Identity Types with Π and Σ types

Identity Types,1: Given A type:

Formation:

$$I_A(x,y) \ type(x,y:A)$$

Introduction:

$$r_A(x): I_A(x,x) \ (x:A)$$

Elimination/Computation

 $\begin{array}{ll} C(x,y,z) \ type & (x,y:A,z:I_A(x,y)) \\ d(x):C(x,x,r_A(x)) & (x:A) \\ \hline J_d(x,y,z):C(x,y,z) & (x,y:A,z:I_A(x,y)) \\ J_d(x,x,r_A(x)) = d(x):C(x,x,r_A(x)) & (x:A) \end{array}$

These are the standard rules for Identity types.

Identity Types,2: Given *a* : *A*:

Formation:

$$I_a(y) type(y:A)$$

Introduction:

$$r_a:I_a(a)$$

Elimination/Computation

$$D(y, z) type \qquad (y : A, z : I_a(y))$$

$$e : D(a, r_a)$$

$$J'_{a,e}(y, z) : D(y, z) \qquad (y : A, z : I_a(y))$$

$$J'_{a,e}(a, r_a) = e : D(a, r_a)$$

These rules are due to Christine Paulin-Mohring.

It is easy to define J using J'.

But it is not so easy to define J' using J.

Martin Hoffman showed that this could be done. A construction is presented as an appendum in Thomas Streicher's Habilitation Thesis. But it is almost unreadable because of the awful syntax used.

The construction uses Π -types and Σ -types. But by using a parametric strengthening of the *J*-rule, due to Richard Garner, Π -types can be avoided and, by using ideas also due to Garner, and more work Σ -types can also be avoided.

The following is essentially Hofmann's construction.

Definition of J' **using** J, **1**:

Given I_A and a : A:

Step 1: Define, for $x, y : A, z : I_A(x, y)$, $I_a(y) \equiv I_A(a, y)$ $r_a \equiv r_A(a)$ $A_0(x) \equiv (\Sigma x' : A)I_A(x, x')$ $C(x, y, z) \equiv I_{A_0(x)}(\langle x, r_A(x) \rangle, \langle y, z \rangle)$ $d(x) \equiv r_{A_0(x)}(\langle x, r_A(x) \rangle) : C(x, x, r_A(x))$

Use the J rule with C, d to define

$$f(x, y, z) \equiv J_d(x, y, z) : C(x, y, z)$$

such that $f(x, x, r_A(x)) = d(x) : C(x, x, r_A(x))$.

Definition of J' **using** J, **2**:

Given also D(y, z) type $(y : A, z : I_a(y))$:

Step 2: Define
$$A_1 \equiv A_0(a)$$
 and, for
 $x_1, y_1 : A_1, z_1 : I_{A_1}(x_1, y_1)$,
 $B_1(x_1) \equiv D(\pi_1(x_1), \pi_2(x_1))$
 $C_1(x_1, y_1, z_1) \equiv B_1(x_1) \rightarrow B_1(y_1)$
 $d_1(x_1) \equiv (\lambda u : B_1(x_1))u : C_1(x_1, x_1, r_{A_1}(x_1))$

Use the J rule with C_1, d_1 to define

$$g(x_1, y_1, z_1) \equiv J_d(x_1, y_1, z_1) : C_1(x, y, z)$$

such that

$$g(x_1, x_1, r_{A_1}(x_1)) = d_1(x_1) : C_1(x_1, x_1, r_{A_1}).$$

Definition of J' **using** J, **3**:

Given a, D as before and $e: D(a, r_a)$:

Step 3: Define, for
$$y : A, z : I_a(y)$$
,
 $a_1 \equiv \langle a, r_a \rangle : A_1$
 $J'_{a,e}(y, z) \equiv app(g(a_1, \langle y, z \rangle, f(a, y, z)), e) : D(y, z)$

Then

$$J'_{a,e}(a, r_a) = app(g(a_1, a_1, f(a, a, r_a)), e) = app(g(a_1, a_1, r_{A_1}(a_1)), e) = app((\lambda u : B_1(a))u, e) = e : D(a, r_a).$$

Avoiding Π types

The parametric *J***-rule:**

For $x, y : A, z : I_A(x, y)$, $\begin{array}{ll}
C(x, y, z, \vec{u}) type & (\vec{u} : \vec{E}(x, y, z))) \\
d(x, \vec{u}) : C(x, x, r_A(x), \vec{u}) & (\vec{u} : \vec{E}(x, x, r_A(x))) \\
\hline
J_d(x, y, z, \vec{u}) : C(x, y, z, \vec{u}) & (\vec{u} : \vec{E}(x, y, z)) \\
J_d(x, x, r_A(x), \vec{u}) = d(x, \vec{u}) : C(x, x, r_A(x), \vec{u})) & (\vec{u} : \vec{E}(x, x, r_A(x)))
\end{array}$

 \vec{u} : $\vec{E}(x, y, z)$ is the context of parameters relative to the declarations of x, y, z.

 \vec{u} : $\vec{E}(x, x, r_A(x))$ is the resulting context of parameters relative to the declaration of x after substituting x for y and $r_A(x)$ for z.

The parametric substitution rule:

For
$$x, y: A, z: I_A(x, y), \vec{u}: \vec{E}(x)$$
,

$$\begin{array}{ll}
B(x,\vec{u}) \ type \\
sub(x,y,z,\vec{u},v) : B(y,\vec{sub}(x,y,z,\vec{u})) & (v:B(x,\vec{u})) \\
sub(x,x,r_A(x),\vec{u},v) = v:B(x,\vec{u}) & (v:B(x,\vec{u}))
\end{array}$$

where, if $\vec{u} \equiv u_1, \ldots, u_n$ then $\vec{sub}(x, y, z, \vec{u}) \equiv u'_1, \ldots, u'_n$ with $u'_i \equiv sub(x, y, z, u'_1, \ldots, u'_{i-1}, u_i)$ $(i = 1, \ldots, n)$.

This can be derived using the parametric *J*-rule with $C(x, y, z, \vec{u}, v) \equiv B(y, \vec{sub}(x, y, z, \vec{u}))$ and $d(x, \vec{u}, v) \equiv v$.

Definition of J' **using the parametric** J**-rule**

The aim here is to avoid Π -types by using the parametric *J*-rule. As in the earlier Step 1, we can use the *J*-rule to define, for $x, y : A, z : I_A(x, y)$,

$$f(x, y, z) : I_{A_0(x)}(x_1, < y, z >),$$

where $A_0(x) \equiv (\Sigma x' : A)I_A(x, x')$ and $x_1 \equiv \langle x, r_A(x) \rangle$, such that $f(x, x, r_A(x)) = r_{A_0(x)}(x_1)$.

Given a, D, e we can now use substitution (without parameters) to define, for $y : A, x : I_A(a, y)$,

$$J'_{a,e}(y,z) \equiv sub(\langle a, r_A(a) \rangle, \langle y, z \rangle, f(a, y, z), e) : D(y,z).$$

We have still used Σ -types, which we want to avoid.

Also avoiding Σ types

Definition of J' avoiding Σ -types,1

Given A, D, e we first use parametric substitution with one parameter $v_1 : I_A(a, x)$ and $B(y, v_1) \equiv D(y, v_1)$. So we get, with $x, y : A, z : I_A(x, y)$ and $v_1 : I_A(a, x)$,

 $sub(x, y, z, v_1, u) : B(y, sub(x, y, z, v_1)) \ (u : B(x, v_1))$

such that $sub(x, x, r_A(x), v_1, u) = u : B(x, v_1) (u : B(x, v_1))$ Here $sub(x, y, z, v_1) : I_A(a, y)$ such that

$$sub(x, x, r_A(x), v_1) = v_1 : I_A(a, x).$$

Now put $x = a, v_1 = r_A(a), u = e$ and define, for $y : A, z : I_A(a, y)$,

$$h_{a,e}(y,z) \equiv sub(a,y,z,r_A(a),e)$$

$$f_a^1(y,z) \equiv sub(a,y,z,r_A(a)).$$

Definition of J' avoiding Σ -types,2

For $y : A, z : I_A(a, y)$, we have $h_{a,e}(y, z) : D(y, f_a^1(y, z))$ and $f_a^1(y, z) : I_A(a, y)$ such that

$$h_{a,e}(a, r_A(a)) = e : D(a, r_A(a))$$

 $f_a^1(a, r_A(a)) = r_A(a) : I_A(a, a).$

We use the *J*-rule with $C(x, y, z) \equiv I_{I_A(x,y)}(sub(x, y, z, v_1), z)$ and $d(x) \equiv r_{I_A(x,x)}(r_A(x))$ to get

$$f_a^2(y,z) = J_d(a,y,z) : I_{I_A(a,y)}(f_a^1(y,z),z)$$

such that $f_a^2(a, r_A(a)) = r_{I_A(a,a)}(r_A(a))$.

Definition of J' avoiding Σ -types,3

Given y : A, let $A' = I_A(a, y)$. For z : A', we use substitution, with $B(z) \equiv D(y, z)$ to get

$$sub(z', z, w, u) : B(z) (z', w : I_{A'}(z', z), u : B(z'))$$

such that $sub(z', z', r_{A'}(z'), u) = u : B(z') (z' : A', u : B(z'))$. We can now define, for y : A, z : A',

$$J'_{a,e}(y,z) \equiv sub(f_a^1(y,z), z, f_a^2(y,z), h_{a,e}(y,z)) : D(y,z),$$

and get, as $h_{a,e}(a, r_A(a)) = e$,

$$J'_{a,e}(a, r_A(a)) = sub(f_a^1(a, r_A(a)), r_A(a), f_a^2(a, r_A(a)), e)$$

= $sub(r_A(a), r_A(a), r_{I_A(a,a)}(r_A(a)), e)$
= $e : D(a, r_A(a))$

Part II: Type Setups

A Motivation for Type Setups,1

If $\Gamma \equiv x_1 : A_1, x_2 : A_2, \dots, x_n : A_n$ is a context it is natural to write $\Gamma \equiv \vec{x} : \vec{A}$, where

 $\vec{x} \equiv x_1, x_2, \dots, x_n$ and $\vec{A} \equiv A_1, [x_1]A_2, \dots, [x_1, \dots, x_{n-1}]A_n$.

We then write $\vec{a} : \vec{A}$ for the sequence of judgments

 $a_1: A_1, a_2: A_2[a_1/x_1], \dots, a_n: A_n[a_1, \dots, a_{n-1}/x_1, \dots, x_{n-1}]$

where $\vec{a} \equiv a_1, \ldots, a_n$. So

- \checkmark \vec{A} is like a single type,
- $\vec{x} : \vec{A}$ is like a single variable declaration
- **•** $\vec{a} : \vec{A}$ is like a single judgement

A Motivation for Type Setups,2

Let $\Delta \equiv y_1 : B_1, \dots, y_m : B_m$ such that Γ, Δ is a context. It is natural to write $\Delta \equiv \vec{y} : \vec{B}(\vec{x})$, where

$$\vec{B}(\vec{x}) \equiv B_1, [y_1]B_2, \dots, [y_1, \dots, y_m]B_m.$$

Then, if $\vec{a} : \vec{A}$,

$$\Delta[\vec{a}/\vec{x}] \equiv y_1 : B_1[\vec{a}/\vec{x}], \dots, y_m : B_m[\vec{a}/\vec{x}]$$
$$\equiv \vec{y} : \vec{B}(\vec{a})$$

So $\vec{B}(\vec{x})$ is like a family of types over the type \vec{A} . We have a new type theory. To make this precise we need an abstract notion of type theory. This is the notion of a TYPE SETUP.

A Motivation for Type Setups,3

If \mathbb{T} is a type setup let \mathbb{T}^* be the new type setup, constructed along the lines we have described.

Some conjectured results:

- \mathbb{T}^* is indeed a type setup and has Σ -types. It is the 'free' type setup with Σ -types generated from \mathbb{T} .
- (Garner) If T has identity types then so does T^* .
- \mathbb{T} and \mathbb{T}^* have equivalent categories of contexts. Conclusion:

We may as well assume that a type theory/setup has Σ -types.

Category notions for the semantics of type dependency

- Category with attributes Cartmell 1978, Moggi 1991, Type category Pitts 1997
- Contextual category Cartmell 1978, Streicher 1991
- Category with families Dybjer 1996, Hoffman 1997
- Category with display maps (less general) Taylor 1986, Lamarche 1987, Hyland and Pitts 1989
- Comprehension category (more general) Jacobs 1991
- other relevant notions: locally cartesian closed categories, fibrations, indexed categories
- Type setups (for syntax) new notion

Category with families (CwF)

- a category Ctxt of contexts Γ and substitutions $\sigma: \Delta \to \Gamma$, with a distinguished terminal object (),
- a functor $T : Ctxt^{op} \to Fam$ mapping

 $\Gamma \mapsto \{Term(\Gamma, A)\}_{A \in Type(\Gamma)}$

and, if $\sigma: \Delta \to \Gamma$ then

$$A \in Type(\Gamma) \qquad \mapsto A\sigma \in Type(\Delta)$$
$$a \in Term(\Gamma, A) \qquad \mapsto a\sigma \in Term(\Delta, A\sigma)$$

• an assignment, to each context Γ and each $A \in Type(\Gamma)$, of a comprehension $(\Gamma.A, p_A, v_A)$ such that $p_A : \Gamma.A \to \Gamma$ and $v_A \in Term(\Gamma.A, Ap_A)$;

i.e. a terminal object in the category of (Γ', θ, a) such that $\theta : \Gamma' \to \Gamma$ and $a \in Term(\Gamma', A\theta)$.

The large CwF of sets

- Ctxt = Set and, for each set I,
- Type(I) is the class of families of sets $A = \{A_i\}_{i \in I} \in Set^I$,
- $Term(I, A) = \prod_{i \in I} A_i$ and, if $\sigma : J \to I$ in Set,

• $\mathbf{a}\sigma = \{a_{\sigma j}\}_{j \in J}$, for $\mathbf{a} = \{a_i\}_{i \in I}$.

•
$$I.A = \sum_{i \in I} A_i$$
,

•
$$\mathbf{p}_A(i,x) = i \text{ for } (i,x) \in I.A$$
,

•
$$\mathbf{v}_A = \{x\}_{(i,x) \in I.A}$$

The notion of a type setup abstracts away from the details of how terms and types are formed, but keeps the following notions.

- contexts Γ ,
- substitutions $\sigma : \Delta \to \Gamma$, between contexts, the contexts and substitutions forming a category Ctxt,
- $\iota_{\Gamma} : \Gamma \to \Gamma$ is the identity on Γ and $\sigma \circ \tau : \Lambda \to \Gamma$ is the composition of $\sigma : \Delta \to \Gamma$ and $\tau : \Lambda \to \Delta$.
- For each context Γ , there is the set $Type(\Gamma)$ of Γ -types A and the set $Term(\Gamma, A)$ of Γ -terms a of type A, for each Γ -type A.
- Substitutions must 'act' on types and terms to give a functor $T: Ctxt^{op} \rightarrow Fam$, where Fam is the category of set-indexed families of sets.

• For each context Γ

$$T(\Gamma) = \{Term(\Gamma, A)\}_{A \in Type(\Gamma)}$$

 \bullet For each substitution $\sigma:\Delta\to\Gamma$, $T(\sigma):T(\Gamma)\to T(\Delta)$ maps

$$\begin{array}{ll} A \in Type(\Gamma) & \mapsto A\sigma \in Type(\Delta) \\ a \in Term(\Gamma, A) & \mapsto a\sigma \in Term(\Delta, A\sigma) \end{array}$$

such that

$$A\iota_{\Gamma} = A$$
 and $a\iota_{\Gamma} = a$

and if also $\tau:\Lambda\to\Delta$ then

$$A(\sigma \circ \tau) = (A\sigma)\tau$$
 and $a(\sigma \circ \tau) = (a\sigma)\tau$.

• Each context Γ is a finite sequence

 $x_1: A_1, \ldots, x_n: A_n$

of typed variable declarations.

• The empty sequence () is a context.

• If
$$\Gamma \equiv x_1 : A_1, \ldots, x_n : A_n$$
 then

 $\Gamma' \equiv \Gamma, x : A \equiv x_1 : A_1, \dots, x_n : A_n, x : A \text{ is a context iff}$

- \checkmark Γ is a context,
- x is a variable, not in $\{x_1, \ldots, x_n\}$ and
- $A \in Type(\Gamma)$.

• If Γ, Δ are contexts, with

$$\Gamma \equiv x_1 : A_1, \dots, x_n : A_n$$

the each substitution $\Delta \to \Gamma$ has the form

$$[x_1 := a_1, \ldots, x_n := a_n]_{\Delta \to \Gamma}.$$

• If
$$\Gamma' \equiv x_1 : A_1, \ldots, x_n : A_n, x : A$$
 is a context then

$$\sigma' \equiv [\sigma, x := a]_{\Delta \to \Gamma'} \equiv [x_1 := a_1, \dots, x_n := a_n, x := a]_{\Delta \to \Gamma'}$$

is a substitution $\Delta \to \Gamma'$ iff

 $\sigma \equiv [x_1 := a_1, \dots, x_n := a_n]_{\Delta \to \Gamma}$ is a substitution, and $a \in Term(\Delta, A\sigma)$.

• If $\Gamma \equiv x_1 : A_1, \dots, x_n : A_n$ is a context then, for $i = 1, \dots, n$, $A_i \in Type(\Gamma)$ and $x_i \in Term(\Gamma, A_i)$.

• If $\sigma \equiv [x_1 := a_1, \dots, x_n := a_n]_{\Delta \to \Gamma}$ is a substitution then it is

the unique substitution $\Delta \rightarrow \Gamma$ such that, for $i = 1, \ldots, n$,

 $x_i \sigma = a_i.$

• If Γ, Δ are contexts such that $\Gamma \subseteq \Delta$ (i.e. every declaration in Γ is also a declaration in Δ) then

 $Type(\Gamma) \subseteq Type(\Delta) \text{ and } Term(\Gamma, A) \subseteq Term(\Delta, A)$

for each $A \in Type(\Gamma)$.

• Also, if
$$\Gamma \equiv x_1 : A_1, \dots, x_n : A_n$$
 then
 $\iota_{\Delta \to \Gamma} \equiv [x_1 := x_1, \dots, x_n := x_n]_{\Delta \to \Gamma}$

is an inclusion substitution; i.e. for $A \in Type(\Gamma)$ and $a \in Term(\Gamma, A)$,

$$A\iota_{\Delta\to\Gamma} = A \text{ and } a\iota_{\Delta\to\Gamma} = a.$$

• If $\Gamma' \equiv \Gamma, x : A$ then $(\Gamma', \iota_{\Gamma' \to \Gamma}, x)$ is a comprehension.

Π -types, 1

• We say that a type setup has Π -types if the standard formation, introduction, elimination and computation rules for Π -types are correct for the type setup; i.e. if $\Gamma' \equiv \Gamma, x : A$ is a context then there are the following assignments:

$$B \in Type(\Gamma') \qquad \qquad \mapsto (\Pi x : A)B \in Type(\Gamma),$$

$$b \in Term(\Gamma', B) \qquad \mapsto (\lambda x)b \in Term(\Gamma, (\Pi x : A)B),$$

$$\left. \begin{array}{l} f \in Term(\Gamma, (\Pi x : A)B) \\ a \in Term(\Gamma, A) \end{array} \right\} \quad \mapsto app(f, a) \in Term(\Gamma, B[a/x]) \end{array} \right\}$$

such that if $f = (\lambda x)b$ then app(f, a) = b[a/x].

11-types, 2

• These must commute with substitution; i.e. for each $\sigma: \Delta \to \Gamma$,

$((\Pi x : A)B)\sigma$	$= (\Pi x : A\sigma) B\sigma',$
$((\lambda x)b)\sigma$	$= (\lambda x)b\sigma',$
$app(f,a)\sigma$	$= app(f\sigma, a\sigma),$

where $\sigma' \equiv [\sigma, x := x]_{\Delta \to \Gamma'} : \Delta \to \Gamma'$.

• Also, if $y \notin var(\Gamma)$ then

 $(\Pi x : A)B = (\Pi y : A)B[y/x]$ and $(\lambda x)b = (\lambda y)b[y/x]$.

• The requirement that the type setup has other forms of type can be explained in a similar way.