The Type Theoretic Concept of Set

Set Theory, Classical and Constructive

Amsterdam, May 6-7, 2010

Peter Aczel
petera@cs.man.ac.uk

Manchester University,
visiting LMU, Munich
Plan of the talk

- Introduction
- The classical conception of set
- The type theoretic conception of set
- A quick look at the type theory
- Some references
Some set theories

\[CZF \Rightarrow IZF \Rightarrow ZF \]

\[CZF_{R,E} \Rightarrow IZF_R \quad (CZF_{R,E} + EM) \]

\[ZF \leq \neg \neg IZF \]

\[CZF \sim ID_1 \sim KP \ll IZF \sim ZF \]
The type-theoretic interpretations

\[CZF \leq_{tt} (ML + \cup + \forall) \]

\[ZF \leq_{tt} (ML + \cup + \forall + EM) \]

\[ZF \leq \neg \neg IZF \leq_{tt} (ML + \Omega + \cup + \forall) \]
The cumulative hierarchy in ZF

- \(V = \bigcup_{\alpha \in \text{On}} V_\alpha, \)
 where \(V_\alpha = \bigcup_{\beta < \alpha} \text{Pow}(V_\beta) \) for \(\alpha \in \text{On}. \)

- \(V_0 \subseteq V_1 \subseteq \cdots V_\alpha \subseteq V_{\alpha+1} \subseteq \cdots \)

- \(V_0 = \emptyset, V_1 = \{\emptyset\}, V_{\alpha+1} = \text{Pow}(V_\alpha) \)

- \(V_\alpha = \text{the set of sets formed by stage } \alpha \)

- \(\{x \in V_\beta \mid \cdots x \cdots\} \in V_\alpha \text{ if } \beta < \alpha \)
The classical iterative conception

Zermelo, Scott, Schoenfield, Boolos, Parsons,...

- Sets are extensional.
- Sets are formed in stages, α, out of elements formed at earlier stages.
- A set is formed by collecting together (into a whole) its elements.
- There are lots of stages:
 1. There is a stage.
 2. For each stage there is a later stage.
 3. There is a stage, ω, reflecting 1,2.
 4. If $\{\alpha_i\}_{i \in I}$ is a family of stages indexed by a set I then there is a stage later than all the α_i.
The formation of powersets

Suppose X is an infinite set formed at some stage α.
- Then each element of X will have been formed at some stage before α.
- So each subset of X will have been formed at or before stage α. But can the elements of each subset of X, however the subset is formed, really be collected into a whole at or before stage α?

- So the powerset, $\text{Pow}(X)$, will be formed at any stage after α. But can the subsets of X be collected into a whole so easily?
Types, sets and classes

Any discussion concerning the concept of set must distinguish between the three distinct notions of **type**, **set** and **class**.

For example the intended universe of ZF set theory is a **type**, the objects in that universe are **sets** and $\{ x \mid x \not\in x \}$ is a **class**.

The notion of **type** is perhaps best taken as a pre-mathematical philosophical notion.

The notion of **set** of ZF is an iterative combinatorial notion.

The notion of **class** is a logical notion - the extension of a predicate.
A mathematical **object** is always given as an object of some **type**.

We write $a : A$ for the **judgement** that a is an object of type A.

A **class** on a type is the extension of a **propositional function** on the type.

If B is a propositional function on the type A then its **extension** is the class $C = \{ x : A \mid B(x) \}$.

For $a : A$ the **proposition** that a is in the class C is $B(a)$.

If also $C' = \{ x : A \mid B'(x) \}$ then $(C = C')$ is the proposition

$$(\forall x : A)[B(x) \leftrightarrow B'(x)].$$
What is a set of elements of a type?

It is a collection into a whole of objects chosen from the type.

- e.g. given the type \mathbb{N} of natural numbers we have sets of natural numbers such as $\{0\}, \{0, 1\}, \{0, 3, 18\}, \{\}$
- and sets $\{0, 2, 4, 6, \ldots, 92\}, \{2i \mid i < n\}$ for $n : \mathbb{N}$,
- and infinite sets such as $\{0, 2, 4, 6, \ldots\} = \{2i \mid i : \mathbb{N}\}$.
- In general we can form sets of natural numbers $\{a_i \mid i \in I\}$ with $a_i : \mathbb{N}$ for $i : I$, where I is an index-type.
Index-types

I use the word index-type for something like - Bishop’s constructive notion of set, which I think is also something like - Martin-Löf’s type-theoretic notion of set or data-type and something like - the category theorists’ notion of set when they talk about a category of sets.

I need a distinct word in order to avoid confusion with the combinatorial notion of set, which is what axiomatic set theory is about.

A set is formed out of its elements. But an index-type is an object that is conceptually prior to its elements.

The index-types form a type \mathbb{U}.
Sets, of elements of a type, 1

- Given a type \(A \), a set of elements of \(A \) is given by:
 1. an index-type \(I \), the index-type of the set,
 2. a function \(f : I \to A \), also thought of as a family of elements of \(A \), \(\{a_i\}_{i : I} \), where \(a_i = f(i) : A \) for \(i : I \).

- We may write the set as \((\text{set } i : I) f(i)\) or \([a_i \mid i : I]\).

- The chosen elements of the set are the \(a_i \) for \(i : I \).

- The sets of elements of \(A \) form a type \(\text{Sub}(A) \).

- \(A \) itself may be an index-type, so that we may form the set \([x \mid x : A] : \text{Sub}(A)\) of all the objects of \(A \).

- But, in general, the type \(A \) need not be an index-type.
An equality relation, \(=_A \), on a type \(A \) is an assignment of a proposition \((b =_A c) \) to \(b, c : A \) so that the laws for an equivalence relation hold; i.e.

\[
(\forall x : A)[x =_A x], \quad (\forall x, y : A)[x =_A y \rightarrow y =_A x], \\
(\forall x, y, z : A)[x =_A y \rightarrow (y =_A z \rightarrow x =_A z)].
\]

Given an equality relation \(=_A \) on a type \(A \) we may define the membership relation \(\in_A \) and extensional equality relation \(=_{Sub(A)} \) as follows:

- If \(\alpha : \text{Sub}(A) \) is \([a_i | i : I]\) then, for \(a : A \), \((a \in_A \alpha)\) is the proposition \((\exists i : I)[a =_A a_i]\).
- If also \(\beta : \text{Sub}(A) \) is \([b_j | j : J]\) then \((\alpha =_{\text{Sub}(A)} \beta)\) is the proposition

\[
(\forall i : I)(\exists j : J)[a_i =_A b_j] \land (\forall j : J)(\exists i : I)[a_i =_A b_j].
\]
The type of iterative sets

The type \forall of iterative sets is the inductive type obtained by iterating the set-of operation.

The iterative sets are generated using the following rule.

Any set-of objects in \forall is an object in \forall

In Constructive Type Theory \forall is the inductive type having the introduction rule

$$
\frac{I : \exists \ f : I \rightarrow \forall}{(\text{set } i : I) f(i) : \forall}
$$

So we have $\text{Sub}(\forall) = \forall$.
Equality and membership on \forall

- We can recursively define $(\alpha =_{\forall} \beta)$ for $\alpha, \beta : V$ using the rule

$$\frac{(\forall i : I)(\exists j : J)[a_i =_{\forall} b_j] \land (\forall j : J)(\exists i : I)[a_i =_{\forall} b_j]}{\alpha =_{\forall} \beta}$$

where $\alpha = [a_i \mid i : I]$ and $\beta = [b_j \mid j : J]$.

- Also

$$\alpha \in_{\forall} \beta := (\exists j : J)(\alpha =_{\forall} b_j).$$
ZF justified in type theory

The logic of Type theory is obtained using the Propositions-as-types paradigm.

The logic using this paradigm is intuitionistic logic.

Also the type-theoretic axiom of choice holds:

$$(\forall x : A)(\exists y : B(x))R(x, y)$$

$$\rightarrow (\exists f : (\prod x : A)B(x))(\forall x : A)R(x, f(x))$$

The type \forall of iterative sets provides an interpretation of CZF (Constructive ZF).

If the logic of type theory is made classical then \forall provides an interpretation of ZF.

But this last step is not constructive.
The basic type theory $ML, 1$

The primitive forms of type

$$\begin{align*}
0, 1, B, \mathbb{N} & \text{ type} \\
\frac{\text{A type} \quad B(x) \text{ type } (x:A) \quad \Pi x:A)B(x), (\Sigma x:A)B(x) \text{ type}}{}
\end{align*}$$

The introduction rules

$$\begin{align*}
* & : 1 \\
t, f & : B \\
\frac{b(x):B(x) \quad (x:A)}{(\lambda x:A)b(x):(\Pi x:A)B(x)}
\end{align*}$$

$$\begin{align*}
0 & : \mathbb{N} \\
n & : \mathbb{N} \\
\frac{\text{suc}(n):\mathbb{N}}{}
\end{align*}$$

$$\begin{align*}
a & : A \\
b & : B(a) \\
\frac{\text{pair}(a,b):(\Sigma x:A)B(x)}{}
\end{align*}$$

Defined types

$$\begin{align*}
(A_1 \to A_2) & := (\Pi x:A_1)A_2 \\
(A_1 \times A_2) & := (\Sigma x:A_1)A_2
\end{align*}$$

No type dependency so far!
There are standard elimination rules for each form of type, e.g., the standard elimination rule for \mathbb{B} is

$$
\begin{array}{c}
A(x) \text{ type } (x : \mathbb{B}) \quad c: \mathbb{B} \quad a_1 : A(\text{t}) \quad a_2 : A(\text{f}) \\
\text{cases}(c, a_1, a_2) : A(c) \\
\text{cases}(\text{t}, a_1, a_2) = a_1 : A(\text{t}) \\
\text{cases}(\text{f}, a_1, a_2) = a_2 : A(\text{f})
\end{array}
$$

In order to have dependent types we also use

$$
\begin{array}{c}
c: \mathbb{B} \quad A_1, A_2 \text{ type} \\
\text{Cases}(c, A_1, A_2) \text{ type} \\
\text{Cases}(\text{t}, A_1, A_2) = A_1 \\
\text{Cases}(\text{f}, A_1, A_2) = A_2
\end{array}
$$
More defined types

\[(A_1 + A_2) := (\Sigma x : \mathbb{B}) \text{Cases}(x, A_1, A_2) \quad (A_1, A_2 \text{ type})\]

\[\text{True}(c) := \text{Cases}(c, 1, 0) \quad (c : \mathbb{B})\]

So we have the derived introduction rules

\[
\begin{align*}
\text{pair}(\mathbb{t}, a) & : A_1 + A_2 \\
\text{pair}(\mathbb{f}, a) & : A_1 + A_2
\end{align*}
\]

and the equalities

\[
\text{True}(\mathbb{t}) = 1 \quad \text{True}(\mathbb{f}) = 0
\]
The basic type theory ML_4

Propositions-as-Types (à la Curry-Howard)
Proposition = Type

<table>
<thead>
<tr>
<th>$Prop$</th>
<th>\bot</th>
<th>\top</th>
<th>$A_1 \supset A_2$</th>
<th>$A_1 \land A_2$</th>
<th>$A_1 \lor A_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Type$</td>
<td>0</td>
<td>1</td>
<td>$A_1 \rightarrow A_2$</td>
<td>$A_1 \times A_2$</td>
<td>$A_1 + A_2$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$Prop$</th>
<th>$(\forall x : A)B(x)$</th>
<th>$(\exists x : A)B(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Type$</td>
<td>$(\Pi x : A)B(x)$</td>
<td>$(\Sigma x : A)B(x)$</td>
</tr>
</tbody>
</table>
Adding Excluded Middle

\[
\sigma(A) : (A + (A \to \emptyset))
\]

or equivalently

\[
\begin{align*}
\tau(A) & : \mathbb{B} \\
t(A) & : (\text{True}(\tau(A)) \leftrightarrow A)
\end{align*}
\]

Note: \((B \to A) : = (B \to A) \times (A \to B)\)
Adding a type \(\Omega\)

\[
\begin{align*}
\Omega \text{ type} & \quad a : \Omega \\
\Rightarrow & \quad \mathbb{T}(a) \text{ type} \\
\Omega \text{ type} & \quad \frac{}{A \text{ type}} \\
& \quad \left\{ \begin{array}{l}
\tau(A) : \Omega \\
t(A) : (\mathbb{T}(\tau(A)) \leftrightarrow A)
\end{array} \right.
\end{align*}
\]

- Think of \(\Omega\) as a type of predicative ‘propositions’, or perhaps truth values. \(\mathbb{T}(a)\) is the proposition that expresses that \(a\) is a true predicative ‘proposition’. These rules are analogous to Bertrand Russell’s Axiom of Reducibility and express that each proposition \(A\) is logically equivalent to the proposition \(\mathbb{T}(\tau(A))\).

- Excluded Middle is the extreme version of \(\Omega\) where \(\Omega = \mathbb{B}\) and \(\mathbb{T}(a) = \text{true}(a)\).
Adding a type universe \mathbb{U}

- The rules of \mathbb{U} express that \mathbb{U} is a type of types that reflects the previous type forming rules.
- Reflecting the rules of ML we get

\[
\begin{align*}
 \mathbb{U} \text{ type} & \quad \frac{A : \mathbb{U}}{A \text{ type}} \quad 0, 1, B, N : \mathbb{U} & \quad \frac{A : \mathbb{U}}{B(x) : \mathbb{U}, (\Sigma x : A) B(x) : \mathbb{U}} \\
 (\Pi x : A) B(x), (\Sigma x : A) B(x) : \mathbb{U}
\end{align*}
\]

- Reflecting the $\mathbb{Ω}$ rules we get

\[
\begin{align*}
 \mathbb{Ω} : \mathbb{U} & \quad \frac{a : \mathbb{Ω}}{T(a) : \mathbb{U}}
\end{align*}
\]
The type-theoretic interpretations

\[\text{CZF} \leq_{tt} (ML + \cup + \forall) \]

\[\text{ZF} \leq_{tt} (ML + \cup + \forall + EM) \]

\[\text{ZF} \leq_{	ext{not}} \text{IZF} \leq_{tt} (ML + \emptyset + \cup + \forall) \]
Martin-Löf’s Philosophy

The type-theoretic interpretation of CST