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Part I

Rudimentary CST
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The Axiom Systems CZF, BCST and RCST

• CZF is formulated in the first order language L∈ for
intuitionistic logic with equality, having ∈ as only non-logical
symbol. It has the axioms of Extensionality, Emptyset,
Pairing, Union and Infinity and the axiom schemes of
∆0-Separation, Strong Collection, Subset Collection and
Set Induction. (CZF+ classical logic)≡ ZF.
• BCST (Basic CST) is a weak subsystem of CZF. It uses
Replacement instead of Strong Collection and otherwise
only uses the axioms of Extensionality, Emptyset, Pairing,
Union and Binary Intersection (x ∩ y is a set for sets x, y).
• RCST (Rudimentary CST) is like BCST except that it uses
the Global Replacement Rule (GRR) instead of the
Replacement Scheme.

• ∆0-Separation can be derived in RCST and so in BCST.
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The Global Replacement Rule
• The Replacement Scheme: For each formula φ[x, z, y],
where x, z, y is a list x1, . . . , xn, z, y of distinct variables:

∀x∀x{(∀z ∈ x)∃!yφ[x, z, y] → ∃a∀y(y ∈ a ↔ (∃z ∈ x)φ[x, z, y])}

• The Global Replacement Scheme:

[∀x∀z∃!yφ[x, z, y] → ∀x∀x∃a∀y(y ∈ a ↔ (∃z ∈ x)φ[x, z, y])

• The Global Replacement Rule (GRR):

∀x∀z∃!yφ[x, z, y]

∀x∀x∃a∀y(y ∈ a ↔ (∃z ∈ x)φ[x, z, y])

• Rudimentary CST (RCST): Extensionality, Emptyset,

Pairing, Union, Binary Intersection and GRR
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The Rudimentary Functions (à la Jensen)

Definition: [Ronald Jensen (1972)] A function f : V n → V is
Rudimentary if it is generated using the following schemata:

(a) f(x) = xi

(b) f(x) = xi−xj

(c) f(x) = {xi, xj}

(d) f(x) = h(g(x))

(e) f(x) = ∪z∈yg(z, x)

where h : V m → V , g = g1, . . . , gm : V n → V and g : V n+1 → V

are rudimentary and 1 ≤ i, j ≤ n.
Note that f(x) = ∅ = xi−xi is rudimentary; and so is
f(x) = xi ∩ xj = xi−(xi−xj) using classical logic.
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The Rudimentary Functions (à la CST)

Definition: A function f : V n → V is (CST)-Rudimentary if it is
generated using the following schemata:

(a) f(x) = xi

(b) f(x) = ∅

(c) f(x) = f1(x) ∩ f2(x)

(d) f(x) = {f1(x), f2(x)}

(e) f(x) = ∪z∈f1(x)f2(z, x)

Proposition: The CST rudimentary functions are closed under
composition (f(x) = h(g(x))).

Proposition: Using classical logic, the CST rudimentary functions

coincide with Jensen’s rudimentary functions.
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The axiom systemRCST ∗, 1
• The language L∗

∈ is obtained from L∈ by allowing
individual terms t generated using the following syntax
equation:

t ::= z | ∅ | {t1, t2} | t1 ∩ t2 | ∪z∈t1t2[z]

Free occurences of z in t2[z] become bound in ∪z∈t1t2[z].
RCST ∗ has the Extensionality axiom and the following
comprehension axioms for the forms of term of L∗

∈:

A1) x ∈ ∅ ↔ ⊥

A2) x ∈ t1 ∩ t2 ↔ (x ∈ t1 ∧ x ∈ t2)

A3) x ∈ {t1, t2} ↔ (x = t1 ∨ x = t2)

A4) x ∈ ∪z∈t1t2[z] ↔ (∃z ∈ t1) (x ∈ t2[z])
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The axiom systemRCST ∗, 2
Some Definitions:

{t} ≡ {t, t}, {t2[z] | z ∈ t1} ≡ ∪z∈t1{t2[z]}

{t2}t1 ≡ {t2 | z ∈ t1} ∪t ≡ ∪z∈tz

[z ∈ t1 | t2[z]] ≡ ∪z∈t1{z}t2[z] t1 ∪ t2 ≡ ∪{t1, t2}

< t1 = t2 > ≡ {∅}{t1}∩{t2} < t1 ⊆ t2 > ≡ < t1 ∩ t2 = t1 >

Theorem: There is an assignment of a term < θ > of L∗
∈ to each

∆0-formula θ of L∗
∈ such that

RCST ∗ ⊢ [z ∈< θ >] ↔ [(z = ∅) ∧ θ].

Corollary: For each term t and each ∆0-formula θ[x] of L∗
∈, if

{x ∈ t | θ[x]} ≡ [x ∈ t |< θ[x] >] then

RCST ∗ ⊢ z ∈ {x ∈ t | θ[x]} ↔ z ∈ t ∧ θ[z].
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The definition of < θ >

The assignment of a term < θ > for each ∆0-formula θ of L∗
∈

is by structural recursion on θ using the following table.

t1 ∈ t2 < {t1} ⊆ t2 >

⊥ ∅

θ1 ∧ θ2 < θ1 > ∩ < θ2 >

θ1 ∨ θ2 < θ1 > ∪ < θ2 >

θ1 → θ2 << θ1 >⊆< θ2 >>

(∃x ∈ t)θ[x] ∪x∈t < θ[x] >

(∀x ∈ t)θ[x] < t ⊆ {x ∈ t | θ[x]} >

We have shown that each instance of ∆0-Separation is a

theorem of RCST ∗.
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The axiom systemRCST ∗, 3
Each term t whose free variables are taken from
x = x1, . . . , xn defines in an obvious way a function
Ft : V n → V .
Proposition: A function f : V n → V is rudimentary iff f = Ft for
some term t of L∗

∈.

Proposition: We can associate with each term t of L∗
∈ a formula

ψt[y] of L∈ such that RCST ∗ ⊢ (y = t ↔ ψt[y]) and
RCST ⊢ ∃!yψt[y].
Definition: RCST0 is the axiom system in the language L∈ with the
Extensionality axiom and the axioms ∃yψt[y] for terms t of L∗

∈.

Proposition: Every theorem of RCST0 is a theorem of RCST and

RCST ∗ is a conservative extension of RCST0.
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The definition of theψt[y]
We simultaneously define formulae of L∈

• φt[x] such that RCST ∗ ⊢ (x ∈ t ↔ φt[x]) and
• ψt[y] such that RCST ∗ ⊢ (y = t ↔ ψt[y])

by structural recursion on terms t of L∗
∈:

ψt[y] ≡ ∀x(x ∈ y ↔ φt[x])

t φt[x]

z x ∈ z

∅ ⊥

{t1, t2} ψt1[x] ∨ ψt2 [x]

t1 ∩ t2 φt1[x] ∧ φt2 [x]

∪z∈t1t2[z] ∃z(φt1 [z] ∧ φt2[z][x])
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The axiom systemRCST ∗, 4

If φ is a formula of L∗
∈ let φ♯ be the formula of L∈ obtained

from φ by replacing each atomic formula t1 = t2 by
∃y(ψt1[y] ∧ ψt2[y]) and each atomic formula t1 ∈ t2 by
∃y(ψt1[y] ∧ φt2[y]).
Proposition: For each formula φ of L∗

∈

1. RCST ∗ ⊢ (φ ↔ φ♯),

2. ⊢ (φ ↔ φ♯) if φ is a formula of L∈,

3. RCST ∗ ⊢ φ implies RCST0 ⊢ φ♯.

Theorem: [The Term Existence Property] If RCST0 ⊢ ∃yφ[y, x]
then RCST ∗ ⊢ φ[t[x], x] for some term t[x] of L∗

∈.

Proof Idea: Use Friedman Realizability, as in Myhill (1973).
Corollary: The Replacement Rule is admissible for RCST ∗ and
hence RCST ⊢ φ implies RCST ∗ ⊢ φ.
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The axiom systemRCST ∗, 5
Corollary: RCST has the same theorems as RCST0.
Corollary: RCST ∗ is a conservative extension of RCST .
Proposition: RCST0 is finitely axiomatizable.

The proof uses a constructive version of the result of Jensen

that the rudimentary functions can be finitely generated us-

ing function composition.
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The Rudimentary Relations
Define 0 = ∅, 1 = {0}, 2 = {0, 1}, etc. and let Ω be the class
of all subsets of 1.
Definition: A relation R ⊆ V n is a rudimentary relation if its
characteristic function cR : V n → Ω, where

cR(x) = {z ∈ 1 | R(x)},

is a rudimentary function.
Proposition: A relation is rudimentary iff it can be defined, in RCST,
by a ∆0 formula.

Proposition: If R ⊆ V n+1 and g : V n → V are rudimentary then
so are f : V n → V and S ⊆ V n, where

f(x) = {z ∈ g(x) | R(z, x)}
and

S(x) ↔ R(g(x), x).
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Part II

Arithmetical CST
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The class of natural numbers
We use class notation, as is usual in set theory. So if
A = {x | φ[x]} then x ∈ A ↔ φ[x].
A class X is inductive, written Ind(X), if

0 ∈ X ∧ (∀z ∈ X) z+ ∈ X,

where 0 = ∅ and t+ = t ∪ {t}.
Definition:

Nat ≡ {x | ∀y ∈ x+(Trans(y) ∧ (y = 0 ∨ Succ(y)))}

where

Trans(y) ≡ ∀z ∈ y z ⊆ y and Succ(y) ≡ (∃z ∈ y)(y = z+).

Note that Nat is inductive.
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The Mathematical Induction Scheme

The Scheme: Ind(X) → Nat ⊆ X for each class X; i.e.
Nat is the smallest inductive class.
Proposition: Each instance of Mathematical Induction can be
derived assuming RCST ∗+Set Induction.

• We focus on the axiom system, Arithmetical CST (ACST ),
where ACST ≡ RCST ∗+Mathematical Induction.

• This axiom system has the same proof theoretic strength
as Peano Arithmetic and is probably conservative over HA.

A set X is finite/finitely enumerable if there is a
bijection/surjection n→ X for some n ∈ Nat.

Note: A set is finite iff it is finitely enumerable and
discrete (equality on the set is decidable).
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Two Theorems ofACST
Theorem: [The Finite AC Theorem] For classes B,R, if A is a finite set

such that (∀x ∈ A)(∃y ∈ B)[(x, y) ∈ R] then there is a set function
f : A→ B, such that (∀x ∈ A)[(x, f(x)) ∈ R].
Proof: Use mathematical induction on the size of A.

Theorem: [The Finitary Strong Collection Theorem] For classes B,R, if
A is a finitely enumerable set such that (∀x ∈ A)(∃y ∈ B)[(x, y) ∈ R]
then there is a finitely enumerable set B0 ⊆ B such that

(∀x ∈ A)(∃y ∈ B0)[(x, y) ∈ R] & (∀y ∈ B0)(∃x ∈ A)[(x, y) ∈ R]

Proof: Let g : n → A be a surjection, where n ∈ Nat,

so that (∀k ∈ n)(∃y ∈ B)[(g(k), y) ∈ R]. By the finite AC

theorem there is a function f : n→ B such that, for all m ∈ n,

(g(m), f(m)) ∈ R. The desired finitely enumerable set B0 is
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Inductive Definitions
Any class Φ can be viewed as an inductive definition,
having as its (inference) steps all the ordered pairs
(X, a) ∈ Φ.

A step will usually be written X/a, with the elements of
X the premisses of the step and a the conclusion of the
step.

A class Y is Φ-closed if, for each step X/a of Φ,

X ⊆ Y ⇒ a ∈ Y.

Φ is generating if there is a smallest Φ-closed class; i.e.
a class Y such that (i) Y is a Φ-closed class, and
(ii) Y ⊆ Y ′ for each Φ-closed class Y ′.

Any smallest Φ-closed class is unique and is written
I(Φ) and called the class inductively defined by Φ
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Finitary Inductive Definitions
An inductive definition Φ is finitary if X is finitely
enumerable for every step X/a of Φ.

Theorem: [ACST ] Each finitary inductive definition is generating.

Example: The finitary inductive definition, having the steps
X/X for all finitely enumerable sets X, generates the class
HF of hereditarily finitely enumerable sets.
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The Primitive Recursion Theorem
Theorem: Let G0 : B → A and F : Nat× B ×A→ A be
class functions, where A,B are classes. Then there is a
unique class function G : Nat× B → A such that, for all
b ∈ B and n ∈ Nat,

(∗)

{

G(0, b) = G0(b),

G(n+, b) = F (n, b,G(n, b)),

Proof: : Let G = I(Φ), where Φ is the inductive
definition with steps ∅/((0, b), G0(b)), for b ∈ B, and
{((n, b), x)}/(n+, F (n, b, x)) for (n, b, x) ∈ Nat× B ×A.

It is routine to show that G is the unique required class
function.
�
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HA ≤ (ACST )

Theorem: There are unique binary class functions
Add,Mult : Nat×Nat→ Nat such that, for n,m ∈ Nat,
1. Plus(n, 0) = n,
2. Plus(n,m+) = Plus(n,m)+,
3. Mult(n, 0) = 0,
4. Mult(n,m+) = Plus(Mult(n,m), n).

Proof: Apply the Primitive Recursion theorem with
A = B = Nat, first with F (n,m, k) = k+ to obtain Plus
and then with F (n,m, k) = Plus(k, n) to obtain Mult.
�

Using this result it is clear that there is an obvious
standard interpretation of Heyting Arithmetic in
BCST− +MathInd.
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The Finite AC Theorem, 1
Theorem[ACST ]: For each class B and each class R, if A
is a finite set such that

(∀x ∈ A)(∃y ∈ B)[(x, y) ∈ R]

then there is a set, that is a function f : A→ B, such that

(∀x ∈ A)[(x, f(x)) ∈ R].

We present results and proofs informally using standard
set and class notation and terminology.
Proof: Let g : n ∼ A be a bijection, where n ∈ Nat, so that

(∀k ∈ n)(∃y ∈ B)[(g(k), y) ∈ R].
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The Finite AC Theorem, 2
Proof: Let g : n ∼ A be a bijection, where n ∈ Nat, so that

(∀k ∈ n)(∃y ∈ B)[(g(k), y) ∈ R].

If m ∈ n+ call h : m→ B m-good if

(∀k ∈ m)[(g(k), h(k)) ∈ R].

Let X be the class of m ∈ Nat such that if m ∈ n+ then
there is an m-good h : m→ B.

Claim: X is inductive and hence Nat ⊆ X.

By the claim, as n ∈ n+ there is an n-good function h.

Then {(g(k), h(k)) | k ∈ n} is a function f : A→ B such
that (∀x ∈ A)[(x, f(x)) ∈ R].
�
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Finitary Strong Collection
Theorem[Finitary Strong Collection]: For each class B and
each class R, if A is a finitely enumerable set such that

(∀x ∈ A)(∃y ∈ B)[(x, y) ∈ R]

then there is a set B0 ⊆ B such that

(∀x ∈ A)(∃y ∈ B0)[(x, y) ∈ R] & (∀y ∈ B0)(∃x ∈ A)[(x, y) ∈ R]

Proof: Let g : n→ A be a surjection, where n ∈ Nat, so that

(∀k ∈ n)(∃y ∈ B)[(g(k), y) ∈ R].

By the finite AC theorem there is a function f : n→ B such
that, for all m ∈ n, (g(m), f(m)) ∈ R. The desired finitely
enumerable set B0 is {f(m) | m ∈ n}. 2

Note: B0 = {y ∈ ∪ ∪ f | (∃x ∈ ∪ ∪ f) (x, y) ∈ f}.
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The finitary inductive definition theorem

Theorem: Each finitary inductive definition is generating.
Proof: Let Φ be a finitary inductive definition. For each
class X let

ΓX = {y | (∃Y ∈ Pow(X)) [Y/y is a step in Φ]}.

• For G a subclass of Nat× V and n ∈ Nat let

Gn = {y | (n, y) ∈ G} and G<n =
⋃

m∈n

Gm.

• Call such a class G good if Gn ⊆ ΓG<n for all n ∈ Nat,
and let J =

⋃

{G | G is a good set} and I =
⋃

n∈Nat J
n.

Claim 1: (i) J is a good class and (ii) if X is a Φ-closed class

then I ⊆ X.
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Proof of Claim 1
(i) J is a good class.

Proof: Let y ∈ Jn, with n ∈ Nat.

Then y ∈ Gn ⊆ ΓG<n for some good set G.

As Γ is monotone y ∈ ΓJ<n. Thus Jn ⊆ ΓJ<n.

(ii) if X is a Φ-closed class then I ⊆ X.

Proof: Assume that X is Φ-closed; i.e. ΓX ⊆ X.

Then, by (i), using MathInd, Jn ⊆ X for all n ∈ Nat.

Hence I ⊆ X.
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Proof that I is Φ-closed, 1
Proof: Let Y/a be a Φ-step for some Y ⊆ I; i.e.

(∀y ∈ Y )(∃G)[G is a good set and (∃n ∈ Nat) y ∈ Gn].

By Finitary Strong Collection, as Y is finitely enumerable
there is a finitely enumerable set Y of good sets such that

(∀y ∈ Y )(∃G ∈ Y)(∃n ∈ Nat) y ∈ Gn.

Hence (∀y ∈ Y )(∃n ∈ Nat)(∃G ∈ Y) y ∈ Gn.

So, by Finitary Strong Collection again there is a finitely
enumerable subset P of Nat such that

(∀y ∈ Y )(∃n ∈ P )(∃G ∈ Y) y ∈ Gn.
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Proof that I is Φ-closed, 2
P ⊆ Nat is finitely enumerable such that

(∀y ∈ Y )(∃n ∈ P )(∃G ∈ Y) y ∈ Gn

where Y is a class of good sets.

As P ⊆ Nat is finitely enumerable, P ⊆ m for some
m ∈ Nat.

Let G0 =
⋃

Y is good, as it is a union of good sets.

As P ⊆ m, Y ⊆ G<m
0 .

As Y/a is a Φ-step, a ∈ ΓG<m
0 .

Hence G = G0 ∪ {(m, a)} is good, so that
a ∈ Gm ⊆ Jm ⊆ I. 2
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Hereditarily Finite sets
The class HF of hereditarily finitely enumerable sets is
the smallest class such that every finitely enumerable
subset of the class is in the class; i.e.
HF = I({X/X | X is a finitely enumerable set }).

Theorem:

1. HF = I({X/X | X is a finite set }).

2. HF is the smallest class Y such that ∅ ∈ Y and if
a, b ∈ Y then a ∪ {b} ∈ Y .
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Transitive Closure
A class Y is transitive if (∀x ∈ Y ) x ⊆ Y .

Theorem: For each class A there is a smallest
transitive class TC(A) that includes A.

Proof: TC(A) = I(Φ) where Φ is the inductive definition
with steps ∅/x for x ∈ A and {y}/x for sets x, y such that
x ∈ y.
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Adding an Infinity axiom
Infinity Axiom: Nat is a set

Using the Infinity axiom I have been unable to derive
the following assertion.

If Φ is a finitary inductive definition such that
{y | X/y ∈ Φ} is a set for each set X then I(Φ) is a set.

I believe that I can derive it if I also assume the
following scheme.

For each class A and each class function F : A→ A, if
a0 ∈ A then {g(n) | n ∈ Nat} is a set, where g(0) = a0

and g(n+) = F (g(n)) for n ∈ Nat.

RudimentaryConstructive Set Theory – p.33/33


	�lue Part I 
	�lue small The Axiom Systems CZF, BCST and RCST 
	�lue The Global Replacement Rule 
	�lue small The Rudimentary Functions (`{a} la Jensen) 
	�lue small The Rudimentary Functions (`{a} la CST) 
	�lue The axiom system $RCST^*$, 1 
	�lue The axiom system $RCST^*$, 2 
	�lue The definition of $<	heta >$ 
	�lue The axiom system $RCST^*$, 3 
	�lue The definition of the $psi _t[y]$ 
	�lue The axiom system $RCST^*$, 4 
	�lue The axiom system $RCST^*$, 5 
	�lue The Rudimentary Relations 
	�lue Some References 
	�lue Part II 
	�lue The class of natural numbers 
	�lue small The Mathematical Induction Scheme 
	�lue Two Theorems of $ACST$ 
	�lue Inductive Definitions 
	�lue Finitary Inductive Definitions 
	�lue The Primitive Recursion Theorem 
	�lue $HA;leq ; (ACST)$ 
	�lue The Finite AC Theorem, 1 
	�lue The Finite AC Theorem, 2 
	�lue Finitary Strong Collection 
	�lue small The finitary inductive definition theorem 
	�lue Proof of Claim 1 
	�lue Proof that $I$ is $Phi $-closed, 1 
	�lue Proof that $I$ is $Phi $-closed, 2 
	�lue Hereditarily Finite sets 
	�lue Transitive Closure 
	�lue Adding an Infinity axiom 

