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Abstract

In this note a T1 formal space (T1 set-generated locale) is a for-
mal space whose points are closed as subspaces. Any regular formal
space is T1. We introduce the more general notion of T

∗
1 formal space,

and prove that the class of points of a weakly set-presentable T
∗
1 for-

mal space is a set in the constructive set theory CZF. The same
also holds in constructive type theory. We then formulate separation
properties T

∗
i for constructive topological spaces (ct-spaces), strength-

ening separation properties discussed elsewhere. Finally we relate the
T
∗
i properties for ct-spaces with corresponding properties of formal

spaces.

Introduction

There is no unanimously adopted localic analogue of the T1 axiom for topo-
logical spaces. Unordered (TU ) locales [10, 11], and subfit/conjunctive lo-
cales [17, 5] have been considered as candidates. However neither of these
two notions is regarded as entirely satisfactory, primarily because both fail
to coincide with the T1 property in the spatial case. For example there are
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Hausdorff spaces whose frame of open subsets is not unordered [11], and
subfit sober spaces that fail to be T1 [12]. One should then add that these
notions have been discussed mostly in a classical setting, so that a further
flourishing of distinct concepts has to be expected in constructive contexts.

In this note we use the notion of T1 locale as one whose points are closed
considered as sublocales. This concept of T1 locale is studied classically in [15]
in the form that a locale is T1 iff its primes are dual atoms. The justification
for this choice is that sublocales of the frame of a sober T1 space are precisely
locales that enjoy this property. Observe, however, that according to this
notion all locales without points are T1.

The definitions and results in this note are carried out in the setting of
constructive set theory. More specifically the definitions and theorems can be
represented in the formal system CZF, [4], and, with minor adjustments, can
also be represented in constructive type theory, [13]. The system CZF can
be formulated in the same formal language as ZF, but uses intuitionistic logic
rather than classical logic and uses some modifications of the set theoretic
axioms of ZF. We use class notation and terminology following the standard
approach used in ZF. So each class can be presented as {x | φ(x, ...)} where
φ(x, ...) is a formula of the first order language of axiomatic set theory which
may have free occurrences of the variable x and possibly other variables
treated as parameters intended to represent fixed sets.

Class notation and terminology can often be useful in set theory and is
particularly useful in constructive set theory. This is because the Powerset
axiom is not available and nor is the full Separation scheme. So for any set
A the class Pow(A) of all subsets of A cannot generally be shown to be a
set (it cannot, if A is non-empty), and nor can subclasses of A be generally
taken to be sets. It is worth noting at this point that, even when A is a class
it makes perfectly good sense to form the class Pow(A) of all subsets of A.
So the Pow operation can be iterated on classes. But we cannot take the
collection of subclasses of a class to be itself a class.

The reader should refer to [4] for any unfamiliar details concerning CZF.
Here we will only recall the two key axiom schemes of Strong Collection
and Subset Collection that are used in this note. Strong Collection is a
strengthening of the classical axiom scheme of Replacement that is a theorem
of ZF. Given the other axioms and schemes of CZF, Subset Collection
is equivalent to the more useful Fullness axiom and is used instead of the
Powerset axiom.

For sets a, b let mv(ba) be the class of ‘multivalued functions’ from a to
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b, i.e. subsets r of a × b such that (∀x ∈ a)(∃y ∈ b) (x, y) ∈ r.

Strong Collection: Let a be a set and let B, R be classes with R ⊆ a × B
such that (∀x ∈ a)(∃y ∈ B) (x, y) ∈ R. Then there is a set b ⊆ B such
that (∀x ∈ a)(∃y ∈ b) (x, y) ∈ R and (∀y ∈ b)(∃x ∈ a) (x, y) ∈ R.

Fullness: Given sets a, b there is a subset c of mv(ab) such that every ele-
ment of mv(ab) has a subset in c.

Even when A is just a singleton set the assumption that Pow(A) is a set
implies, in CZF, the full Powerset axiom. For this reason class-sized math-
ematical structures naturally arise. For example, a topological space (X, τ)
consists of a set X of the points of the space together with a topology τ of the
open sets of the space, that, when non-trivial, is a class that cannot be proved
to be a set. So the collection of all topological spaces is not even a class.
It follows that the category Top of topological spaces and continuous maps
is not even a large category, according to the usual set-theoretic definition,
where the collections of objects and maps of a large category are required to
form classes. We will call such a category of class-sized objects a superlarge
category. Another example is the superlarge category of classes and class
functions between them. We note that superlarge entities are used in this
context only for organizing the objects and morphisms under consideration
in ‘categories’, and to relate them via functors.

Lacking the Powerset axiom and the full Separation scheme, it is often
much harder than in fully impredicative settings to prove that a certain class
is a set. A significant theorem of CZF is for instance the result that the
class of Dedekind real numbers forms a set ([4]; note that the principle of
(dependent and) countable choice are not part of the basic set of axioms
of CZF). In some cases it is however possible to represent a certain class of
objects as the class of points of a locale. Recent results have shown that if this
locale is set-presented, (cf. Definition 11 below), and has sufficiently strong
separations properties, then its class of points is a set. In particular these
results generalise the mentioned theorem concerning the class of Dedekind
real numbers. So it is natural to try to find the most general conditions under
which the points of a locale do form a set. This paper presents (inter alia) a
contribution to this task.

In section 1 we review how formal topology is a theory of formal spaces
that gives a constructive approach to locale theory. We introduce the notion
of a T1 formal space in section 2 and show that every regular formal space
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is T1. In section 3 we introduce the notion of a T ∗
1 formal space, a weaken-

ing of the notion of a T1 formal space, and prove our main result that, for
every weakly set-presentable T ∗

1 formal space, the class of its points form a
set. This strengthens the earlier result that, for every set-presentable regular
formal space, the class of its points form a set. In section 4 we explore sep-
aration properties T ∗

i for ct-spaces. The notion of a ct-space was introduced
in [2] as a generalisation of Bishop’s notion of neighborhood system. The
T ∗

i separation properties for these spaces strengthen separation properties
previously discussed in [3]. Finally, in section 5 we relate the T ∗

i separation
properties for ct-spaces to corresponding properties for formal spaces.

1 Formal topology as constructive locale the-

ory

Review of some locale theory

We review the basic notion of a locale. We start with the standard definition
in classical mathematics which we then need to modify slightly to the notion
of an sg-locale so as to conform to our constructive setting in which the
Powerset axiom is not assumed.

In classical mathematics a frame is a poset with a top element, binary
meets and sups of subsets such that meets distribute over sups. Frames form
a category whose maps between frames preserve the frame structure. The
category of locales is the opposite category. So locales are just frames and a
locale map is just a frame map going in the opposite direction.

When, as in constructive set theory, we do not assume the Powerset
axiom we need to consider class frames such as the poclass Ω = Pow(1),
where 1 = {∅}. A poclass is a class with a class relation on it that satisfies
the standard requirements for a partial ordering. A class frame is a poclass
that has a top element >, binary meets a1 ∧ a2 of elements a1, a2 and sups
∨

X of sets X of elements, with binary meets distributing over sups; i.e.
a ∧

∨

X =
∨

{a ∧ x | x ∈ X} for all elements a and subsets X. A class
frame is a frame if it is small; i.e. its elements form a set. Note that it can
be shown, [9], that no non-trivial class frame can be proved to be small in
systems of constructive set theory such as CZF. So the notion of class frame
is really needed.

But this notion of class frame is a little too general. A set-generated frame
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(sg-frame) is a class frame that comes equipped with a set-indexed family of
generators, {γ(s)}s∈S. So S is an index set, each γ(s) is an element of the
frame and for each element a of the frame the class Sa = {s ∈ S | γ(s) ≤ a}
is a set such that

∨

{γ(s) | s ∈ Sa} = a.
Note that any frame A can be trivially equipped with the set-indexed

family of generators {a}a∈A to become an sg-frame and, if we assume the
Powerset axiom any sg-frame is small and so is a frame. We define the
category sgLoc of sg-locales to be the opposite of the (superlarge) category
of sg-frames and frame maps.

Review of some formal topology theory

Formal topology has been developed as a version of locale theory in the set-
ting of Martin-Löf’s constructive type theory [16], but can also be developed
in constructive set theory, see [2]. We review here a definition of the category
of formal spaces and describe how it is equivalent to the category sgLoc.

Given a set S we define an operator A : Pow(S) → Pow(S) to be a cover
operator on S if, for all U, V ∈ Pow(S)

CO1 U ⊆ AU ,

CO2 U ⊆ AV implies AU ⊆ AV ,

CO3 AU ∩ AV ⊆ A(U ↓ V ),

where, if s, t ∈ S then s ↓ t = A{s} ∩ A{t}, and U ↓ V =
⋃

s∈U,t∈V s ↓ t.

Definition: 1 S = (S, /) is defined to be a formal space (also sometimes
called a formal topology) if S is a set and / is a class relation between S and
Pow(S) such that, for a ∈ S and U ∈ Pow(S)

a / U ⇐⇒ a ∈ AU.

for some (necessarily unique) cover operation A on S.

The set S is called the base of the formal space. Intuitively, the set AU
is the set of basic neighbourhoods that are covered by U .

The above properties of the cover operation A can be rewritten as the
following properties of the cover relation /.

FS1 s ∈ U implies s / U ,
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FS2 s / U and U / V implies s / V ,

FS3 s / U and s / V implies s / (U ↓ V ),

for s ∈ S, U, V ∈ Pow(S), where, U / V iff AU ⊆ AV .

Definition: 2 Let S = (S, /) and S ′ = (S ′, /′) be formal spaces with associ-
ated covers A and A′ respectively. We define a class function f : Pow(S) →
Pow(S ′) to be a continuous map S ′ → S if

CTS1 f(S) = S ′,

CTS2 f(U) ∩ f(V ) = f(AU ∩ AV ) for U, V ∈ Pow(S),

CTS3 f(∪U) = A′(
⋃

{f(U) | U ∈ U}) for sets U ⊆ Pow(S).

Note that, for continuous maps f : S ′ → S,

f(U) = f(AU) = A′(f(U)) for U ∈ Pow(S),

so that f(U) ∩ f(V ) = f(U ↓ V ) for U, V ∈ Pow(S). Also note that formal
spaces and continuous maps form a category FSpace when the identity maps
and composition of maps are defined in the obvious way.

Proposition: 3 The categories FSpace and sgLoc are equivalent.

The equivalence is obtained using functors fs : sgLoc → FSpace and
Sat : FSpace → sgLoc.

The functor Sat is defined as follows. Let S = (S, /) be a formal
space with associated cover operator A. Each U ∈ Pow(S) is a set, so
that AU is also a set in Pow(S). We define Sat(S) to be the subclass
{AU | U ∈ Pow(S)} of Pow(S), which is an sg-locale when partially ordered
by the subset relation and equipped with the set-indexed family of genera-
tors {A{s}}s∈S. If f : Pow(S) → Pow(S ′) is a continuous map S ′ → S in
FSpace then Sat(f) : Sat(S ′) → Sat(S) is defined to be the restriction of f
to Sat(S).

For the functor fs, if A is an sg-locale equipped with the set-indexed
family of generators {γ(s)}s∈S then fs(A) is defined to be the formal space
(S, /) where

s / U ⇐⇒ γ(s) ≤
∨

{γ(t) | t ∈ U}
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for s ∈ S, U ∈ Pow(S). If F : A′ → A is a map in sgLoc then fs(F ) :
fs(A′) → fs(A) in FSpace is the class function Pow(S) → Pow(S ′) where, for
U ∈ Pow(S),

fs(F )(U) = A′{F (γ(s)) | s ∈ U}.

Here A′ is the cover operator associated with the formal space fs(A′). It is a
routine matter to check that Sat and fs are indeed adjoint functors forming
an equivalence between the two categories. Indeed fs(Sat(S)) = S for each
formal space S and ηA : A ∼= Sat(fs(A)) for each sg-locale A, where, for
a ∈ A,

ηA(a) = Sa = {s ∈ S | γ(s) ≤ a}.

Note that the formal topologies are class-sized as are the continuous maps
between them. So the categories FSpace and sgLoc are superlarge, as are the
functors between them.

2 The notion of a T1 formal space

We want to carry over to formal topology the classical notion of T1 locale
as a locale whose points, considered as sublocales, are closed sublocales. We
start by formulating the notion of T1 sg-locale.

An sg-sublocale of an sg-locale A is just a regular subobject of A in
the category sgLoc; i.e. a subobject represented by a surjective frame map
f : A → A′, for some sg-frame A′. The sg-sublocale is a closed sg-sublocale
if it is represented by the surjective frame map fa : A → Aa, for some a ∈ A,
where fa(x) = a ∨ x for x ∈ A and Aa = {x ∈ A | a ≤ x}. A point of an
sg-locale A is a locale map Ω → A, where Ω is the locale of subsets of 1 = {∅}
partially ordered by the subset relation, which is an sg-locale when equipped
with the set-indexed family {γ(s)}s∈S, where S = {1} and γ(1) = 1. This
sg-locale Ω is a terminal object in the category sgLoc and each point of A
represents an sg- sublocale of A. An sg-locale is defined to be a T1 sg-locale
if every point represents a closed sg-sublocale.

We are now ready to review the definitions of subpace, closed subspace
and formal point of a formal space and show how they correspond to the
notions of sg-sublocale, closed sg-sublocale and point of an sg-locale via the
equivalence between the categories of formal spaces and sg-locales.
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Definition: 4 A subspace of a formal space S = (S, /) is defined to be a
formal space S ′ = (S, /′) on the same base, with /′ satisfying the following
conditions.

1. a / U implies a /′ U for all U ∈ Pow(S),

2. (a ↓′ b) /′ (a ↓ b) for all a, b ∈ S.

The subspace S ′ is defined to be closed if it is of the form SV = (S, /V ),
with a /V U ⇐⇒ a / (U ∪ V ), for V a given (fixed) subset of S [8].

The following result states that we have formulated correct notions of
subspace and closed subspace.

Proposition: 5 If S ′ = (S, /′) is a subspace of S = (S, /), with associated
cover operation A′, then FS′ is a surjective frame map Sat(S) → Sat(S ′)
and hence represents an sg-sublocale of Sat(S), where

FS′(U) = A′U for U ∈ Sat(S).

Moreover, every sg-sublocale of Sat(S) is represented by FS′ for a unique
subspace S ′ of S. Also, FS′ represents a closed sg-sublocale of Sat(S) iff S ′

is a closed subspace of S.

Definition: 6 A (formal) point of a formal space S = (S, /) is a subset α
of S such that the following conditions hold.

FP1 S )( α,

FP2 a, b ∈ α implies (a ↓ b) )( α,

FP3 a ∈ α and a / U implies U )( α,

where, for sets U, V we write U )( V if U ∩ V is inhabited.
The class of points of S is denoted by Pt(S). If α ∈ Pt(S) let Sα = (S, /α)

where, for s ∈ S, U ∈ Pow(S),

s /α U ⇐⇒ [s ∈ α ⇒ U )( α].

The next result makes explicit how the notion of a formal point of a formal
space relates to the standard notion of point of a locale.
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Proposition: 7 Let α be a subset of S, where S = (S, /) is a formal space
and let fα(U) = {x ∈ 1 | U )( α} for U ∈ Sat(S). Then

α ∈ Pt(S) ⇐⇒ fα is a frame map Sat(S) → Ω.

Also, if α ∈ Pt(S) then Sα is a subspace of S and FSα and fα represent the
same sg-sublocale of S. Moreover every frame map Sat(S) → Ω is fα for a
unique α ∈ Pt(S).

Let us write S ′ ↪→ S if S ′ is a subspace of the formal space S. It is an
easy exercise to prove the following.

Proposition: 8 Let S be a formal space with cover operator A.

1. SU ↪→ SV ⇐⇒ AV ⊆ AU for U, V ∈ Pow(S),

2. Pt(S ′) = {α ∈ Pt(S) | Sα ↪→ S ′}, for S ′ ↪→ S,

3. Sα ↪→ Sβ ⇐⇒ α ∈ Pt(Sβ) for α, β ∈ Pt(S),

4. Sα ↪→ SU ⇐⇒ α ⊆ ¬U for α ∈ Pt(S) and U ∈ Pow(S), where
¬U ≡ {x ∈ S : x 6∈ U},

5. α ∈ Pt(Sβ) ⇒ β ⊆ α ⊆ ¬¬β for β ∈ Pt(S),

Definition: 9 A formal space S is a T1 formal space if, for every point α of
the space, the subspace Sα is closed.

We end this section by showing that every regular formal space is T1.
Recall that a formal space S = (S, /) is defined to be regular if s / wc(s) for
all s ∈ S. Here wc(s) = {t ∈ S | S/ t∗∪{s}}, where t∗ = {r ∈ S | (t ↓ r)/∅}.

Proposition: 10 Every regular formal space is T1.

Proof: Let S = (S, /) be a regular formal space and let α ∈ Pt(S). We
must show that Sα = SW for some W ∈ Pow(S). Let W =

⋃

t∈α t∗. We
show that, for s ∈ S, U ∈ Pow(S),

s /α U ⇐⇒ s /W U.

The implication from right to left always holds. For if s / W ∪ U and s ∈ α
then, by FP3, there is r ∈ α such that r ∈ W ∪U . But if r ∈ W then r ∈ t∗
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for some t ∈ α, and, as r, t ∈ α, (r ↓ t) )( α, contradicting r ∈ t∗ (indeed, by
FP3, for every a ∈ α, ¬a / ∅). So r ∈ U and hence U )( α, as desired.

For the implication from left to right let s /α U ; i.e.

s ∈ α ⇒ U )( α.

We must show that s / W ∪ U . As the space is regular s / wc(s) so that it
suffices to show that

t ∈ wc(s) ⇒ t / W ∪ U.

So let t ∈ wc(s); i.e S / t∗ ∪ {s}. Then, by FP1 and FP3 there is r ∈ α
such that r ∈ t∗ ∪ {s}. So either r ∈ t∗ or r = s. We show that t / W ∪ U .

If r ∈ t∗ then t ∈ r∗ ⊆ W so that t / W ∪ U . If r = s then s ∈ α so that
r1 ∈ U for some r1 ∈ α. As r1 / wc(r1) there is r2 ∈ α such that

S / ({r1} ∪ r∗2) ⊆ W ∪ U

and hence again t / W ∪ U .
�

Classically, locales/formal spaces that are T1 but not regular are easy to
find: the frame of any Hausdorff non-regular space is such a locale. Con-
structively, this may be more tricky since it is not even possible to show that
every Hausdorff space is sober.

3 Set-presentable T1 formal spaces

Definition: 11 A formal space S = (S, /) is defined to be set-presented by
C : S → Pow(Pow(S)) if,

a / U ⇐⇒ (∃V ∈ C(a)) V ⊆ U,

and is set-presentable if there is such a function C.

We aim to show that, for every set-presentable T1 formal space S, the
class Pt(S) is a set. In fact we will prove a more general result by weakening
both the conditions of being set-presentable and being T1.
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Definition: 12 A formal space S = (S, /) is defined to be T ∗
1 if, for every

formal point α of S,
(∀a ∈ α) S / ({a} ∪ ¬α)

where ¬α = {a ∈ S | a 6∈ α}.

Proposition: 13 If S = (S, /) is a T1 formal space then it is T ∗
1 and, for

every formal point α the subspace Sα is the closed subspace S¬α.

Proof: Let S be T1. So if α is a formal point there is a subset W of S such
that for all c ∈ S and U ∈ Pow(S)

(∗) [c ∈ α ⇒ U )( α] ⇐⇒ c / (U ∪ W ).

In particular, if a ∈ α, putting U = {a} we get

[c ∈ α ⇒ a ∈ α] ⇐⇒ c / ({a} ∪ W ),

so that c / ({a}∪W ). Thus S / ({a}∪W ). If c ∈ W then c / (∅∪W ) so that
c ∈ α ⇒ ∅ )( α and hence c /∈ α. Thus W ⊆ ¬α and hence S / ({a} ∪ ¬α).

Finally, we need to show that for every formal point α

[c ∈ α ⇒ U )( α] ⇐⇒ c / (U ∪ ¬α).

As W ⊆ ¬α the direction from left to right is a consequence of (∗). For the
reverse direction let c / (U ∪¬α). Then, by FP3, if c ∈ α then (U ∪¬α) )( α
so that U )( α.
�

We have seen that every regular formal space is T1 and hence T ∗
1 . In

section 5 we will give an example of a T ∗
1 formal space that is not regular.

Let us call a formal space Tmax
1 if every formal point α is maximal; i.e. if

β is also a formal point and α ⊆ β then α = β. Note that, by Proposition 8,
for every formal point α of a Tmax

1 formal space, Pt(Sα) = {α}.

Proposition: 14 Every T ∗
1 formal space is Tmax

1 .

Proof: Let α, β be formal points such that α ⊆ β. We show that also β ⊆ α.
So let b ∈ β. Choose some a ∈ α. By T ∗

1 , as b ∈ β,

a / ({b} ∪ ¬β) ⊆ ({b} ∪ ¬α)

so that, as a ∈ α, by FP3, ({b} ∪ ¬α) )( α so that b ∈ α.
�
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Remark. We cannot expect to constructively prove the converse to this
result as the converse would imply the non-constructive principle REM that
asserts that ∀x, y[x = y ∨ x 6= y]. To see this, given x, y we may form the
discrete formal space S = (S, /), where S = {x, y} and, for a ∈ S and
U ∈ Pow(S), a / U ⇒ a ∈ U . Clearly S is Tmax

1 and it is not hard to see
that the assumption that S is T ∗

1 implies [x = y ∨ x 6= y].

Definition: 15 If S = (S, /) is a formal space a subset C of Pow(S) is
defined to weakly set-present S if, for all U ∈ Pow(S),

S / U ⇐⇒ (∃V ∈ C) V ⊆ U.

If there is such a set C then S is weakly set-presentable.

Proposition: 16 Every set-presentable formal space is weakly set-presentable.

Proof: Let C : S → Pow(Pow(S)) set-present S and let C0 =
⋃

a∈S C(a).
Then C0 is a set and, by Subset Collection, there is a set D0 ⊆ mv(CS

0 ) such
that

(∀R ∈ mv(CS
0 ))(∃R′ ∈ D0) R′ ⊆ R.

Let D = {R ∈ D0 | (∀(a, V ) ∈ R) V ∈ C(a)}. Then D is a set, by the
Restricted Separation scheme. For each R ∈ D let

VR = {b ∈ S | (∃(a, V ) ∈ R) b ∈ V }

and let C1 = {VR | R ∈ D}. Then C1 is a set by Replacement.
Let U ∈ Pow(S). Note that, for R ∈ D

VR ⊆ U ⇐⇒ R ⊆ RU ,

where RU = {(a, V ) ∈ S × C0 | V ∈ C(a) ∧ V ⊆ U}. So

S / U ⇐⇒ (∀a ∈ S)(∃V ∈ C(a)) V ⊆ U
⇐⇒ (∀a ∈ S)(∃V ∈ C0) [V ∈ C(a) ∧ V ⊆ U ]
⇐⇒ RU ∈ mv(CS

0 )
⇐⇒ (∃R ∈ D) R ⊆ RU

⇐⇒ (∃R ∈ D) VR ⊆ U
⇐⇒ (∃V ∈ C1) V ⊆ U

Thus, C1 weakly set-presents S.

�
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Proposition: 17 Let S = (S, /) be a formal space. If α is an inhabited
subset of S such that

1. for all U ∈ Pow(S), [S / (U ∪ ¬α) ⇒ U )( α],

2. for all a ∈ α, S / ({a} ∪ ¬α),

then α is a formal point.

Proof: We have FP1 by hypothesis. For FP2 let a, b ∈ α. Then, by 2,
S / ({a} ∪ ¬α) and S / ({b} ∪ ¬α) so that S / ((a ↓ b) ∪ ¬α) and hence, by
1, (a ↓ b) )( α. For FP3 let a ∈ α and a / U . Then, by 2, S / ({a} ∪ ¬α) and
hence S / (U ∪ ¬α) so that, by 1, U )( α.
�

Lemma: 18 Let S be a T ∗
1 formal space and let C ⊆ Pow(S) weakly set-

present it. Then an inhabited subset α of S is a formal point iff

FP′1. (∀V ∈ C) [V )( α],

FP′2. (∀a ∈ α)(∃V ∈ C) [V ⊆ {a} ∪ ¬α].

Proof: Let α be a formal point. By FP1 we may choose a ∈ α. Then

V ∈ C ⇒ S / V
⇒ a / V
⇒ V )( α, by FP3, as a ∈ α.

Thus FP′1. As S is T ∗
1 , (∀a ∈ α) [S / ({a} ∪ ¬α)], and so FP′2.

Conversely, assume that α is an inhabited subset of S such that FP′1

and FP′2 hold. It suffices to show that 1 and 2 of Proposition 17 hold. 2 is
an immediate consequence of FP′2. For 1, let S / (U ∪¬α). Then, for some
V ∈ C, V ⊆ (U ∪ ¬α). By FP1′ there is b ∈ V ∩ α. It follows that b ∈ U so
that U )( α.
�

Theorem: 19 If S is a weakly set-presented T ∗
1 formal space then Pt(S) is

a set.
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Proof: Let C weakly set-present S. By Subset Collection there is a subset
D0 of mv(SC) such that

(∀R ∈ mv(SC))(∃R′ ∈ D0) R′ ⊆ R.

For each R ∈ D0 let

αR = {b ∈ S | (∃V ∈ C) (V, b) ∈ R}.

Let D = {R ∈ D0 | αR ∈ Pt(S)}. Note that, by Lemma 18, for each R ∈ D0,
αR ∈ Pt(S) iff the conjunction of the following three conditions hold.

FP′′0 (∃a ∈ S)(∃V ∈ C) (V, a) ∈ R,

FP′′1 (∀V ∈ C)(∃a ∈ V )(∃V ′ ∈ C) (V ′, a) ∈ R,

FP′′2 (∀a ∈ S)(∀V ∈ C)[(V, a) ∈ R ⇒ Q(a, R)],

where

Q(a, R) ⇐⇒ (∃V ′ ∈ C)(∀a′ ∈ V ′)[a′ = a ∨ (∀V ′′ ∈ C) (V ′′, a′) 6∈ R].

As these conditions on R can be given by restricted formulae we may apply
the Restricted Separation scheme to get that D is a set. Hence, by the
Replacement scheme,

P = {αR | R ∈ D}

is a set. To prove the theorem we show that Pt(S) = P .
If α ∈ P then α = αR for some R ∈ D so that α ∈ Pt(S). Thus

P ⊆ Pt(S). To show that Pt(S) ⊆ P let α be a formal point. Then, by
FP′1,

Rα = {(V, a) ∈ C × α | a ∈ V } ∈ mv(SC)},

and hence there is R ∈ D0 such that R ⊆ Rα. We show that α = αR. It
then follows that αR ∈ Pt(S) and hence R ∈ D so that α ∈ P .

For α ⊆ αR, let a ∈ α so that, by FP′2, there is V ∈ C such that
V ⊆ {a} ∪ ¬α. Since R ∈ mv(SC) there exists b ∈ S with (V, b) ∈ R. As
R ⊆ Rα,

b ∈ (V ∩ α) ⊆ ({a} ∪ ¬α) ∩ α = {a}.

This gives a = b and (V, a) ∈ R so that a ∈ αR.
For αR ⊆ α, let a ∈ αR; i.e. (V, a) ∈ R for some V ∈ C. As R ⊆ Rα,

a ∈ α.
�
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Corollary: 20 For every set-presentable T1 formal space S, Pt(S) is a set.

Remark.The above theorem and corollary are also provable in constructive
type theory [13], by exploiting the type-theoretic principle of choice. See e.g.
[14] for the formalization of the formal topology notions in the type-theoretic
setting. A formal space is defined to be weakly set-presented in that context
if a family of subsets C(i) ⊆ S, for i in a set I, exists such that

S / U ⇐⇒ (∃i ∈ I) C(i) ⊆ U.

If IId is I endowed with the equality given by the identity type, one proves
that Pt(S) can be identified with the subset D of SIId given by

D ≡ {f ∈ SIId : αf ∈ Pt(S)},

where αf ≡ {a ∈ S : (∃i ∈ IId)f(i) / a}. To a formal point α one associates
the mapping f : IId → S obtained by FP′1 using type-theoretic choice (here
FP′1 reads as: (∀i ∈ I)(∃a ∈ C(i)) a ∈ α; IId is a projective cover for I).

Theorem 19 could be reformulated as follows: if a certain class A can be
represented as the class of points of a weakly set-presented T ∗

1 formal space,
then A is a set. In [4] the class of Dedekind reals is proved to form a set in
CZF. This result is particularly meaningful in this context as the impred-
icative Powerset axiom and full Separation scheme are missing; furthermore,
the principles of dependent and countable choice are not part of the basic
formulation of CZF, so that Dedekind and Cauchy reals do not coincide (the
latter are easily seen to form a set by Fullness). As the class of Dedekind real
numbers can be represented as the class of points of a formal space satisfying
the hypotheses of Theorem 19, we get a new proof of the smallness of this
class.

Other applications of this kind of result can be found in [8]. They yield the
smallness of classes of continuous functions, and therefore allow, for instance,
for the construction of Tychonoff embedding and Stone-Čech compactifica-
tion.

We note that, by Proposition 10, the above theorem generalises previous
results asserting that the class of points of a locally compact regular formal
space [7], and more generally, of a set-presented and regular formal space, is
a set [2].

Let us call a topological space Tmax
1 if it is T0 and each point has a

maximal set of neighbourhoods. This is equivalent to the condition that
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each point is closed. Considered in point-free terms, in view of the remark
after Proposition 14 the former is strictly weaker (at least constructively)
than the latter. So the result just proved, considered for (fully) set-presented
formal spaces, is less general than the one in [14], asserting that if a set-
presented formal space is Tmax

1 then the formal points form a set. However,
the proof of this result makes use of the type-theoretic axiom of choice, and
its set-theoretical version [2] seems to require an extension of CZF. On the
other hand, the simple proof of Theorem 19 has, as shown, a choice-free
formulation in CZF.

4 Separation properties, T ∗
i , for ct-spaces

Bishop, in [6], introduced the notion of a neighborhood system as a version
of the classical notion of a topological space adapted to his approach to
constructive mathematics by having an explicit indexed family of basic opens.
The paper [2] generalised that notion to the notion of a ct-space by allowing
the points of the space to be a class and so allowing the opens to be classes
while keeping the family of basic opens to be indexed by a set. The advantage
of this notion is that, although the points of a formal space do not form a
set in general and so then do not form a neighborhood system they do form
a ct-space.

Separation properties T#
i , i = 0, 1, 2, 3 for a ct-space, were discussed in

[3]. Here we will formulate new separation properties T ∗
i , i = 0, 1, 2, 3 for a

ct-space and we will relate them to the T#
i properties. In the next section

we will also relate those separation properties to corresponding properties for
formal spaces.

Definition: 21 Let X be a class (of points), S a set, and ‖̀ ⊆ X × S
be a (class-) relation. Define Ba = {x ∈ X : x ‖̀ a} for each a ∈ S,
BU =

⋃

a∈U Ba for each U ⊆ S, and αx = {a ∈ S : x ‖̀ a} for each x ∈ X.
The triple X = (X, S, ‖̀ ) is a constructive topological space (ct-space) if the
following conditions are satisfied:

CS1 X = BS,

CS2 If a1, a2 ∈ S then Ba1
∩Ba2

⊆ BU , where U = {a ∈ S : Ba ⊆ Ba1
∩Ba2

},

CS3 For x ∈ X the classes αx and {y ∈ X : αy = αx} are sets.

16



See [2, 3] for more on this notion. The class of points, Pt(S) of a formal
space S form the ct-space Pt(S) = (Pt(S), S, ‖̀ ), where

α ‖̀ s ⇐⇒ s ∈ α

for each point α of S and each s ∈ S. In the following definitions X =
(X, S, ‖̀ ) is a ct-space.

Definition: 22 For sets α, β ⊆ S we define α ‖i β for i = 0, 1, 2 as follows.

1. α ‖0 β ⇐⇒ α )( ¬β or β )( ¬α.

2. α ‖1 β ⇐⇒ α )( ¬β.

3. α ‖2 β ⇐⇒ (∃a ∈ α)(∃b ∈ β)[Ba ∩ Bb = ∅].

Definition: 23 For i = 0, 1, 2,

X is S#
i ⇐⇒ (∀x, y ∈ X)[αx ⊆ (αy ∪ {a ∈ S | αy ‖i αx})],

and
X is S#

3 ⇐⇒ ∀x ∈ X∀a ∈ αx∃b ∈ αx[X ⊆ B∗

b ∪ Ba].

Here, for any class Z ⊆ X, Z∗ is the largest open class disjoint from Z.
Also, for i = 0, 1, 2, 3,

X is T#
i ⇐⇒ X is T0 and S#

i ,

where
X is T0 ⇐⇒ (∀x, y ∈ X)[αx = αy → x = y].

Definition: 24 An ideal point of X is a subset α of S such that:

IP1 S )( α

IP2 (∀a, b ∈ α) {c ∈ S | Bc ⊆ Ba ∩ Bb} )( α,

IP3 a ∈ α and Ba ⊆ BU imply U )( α.

Note that each αx is always an ideal point of X and a ct-space is defined to be
sober if every ideal point is αx for some x ∈ X. The class sob(X ) of all ideal
points of a ct-space X itself forms a sober ct-space sob(X ) = (sob(X), S, ‖̀ )
where

α ‖̀ s ⇐⇒ s ∈ α.
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Definition: 25 For i = 0, 1, 2 we define X to be S∗
i if, for every ideal point

α of X ,
(∀y ∈ X)[α ⊆ (αy ∪ {a ∈ S | αy ‖i α})]

and define X to be S∗
3 if, for each ideal point α of X ,

(∀a ∈ α)(∃b ∈ α)[X ⊆ B∗

b ∪ Ba].

For i = 0, 1, 2, 3, the ct-space is T ∗
i if it is also T0.

Note that if X is sober then X is S#
i iff X is S∗

i . Clearly if X is T ∗
i then

X is T#
i , with the converse also holding for sober X. In fact we have the

following characterisation.

Proposition: 26 A ct-space X is S∗
i iff sob(X) is S#

i (T#
i ),

Proof. That X is S∗
i implies sob(X ) is S#

i , for i = 1, 2, 3, can easily be
proved directly, or follows by composing the proof of 1 and 2 of theorem 28
below (the requirement that X be standard plays no role here). The con-
verse is trivial, we consider only the case i = 3: if α is an ideal point of X ,
and a ∈ α, the hypothesis gives b ∈ α such that sob(X) ⊆ B̄∗

b ∪ B̄a, with
B̄a ≡ {α ∈ sob(X) | a ∈ α}. Then, given x ∈ X, αx ∈ B̄∗

b ∪ B̄a, that means
that either αx ∈ B̄a, i.e. x ∈ Ba, or that there is c ∈ S such that B̄b ∩ B̄c = ∅
and αx ∈ B̄c. But B̄b ∩ B̄c = ∅ implies Bb ∩ Bc = ∅, and αx ∈ B̄c gives
x ∈ Bc. Thus, X ⊆ B∗

b ∪ Ba.
�

We have the following implications.

T ∗

3 ==⇒ T ∗

2 ==⇒ T ∗

1 ==⇒ T ∗

0

T#
3

�

w

w

w

==⇒ T#
2

�

w

w

w

==⇒ T#
1

�

w

w

w

==⇒ T#
0

�

w

w

w

It is an easy exercise to check that S∗
3 is in fact equivalent to S#

3 , so that
T ∗

3 and T#
3 define the same property.

As the following example shows, the T ∗
1 property for topological spaces is

classically strictly stronger than the classical T1 property, so that it should
probably be re-baptized T ∗

1 1

2

: consider the “cofinite” topology on the natural
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numbers (example 8 of [3]); this is the (small) ct-space (N, S, ‖̀ ), with S ≡
N × N and n ‖̀ (a, b) ⇐⇒ (n = a) ∨ (b ≤ n). This space is classically
T1 (and constructively T#

1 ). Since α = N × N is an ideal point, condition
S∗

1 is not satisfied for this space. (On the other hand, T ∗
1 is strictly weaker

than T2, at least classically: any Hausdorff space is classically sober, so T ∗
2

coincides with T#
2 , that in turn coincides with T2. Moreover, there are sober

T1 spaces which are not T2).

5 Separation properties, T ∗
i , for formal spaces

It is well known that, in classical mathematics and even in topos mathe-
matics, topological spaces and locales are connected via an adjunction that
restricts to an equivalence between the full subcategories of sober topological
spaces and spatial locales. A constructive predicative version of this result
appears in [2]. There a ct-space X is defined to be standard if the class
AU = {s ∈ S | Bs ⊆ BU} is a set for all U ∈ Pow(S). When this is the case
A is a cover operation on S and so gives rise to a formal space ft(X ) = (S, /)
where, for s ∈ S, U ∈ Pow(S),

s / U ⇐⇒ s ∈ AU.

Let S = (S, /) be a formal space. We have already defined the T ∗
1 separa-

tion property for S. We repeat it here along with definitions of the separation
properties T ∗

2 , T ∗
3 for S. We define the T ∗

i separation properties for S as fol-
lows.

Definition: 27

1. S is T ∗
1 if, for every formal point α

(∀a ∈ α)[S / {a} ∪ ¬α].

2. S is T ∗
2 if, for every formal point α,

(∀a ∈ α)[S / {a}∪!α]

where !α = {b ∈ S | (∃a ∈ α) Ba ∩ Bb = ∅}.

3. S is T ∗
3 if it is regular.
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For a formal space S we have the following implications

T ∗

3 ⇒ T ∗

2 ⇒ T ∗

1

We also have the following results.

Theorem: 28 For i = 1, 2, 3,

1. If X is a standard ct-space then,

X is S∗

i ⇐⇒ ft(X ) is T ∗

i .

2. If S is a formal space then

S is T ∗

i ⇒ Pt(S) is S∗

i .

Proof. 1. One has that X is S∗
1 if and only if given any ideal point α of X

and any a ∈ α, and y ∈ X, one has y ∈ Ba or ∃b ∈ αy with b 6∈ α, namely
BS ⊆ Ba ∪B¬α. This precisely means ft(X ) is T ∗

1 . Similarly one proves that
X is S∗

2 iff ft(X ) is T ∗
2 . Finally, it is easy to check that X is S∗

3 if and only if,
for all a ∈ S, Ba ⊆

⋃

b∈U Bb, where U = {c ∈ S : X ⊆ B∗
c ∪ Ba}; but this is

exactly the same as saying that a / wc(a) in ft(X ), so that X is S∗
3 iff ft(X )

is T ∗
3 .
2. Assume that S is T ∗

1 , let α, β be formal points of S, and let a ∈ α.
As S / {a} ∪ ¬α and β is formal point, one has that a ∈ β or ∃b ∈ β such
that b 6∈ α, i.e. Pt(S) is S∗

1 . An analogous argument shows that Pt(S) is S∗
2

whenever S is T2. Finally, assume that S is regular. It has been proved in
[3, Th. 21] that Pt(S) is S#

3 . But Pt(S) is sober, so it is also S∗
3 .

�

By this theorem, Theorem 19, and [2, Proposition 19] we have that if X
is small (has a set of points) and S∗

1 then sob(X ) is small too: indeed, if X
is small, by [2, Proposition 19], ft(X ) is set-presentable. Thus, for instance,
the soberification of the set of rational numbers with their standard topology
(that is not constructively a sober space), will have a set of ideal points.

We now use Theorem 28 to show that there is a formal space which is T ∗
2

but not regular: consider the topological space of positive integers with the
relatively prime integer topology [18, Example 60]. This has the set X = Z

+

of points and the family {Ua(b)}(a,b)∈S of basic open sets where

S = {(a, b) ∈ X × X | a, b are relatively prime},
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with Ua(b) ≡ {b + na ∈ Z
+ | n ∈ Z}. To see that this family gives a base,

assume q ∈ (Ua(b)∩Uc(d)). Let [a, c] denote the least common multiple of a
and c. Then q and [a, c] are relatively prime: let the greatest common divisor
of q and [a, c] be k > 1, and let p > 1 be a prime that divides k. Then p
divides q and a or q and c. From this it easily follows that a, b or c, d are
not relatively prime, so that it must be k = 1. Now it is immediate to check
that U[a,c](q) ⊆ (Ua(b) ∩ Uc(d)) (in fact the equality holds). Thus we have a
standard ct-space X = (X, S, ‖̀ ) where x ‖̀ (a, b) ⇐⇒ (∃n ∈ Z) x = b+na
and we now show that this space is S∗

2 . Let α be an ideal point, y ∈ Z
+, and

(a, b) ∈ α. Then, either y ∈ Ua(b) or not. In the latter case, one observes that
Ua(b) ⊆

⋃

x∈Ua(b) Upx
(x), with px prime and px > x + y. Since α is an ideal

point, there is x ∈ Ua(b) such that (px, x) ∈ α. Then, Upx
(x) ∩ Upx

(y) = ∅,
as, having assumed px > x + y, there is no n with (y − x) = npx, i.e.
x 6≡ y mod (px). Thus y ∈ Ua(b) or there is a neighbourhood of y disjoint
from a neighbourhood of α, as wished.

By the above proposition, the formal space ft(X ) is T ∗
2 . But X is not

regular, so that ft(X ) cannot be regular either.

References

[1] P. Aczel, “The type-theoretic interpretation of constructive set the-
ory”. In Logic Colloquium ’77, A. MacIntyre, L. Pacholski and J.
Paris, eds. North Holland (1979), pp. 55–66.

[2] P. Aczel, “Aspects of general topology in constructive set theory”.
Ann. Pure Appl. Logic, 137, 1-3 (2006), pp. 3-29.

[3] P. Aczel, C. Fox, “Separation properties in constructive topology”.
In: From Sets and Types to Topology and Analysis. Towards Prac-
ticable Foundations of Constructive Mathematics (L. Crosilla, P.
Schuster, eds.), Oxford Logic Guides, OUP, pp 176-192, 2005.

[4] P. Aczel, M. Rathjen “Notes on Constructive Set Theory”, Mittag-
Leffler Technical Report No. 40, 2000/2001.

[5] B. Banaschewski, R. Harting, “Lattice aspects of radical ideals and
choice principles”. Proc. London Math. Soc., 50 No. 3 (1985), pp.
385-404.

21



[6] E. Bishop, Foundations of Constructive Analysis. McGraw-Hill, New
York, 1967.

[7] G. Curi, “On the collection of points of a formal space”. Ann. Pure
Appl. Logic, 137, 1-3 (2006), pp. 126-146.

[8] G. Curi, “Exact approximations to Stone-Čech compactification”.
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