Feta: A light-weight architecture for user
oriented semantic service discovery

Phillip Lord, Pinar Alper, Chris Wroe, and Carole Goble

School of Computer Science,
University of Manchester,
Oxford Road,
Manchester
M13 9PL
UK

p.lord@cs.man.ac.uk

Abstract. Semantic Web Services offer the possibility of highly flexible
web service architectures, where new services can be quickly discovered,
orchestrated and composed into workflows. Most existing work has, how-
ever, focused on complex service descriptions for automated composition.
In this paper, we describe the requirements from the bioinformatics do-
main which demand technically simpler descriptions, involving the user
community at all levels. We describe our data model and light-weight
semantic discovery architecture. We explain how this fits in the larger
architecture of the ™Y Grid project, which overall enables interoperabil-
ity and composition across, disparate, autonomous, third-party services.
Our contention is that such light-weight service discovery provides a good
fit for user requirements of bioinformatics and possibly other domains.

1 Introduction

Web Services and Service Orientated Architectures offer the possibility of the
composition and orchestration of distributed resources. The ™Y Grid project has
been seeking to apply these technologies to the bioinformatics domain. To this
end, it has contributed to the generation of a rich service layer, has built a
workflow engine and workflow development environment [15].

However, there is a difficulty. Even with a good environment, producing com-
plex workflows is difficult, time-consuming and expensive. One of the reasons for
this is the shear number of services which are available for the biologist to use.
Commonly, to promote reusability, each bioinformatics service provides a small
unit of functionality. A useful task is achieved by combining these services into
a workflow. Scientists using ™Y Grid currently have access to over 1000 bioin-
formatics services. In a research domain where many workflows are developed
in-house, experimented with, then either thrown away or extensively modified,
speed of development is a rate limiting step [16].

There has been a large amount of interest in “Semantic Web Services”. In
board outline, this augments standard Service Oriented Architecture with se-

mantic descriptions of the services. These descriptions help agents (whether hu-
man or machine) interact with the service during its life cycle including discovery,
composition, execution and monitoring. Considerable work on technologies such
as OWL-S [8] and, more recently, WSMO [1], have focused largely on descriptions
to enable automated composition of services. The requirement for full automa-
tion, and transparency of composition from the user perspective, has resulted in
the application of extremely rich service descriptions, using description logics, or
F-logic, based formalisms. In keeping with these approaches, the ™Y Grid project
has built a domain ontology for describing bioinformatics services, described ser-
vices semantically using that ontology, and used description logic reasoning to
support service discovery [19]. However, we found this approach bought consid-
erable complexity to the architecture, without addressing the requirements of
our target users (biologists and bioinformaticians). This complexity arose from
at least three areas:

1) Service Descriptions There are many aspects to a service which can be
described at varying levels of detail, depending on the intended audience
and use of the description[18]. The description needed to discover a service
is different from that needed to configure a service, which may be different
from that to invoke a service. Descriptions for unattended agents need to be
more formal and explicit than if there is human user involvement. OWL-S
recognizes some of this variety by providing a profile for discovery, a process
model for orchestration, and a binding for invocation [8]. However, we have
found it is not realistic for service providers to provide comprehensive ser-
vice descriptions as suggested by OWL-S. Sections 2 and 3 examine how the
requirements from the bioinformatics discipline allow us to simplify the prob-
lem — narrowing the use of description to discovery, and assuming a human
is always responsible for final selection.

2) Variety of Services The services available for building workflows are het-
erogenous. Only a small proportion could be classed as plain web services (i.e.
Web Services described using a Web Services Description Language (WSDL)
document with no additional conventions). More information on this hetero-
geneity is given in section 4. We have found that providing detailed formal
descriptions of how each type of service varies in its behaviour is unreal-
istic. Section 5 illustrates how we simplify the problem by describing only
an abstraction of a service that captures its functionality (as recognized by
the workflow builder) whilst omitting its more technical behaviour. Section 4
explains how other components (particularly the workflow enactor Freefluo)
bridge the gap, and loosely bind the abstract description to concrete imple-
mentation.

3) Reasoning The use of formal semantics within service descriptions allows
the use of reasoning. For example, discovery of a service can be supported
by description logic (DL) reasoning that matches a requirement for a service
against a set of available services. It does so by recasting it as a classification
task and testing for those services that are subsumed by the requirements. Our
experience in implementing such a DL based system is that sophisticated rea-

soning is computationally expensive, a cost that is not justified by the benefits

it provides to users searching for services. The complexity of deploying rea-

soning services within the "™ Grid middleware also proved costly. Section 6

describes our discovery component Feta, which allows users to search over

simple semantic descriptions of services using simpler reasoning components.

This paper describes our solution for managing (in our experience) the pro-
hibitive complexity of deploying a fully featured semantic web services archi-
tecture. By adopting semantic web technologies such as RDF and OWL yet
drastically cutting back on the features used, we are able to deploy a manage-
able middleware system. As both the technology and the tools progress, we leave
the door open for adding complexity back into the system, but only as required
by users.

2 The Application of Service Orientated Architectures

Bioinformatics involves the application of computational tools to the problems of
biology. It is largely reflective of its history, originating in a large number of small
molecular biology laboratories. Each lab generally investigates a small area of
biology, with only a few labs world-wide working on a particular area. The data
and tools generated by these labs has been made available for the community
by web publication. More recently, large quantities of data and many tools have
been developed and released by relatively few genome centres.

The use of the web as a primary means of data publication has obvious
difficulties: HTML enables presentation to humans, not formal data modelling;
services are hard to find; interoperability is poor. The primary mechanism for
overcoming these problems has been the expert biologist; cutting and pasting
between web delivered forms has been the norm [14]. Automated tools for the
service composition have largely been built over the top of these web delivered
services, often using Perl, and screen-scraping techniques. While this works, it
tends to be fragile to changes in the website.

It is against this background that the ™YGrid project has operated. Along
with other projects [7], ™ Grid has developed more formal, programmatically ac-
cessible middleware, to enable transfer of information and composition of data
and tool services into large workflows, addressing the real needs to the lab bi-
ologist [15]. This environment comprises of a number of different components
including: 1) Soaplab—A toolkit for the presentation of legacy command line ap-
plications, which covers the majority of bioinformatics tools, as Web Services.
2) Taverna—A workflow construction environment which enables the composi-
tion of Soaplab and other services into, often large and complex, workflows.
3) FreeFluo—A workflow enactment environment which enact Taverna workflows,
invoking services, gathering information and returning it to the user.

The ™¥Grid environment has simplified the task of accessing the data sets
that are available; however, it has been a victim of its own success. At the current
time, there are over a 1000 services which can be used by "™ Grid. This leaves the
end user with a substantial problem in terms of selecting appropriate services

for use. This is made worse as the user, in this case, is the biologist who may
not be highly skilled or knowledgeable about these services [16].

™Y Grid assumes the contributions of third parties. Initially most of the tools
available for use came from within the project, deployed via Soaplab. Currently,
the larger part of the services in use come from external, autonomous service
providers. This means there is no unified ™¥Grid type system determining the
structuring of the data passed between services. As a result, while ™Y Grid has
reduced some of the previous fragility, it has not solve the difficulties of interop-
erability.

On the face of it, therefore, the problems of ™Y Grid seem to be closely aligned
to those addressed by the Semantic Web and SW Services. We have a set of
services which we wish to compose in ways unanticipated by the providers or
those responsible for the middleware.

3 Semantic Web Services in Bioinformatics

While the problems of bioinformatics appear to be closely aligned to those ad-
dressed by current SWS efforts, a consideration of the particular nature of the
domain suggests to us that this is not the case, due to a set of constraints placed
upon us by the domain. In this section, we consider these constraints.

User Transparency: Existing frameworks have focused on the requirement
for transparent composition of web services in order to achieve the high
level goals given by users (e.g. Make my travel arrangements for the next
WWW conference). While this level of automation may be appropriate in
B2C applications, it is less desired within bioinformatics, where the user base
wish to be involved in service selection. There are two main reasons for this.
Firstly, bioinformatics is a scientific endeavour and much depends on the
correct selection of services, something that the users may later be forced to
justify under peer review. Secondly, they suspect that they will make better
decisions than a software agent. In this they are probably correct. Service
selection requires significant areas of knowledge, including the technology of
bioinformatics, the biological questions being examined and the level of trust
the user has in different data sources. Any model of bioinformatics is likely
to be wrong, at least in the first instance, particularly if the model is built by
the middleware providers rather than those with the biological knowledge.

Messaging Opacity: One of the key difficulties with integration in bioinfor-
matics has been the lack of formal and explicit structuring for its key datatypes.
This is true for even relatively simple datatypes, such as DNA sequence which
is a simple two-bit code; there are at least 20 different flat file formats for
representing this data. The standards that do exist have often come about
as a result of many years of collaborative work, so both service providers and
consumers have a large investment in these (in)formalisms. Changing these
data formats is not an attractive option. The practical upshot of this is that
most web services provided for use within bioinformatics do not formally
describe their messaging formats with a WSDL document as the messages

are not structured with XML. Within "™ Grid, we have chosen to deal with
this by assuming that the information passed around by " Grid middleware
will be largely opaque to it.

While these two features may appear to be problematic, in practice they
simplify the task and scope of the form of semantic service discovery required.
As the user is fully involved in the process of service selection, we only require
descriptions which reduce the problem space from selection from 1000 services to
approximately 10 from which the user can then choose. Other authors have previ-
ously noted that this semi-automatic approach simplifies the task of service com-
position [13], although they see this as a step toward further automation, rather
than a strong user requirement. The opacity of the messaging structures means
that descriptions do not have to relate to the internal structuring of the data; the
best that we can do is describe the existence of a particular datatype!. However,
the absence of formal structuring means that tools such as WSDL20WLS [12]
are of little use; there is little information in the WSDL file which can be mined
from it.

4 Coping with Web Service Styles

Of the 1000+ available external bioinformatics services available to ™Y Grid users,
less than 5% would be considered plain web services. Other services consist of
approximately:

25% Soaplab services Soaplab uses web services, but exposes a stateful
CORBA-like interface described later in this section.

30% Bio-Moby services The Bio-Moby project provides a registry and mes-
saging format? for bioinformatics services [17]. This is not described further,
but again, imposes additional semantics over normal web service invocation.

30% Web based REST services The Seqhound [10] sequence retrieval sys-
tem delivers its services through a Representational State Transfer (REST)
style interface, where all the information that is required for the service
invocation is encoded in a single HTTP GET or POST request.

10% workflows ™Y Grid allows the incorporation of workflows into larger work-
flows.

In addition, although not strictly services, local Java applications and Java
scripts® can also be distributed for use within workflows and so need to be
discovered and integrated.

1 Our analogy here is with MIME types. text/html tells you little about the datatype,
but is useful none the less

2 As described early, messaging formats are opaque in bioinformatics, because most of
the data is informally structured. Like ™Y Grid, Bio-Moby’s messaging format reflects
this, consisting of a thin enveloped which simply describes the existence of a given
datatype

% implemented using the BeanShell (http://www.beanshell.org)

To illustrate further the additional semantics typically found, in Table 1,
we give an example of two different presentations of the same service, in this
case a BLAST search. This is one of the most widely used tools within bioin-
formatics. It uses a DNA or protein sequence to search for similar sequences
from a database. As such, it takes a sequence as its main input, along with some
of a large set of other parameters which modify the search functionality. One
standard presentation of this service, which we describe as a “Document Style”
approach, has a single operation which takes a sequence as an input parameter
and returns a complex BLAST report which is the standard output of this tool.
The second provides a much more “Object Style” interface which requires mul-
tiple interactions with the service to perform a single BLAST search. This style
of interaction is typified by Soaplab.

Document Style|BlastReport performBlast(Sequence, gap, etc.. .);
Object Style Objectldentifier getInstance();

void setSequence(Objectldentifier, Sequence);
void setGap(Objectldentifier, Gap);

BlastReport invoke(ObjectIdentifier);

Table 1. Two different service interfaces to BLAST, a widely used bioinformatics tool.
BLAST operates over a biological sequence, has a number of parameters and returns
a single complex BLAST report. The “Document Style” interface has a single method
taking a complex set of parameters, while the “Object Style” interface uses object
identifiers to provide an ad hoc object orientation.

To describe the object style of service using, for example, OWL-S would re-
quire the use of preconditions (getInstance must be called before setSequence)
and effects (getInstance uses resources on the server).

Within ™Y Grid, however, we have taken an alternative approach. While there
are different web service styles, they are only a limited number. Instead of trying
to cope with these service styles through the application of semantic descrip-
tions, we have, instead, used an extensible workflow enactment environment,
called FreeFluo [11]. The interaction with the web service is handled through a
Java interface or processor. While this framework is not fully generic, it appears
to answer our requirements; support for a new style of service can be added
rapidly—in minutes or hours depending on their service complexity. Moreover,
the use of widely adopted language such as Java makes this process considerably
cheaper than the use of OWL. In effect, we bury the invocation problem by
taking advantage of limited families of service patterns with idiomatic patterns
of invocation.

The FreeFluo engine then presents a common abstraction over the individual
service styles which is used by both the semantic service discovery component,
Feta, and the workflow building environment, Taverna. It is this abstraction
which we seek to describe as it is this that the users wish to discover.

5 ™ Grid’s Data Model of Services

In this section we describe the core data model which we use to describe services.
Given the constraints that bioinformatics presents and the support that other
parts of the ™YGrid architecture provide for the invocation of services, the key
differences between this model and that present within OWL-S are those of
omission; we have nothing in this model equivalent to either the grounding or
process models and only a subset of the service profile. They are also a few
additional features which model the ideas users have about services, but which
do not map to the underlying middleware layer.

The majority of the information in the data model was captured in the
™ Grid service ontology described previously [19]. This ontology contains sub-
stantial information describing the bioinformatics domain, which acts as an an-
notation vocabulary including: descriptions of the core bioinformatics data types
(e.g. DNA_sequence), a characterization of the tasks commonly performed (e.g.
Protein Analysis) and a description of the biological entities being investi-
gated (e.g. homologue). The core data model is shown as a Conceptual UML
class diagram in Figure 1.

1.n

‘ hasOperation l 1
Operation 1" Parameter Service
name, description N
task P o name, description nage, description
method "' | semantic type author
resource transpontType organisation
application format

collection type
y collection format

workflow

Corresponds to
-
- -
=

seqHound service

1 - asOperation N
WSDL operation oy WSDL service
1 "
Soaplab service

bioMoby service

Java Object

H

1

i

Fig. 1. Feta’s Data Model of Services: Those attributes filled with terms from the
Y Grid ontology are marked italicized.

Within this data model we distinguish between the core unit of functionality,
i.e. the operation, and the unit of publication, i.e. the service. Our initial anal-
ysis of the bioinformatics web services suggested that, in most cases, a Service
presented a set of operations providing related but independent functionality. For

this reason, the service entity encapsulates information only relating to pub-
lication; this includes information such as the provider organization name, the
author of the service description, and a free text description of the functionality.

In general, a service may provide one or more service operations. Conven-
tional web services with no state are good examples of this. These operations do
not map directly to operations at the WSDL layer. For “object style” services,
described in the previous section, the multiple WSDL operations all provide a
single unit of functionality from the users perspective. Soaplab services, there-
fore, are all modelled as a service with a single operation. For other service
styles, such as ™YGrid workflows, or Seqhound services, there is no underlying
WSDL representation to map to. Again, FreeFluo removes the difficulty of link-
ing between the abstracted service descriptions and these different invocation
layers.

The capabilities of operations, within Feta, are characterized by the inputs,
outputs and several domain specific attributes. All of these attributes use, as
fillers, concepts from the ™Y Grid domain ontology. These attributes are:

— The overall task being performed by the operation. While this attribute has
no semantics in the invocation layer, it is an useful description for users who
understand the biological in silico experiment being performed.

— The underlying method being used. Many key bioinformatics tasks can be
achieved using more than one algorithm; biologists differ in their level of trust
for these different methods, so describing these provides a useful criterion
for service selection.

— The application to which the service belongs. For example, many service
implementations are provided by the EMBOSS project. Again, biologists
different in their trust for these different implementations.

— The resource that the service uses. Many tools can operate over different
data sets. Services providing access to these tools are likely to provide simi-
lar or identical invocation interfaces. This attribute enables the biologist to
distinguish between these services.

The inputs and outputs of an operation are modelled through the Parameter
entity. In addition to its name and textual description, a parameter is described
with the following attributes:

— The semantic type describes the domain specific data type in question, such
as DNA_sequence.

— The format describes the representation of the data. Many data types can
be represented using multiple different formats; some services are agnostic
to these formats while some are highly specific.

— The collectionType and collectionFormat attributes are useful where services
return a set of results rather than a single item.

— The configurationParameter describes whether the parameter is the “main”
input or not. This distinction is common in bioinformatics and can best be
described by analogy to a unix command line*: each command has standard

4 Biologists normally use the term parameter specifically to refer to what we call
configuration parameters

3

input and a set of switches. In general, such parameters have “sensible”
default values and can be ignored during service discovery. For this reason,
its representation in service descriptions is essential.

6 The Feta System Architecture

In this section, we give an architectural overview of the Feta discovery system,
as shown in Figure 2. The key characteristic of this architecture is its rela-
tive simplicity: the core components communicate through web services; service
descriptions are developed using XML and by applying generic XML tooling;
querying is performed with Jena using only RDF(S) entailment rather than DL
reasoning. Feta is meant as a light-weight semantic search engine rather than a
full service registry, so this functionality is deferred to the standard web services
registry, namely UDDI [3]. The core components can be grouped as semantic
service publishing components (dark grey in Figure 2), service querying compo-
nents (light grey) and the ™Y Grid service ontology (unshaded) used by both.

1. Feta skeletons are___
generated by mining
ow-level

descriptions

7 Reasoner
™ Grid Domain Ontology
Classification Editor ™
T

Ontologist builds
™Grid Domain

@ommgy
3. Annotated M

descriptions are
stored

Annotator e
2. Skeletal
descriptions are
annotated

Knowledge
Engineer

Feta Engine
=«
— == Local Component Interaction

3 —% SOAP based messaging

6. Engine accepts and between components
replies search requests b User interacion

i InputsiOulputs of
Taverna v components

Feta GUI

5. User interacts with
GUl'to discover
resources

4. Descriptions are
loaded and engine
initialized

Scientist

Fig. 2. Architectural Overview of Feta

6.1 Semantic Service Publication

The requirement for Feta to discover multiple styles of service and to reflect
the workflow building scientist’s perspective demands manual annotation of the
service descriptions. Given that a service’s capability is not reflected by its invo-
cation interface provided at the primary publishing stage, it becomes essential for

a secondary publishing stage to take place. It is during publication that the map-
ping from low-level descriptions of services to the more abstract, user-oriented
descriptions takes place.

The absence of formal structuring for most bioinformatics data types (see
Section 3), mean that the information which can be obtained from the services
themselves is limited to: 1) The Service Name 2) The names and number of ser-
vice operations. 3) The names and number of operation parameters. For plain
web services this information is imported from their WSDL files via an XML
transformation process. As with the FreeFluo engine, we support an extensi-
bility layer to enable the import of other service styles. In the case of Soaplab
services this is achieved by introspective invocation of the service. Other service
styles provide information in their own manner and require their own import
functionality. In each case, the end product is an XML document conforming
to the data model describing in Figure 1, recast as an XML schema. As these
documents contain the basic structure for the semantic service descriptions, but
little of the information required, we describe them as skeletons.

6.2 Service Annotation

Following the generation of skeleton documents, manual annotation of these doc-
uments is required to provide full descriptions. This annotation process can take
considerable time. In the first instance most descriptions have been developed
by expert bioinformaticians from within the ™Y Grid project. In our experience,
the key difficulty has been poor documentation of the services, requiring exper-
imental invocation of the service with test data. More recent experience with
service publishing frameworks such as Soaplab, provide documentation directly
associated with services which eases this process considerably.

It is clear that tool support is required for this process to encourage either
external service providers, or service consumers to generate their own seman-
tic service descriptions. To this end, we use the PeDRo application [6]. This
provides a GUI based interface which allows users to generate XML instance
documents conformant to a given XML schema. The tool is also ontology aware
and can provide easy access to the vocabulary at the point of use. Annotation
is limited to named classes rather than fuller class expressions. In Figure 3, we
show this application in the process of annotating a plain web service. The tool
is not restrictive in the data that is required for the annotator; it is possible to
generate descriptions with minimal information to be augmented at a later date
as required.

The use of XML, at this point, provides two key advantages: 1) The use of
XML schema validation ensures that Feta documents are internally consistent
relieving the need for further error checking at later states of the discovery
process. 2) Some service providers will already have access to metadata which
can be mapped into the Feta schema and used for service discovery. The use of
familiar technology should ease the process should service providers choose to
bypass the manual annotation step.

& File: L:\pedrol6'dist\models\myGridservices\DATA\FetaDescriptionaml

File Edt View Options Windows Help

=lolx

[SERVICEDESCRIFTIONS

® ORGANISATION--BI0informalics group
@ 3 OPERATIONS:
re:

a
© 1 OPERATIONINFUTS:
9 2 PARANMETER- probiaSistid-Affynd
@] FORMATS.
@ =] OFERATIONOUTPUTS

)

Elements in
Feta Description

{2 SERVICEDESCRIPTION -AMymeltidapperSeny

(operatianiiame

porthlame.

foperationinpuls

foperationOutputs

raperationTask

SERVICEOPERATION: getSequence.

getSequence

loparstionDescriptionTartetirs the DNA sequence in FASTA farmat for 3 given Affymetiix probe setld.

User Entered
value

OPERATIOMIMPUTS:

OPERATIONQUTPUTE:

refrieving

Edit

Edit |

resource » DDBJ-FyBase » DDEJ
Genbank_nucleotide_sequence_database PRINTS » EMBL_nucieotide_sequence_data
Pfam-TREMBL ¥ Ensembl
bisinfarmatics_database-sequence_database ¥ FSSP
A sequence_database sequence_database » FiyBase
KEEp || CantEr || DEEE

Annotation
iy

Fig. 3. A screen shot of the XML Data Entry Tool PeDRo

The XML document produced is conformant to the data model, described
in Figure 1, containing concepts (represented using URL’s) to the ontology de-
scribed in Section 6.3. Currently, the complexity and time-consuming nature of
the annotation phase is one of the key reasons why we do not use complex, OWL-
based, service descriptions. Annotation providers are generally not conversant
with the use of such technology and are unlikely to make use of the expressive
power of OWL. Our experience suggest that even the application of a vocabulary
is a demanding process.

6.3 The ™ Grid domain ontology

It is clear that the domain ontology is a critical component in ensuring the utility
of any semantic service discovery architecture. We have discussed previously the
approaches of different projects from within bioinformatics for the development
of such an ontology [7]. ™¥Grid’s approach has been to develop a seed ontology
which will both provide enough utility for initial users of the system. In turn,
this should encourage those in the domain to contribute new terms. This process
has previously been used highly successfully in bioinformatics [2].

Due to the complexity of the domain, we choose to develop a complex prop-
erty based ontology using OWL (initially DAML4OIL), which enabled us to
take advantage of the reasoning at development time [19]. For use within Feta,
we have reasoned over the ontology and then exported it as an RDF(S) hierarchy.

6.4 Querying Feta descriptions

Following the annotation phase, Feta descriptions are published, making use
of a UDDI registry. The Feta Engine engine then imports these descriptions,
along with the RDF(S) version of the domain ontology, from where they can
be queried. The decision to avoid the use of OWL and reasoning technologies
at query time enables considerable architectural simplicity at this point. The
Feta Engine is essentially a set of canned RDQL queries accessible via a web
services interface. We currently use Jena [5] as our implementation backend as
its query engine provides support for RDF(S) entailment. The canned queries
that we currently support include:
— An operation that accepts input of a given semantic type or something more
general.
— An operation that produces output of given semantic type or something
more specific.
— An operation that performs a given task (or uses method or uses resource
or is part of Application) or something more specific.
— An operation that is of type “WSDL based Web Service Operation”, “Soaplab
Service”, “Scufl Workflow” etc.
— An operation whose name/description contains a given phrase.

6.5 The Feta GUI query tool

The focus of semantic discovery in this paper has been to provide support the
workflow building. It is clear, therefore, that the discovery architecture needs to
be accessed from within Taverna, our workflow building environment. For this
purpose, we provide a plug-in which is shown in Figure 4. The query interface
enables the user to build a composite search query using the supported canned
queries.

=10l x|

uery | resut |

Guery criteria Value

[sescription contains =] [ora [
| —— Bl one seqionce I
[is funstion of =] [Basic_Local_Algnmert_Search_Tool = - ||
vy Bl swss ot =l
[uses method =] [word_metch_sequence _sigrmert _sigorttn = - |
[oertorns task =] sk = -

Searching =
Feta's . Classification Hierarchy g J
Canned Queries based on the query type S
o
auery |

Fig. 4. GUI Panel for Building Search Requests

Results of the search are then returned to the user in a results panel shown
in Figure 5. Any additional information available about the service is also dis-
played enabling the user to make the final selection of the most appropriate
service. These services can then be added to the workflow by means of drag and
drop. Currently returned results are not ranked as most queries narrow the total
number of services from which the user can then select manually.

Workbench

ﬂlVaﬁoa‘! ﬂ I Fito window

Workflow | TavernaFetaGUI
T —
[Pt e

...s,v-.z,m

repeatmasker

Fig. 5. GUI Panel for Displaying Search Results

We currently consider the query interfaces to be preliminary. Although more
expert bioinformaticians are comfortable with this kind of boolean query inter-
face, many biologists are not. We would like to pursue further integration within
Taverna to alleviate this need. In particular, we pursue the use of workflow con-
text to filter services. Hiding the explicit use of semantic service discovery should
enable it to become a more natural part of the process of workflow building.

7 Discussion

In this paper, we have described our application of Semantic Web technologies
to service discovery within bioinformatics. On the whole, the distinctive features
of our system are: 1) Its light-weight semantic support 2) Its semi-automatic
approach to discovery 3) Its user-oriented capability-based model that enables
discovery.

Within Feta we have adopted light-weight semantics, using an RDF(S) clas-
sification and entailment, as this appears to be sufficient in this domain. There
is an increasing urgent demand for a publicly available registry and associated
search facilities. Our choice of an RDF(S) backend has enabled development and

deployment of a system with low complexity, without precluding migration to
a richer semantic framework based on OWL when required. Currently, we have
found that reasoning technologies are useful during construction of a domain on-
tology [19]. However our assessment is that there is a limited role for reasoning
technologies in enabling user oriented service discovery. The level of expressivity
that the system can cope with is limited not by the complexity of the reasoning
task but by the requirements of the biologist end users who develop both the
service advertisements and discovery queries, and the capabilities of the user
interfaces that are used in their generation.

It is possible that satisfiability checking would prove useful during the gener-
ation of service descriptions, as the ontology could be used to express constraints
on the use of the vocabulary over and above those already provided by the Pe-
DRo user interface. For example, services descriptions with DNA_Sequence inputs
and outputs, but performing a Protein_Analysis task are likely to be erroneous.
However, this sort of constraint checking would require a substantial extension
to the ontology. It would also require significant ontological engineering knowl-
edge from the curators; this is likely to discourage the community involvement
vital to the development of an accurate representation of the domain [2].

Although we have concentrated on providing appropriate user interfaces and
tool support for the process of semantic service description and discovery, there
are still some areas of weakness. The ™Y Grid ontology, in particular, is a key
component of the architecture; without an appropriate model of the bioinfor-
matics, we will not be able to provide appropriate service discovery. There is
currently no way for service providers and consumers to provide feedback on
this model at the point of use. The Bio-Moby project [17] has a more open and
collaborative approach to ontology building, but lacks the quality control that
™Y Grid’s curatorial approach provides. Better tooling should enable us to take
advantage of the best features of both these approaches.

The Semantic Web has always been envisaged to have levels of expressivity—
as typified by the Semantic Web Layer Cake [4]. Much of the work on semantic
web services has focused on the upper levels of the expressivity. In common with
other authors [9], we have found that “being light-weight and flexible trumps
other features”. We believe that our XML and RDF(S) based architecture ful-
fils most of the requirements of the bioinformatics domain while retaining the
simplicity, which enables us to adapt service discovery to the specific nature of
bioinformatics. We suspect that the use of such light-weight architectures with
appropriate data models are likely to be very useful in many other domains.

References

1. S. Arroyo, M. Stollberg, and Y. Ding. WSMO Primer. DERI Working Draft v01,
2004.

2. M. Bada, R. Stevens, C. Goble, Y. Gil, M. Ashburner, J. A. Blake, J. M. Cherry,
M. Harris, and S. Lewis. A Short Study on the Success of the Gene Ontology.
Accepted for publication in the Journal of Web Semantics, 2004.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

. T. Bellwood. UDDI Version 2.04 API Specification. UDDI Committee Specifica-

tion, OASIS, July 2002.

T. Berners-Lee. Semantic web. XML2000, 2000. http://www.w3.org/2000/Talks/
1206-xm12k-tbl/slide10-0.html.

J. J. Carroll, I. Dickinson, C. Dollin, D. Reynolds, A. Seaborne, and K. Wilkinson.
Jena: Implementing the Semantic Web Recommendations. Technical report, HP
Labs, December 24th 2003.

K. L. Garwood, C. F. Taylor, K. J. Runte, A. Brass, S. G. Oliver, and N. W. Paton.
Pedro: a configurable data entry tool for XML. Bioinformatics, page bth251, 2004.
P. Lord, S. Bechhofer, M. D. Wilkinson, G. Schiltz, D. Gessler, D. Hull, C. Goble,
and L. Stein. Applying semantic web services to bioinformatics: Experiences
gained, lessons learnt. In International Semantic Web Conference, pages 350-364,
2004.

D. Martin, M. Paolucci, S. Mcllraith, M. Burstein, D. McDermott, D. McGuin-
ness, B. Parsia, T. Payne, M. Sabou, M. Solanki, N. Srinivasan, and K. Sycara.
Bringing Semantics to Web Services: The OWL-S Approach. In First International
Workshop on Semantic Web Services and Web Process Composition (SWSWPC
2004), Lecture Notes in Computer Science. Springer, July 2004.

R. Masuoka, B. Parsia, and Y. Labrou. Task computing - the semantic web meets
pervasive computing -. In Proceedings of 2nd International Semantic Web Confer-
ence (ISWC2003), Sanibel Island, Florida, October 2003.

K. Michalickova, G. D. Bader, M. Dumontier, H. Lien, D. B. R. Isserlin, and C. W.
Hogue. SeqHound: biological sequence and structure database as a platform for
bioinformatics research. BMC' Bioinformatics, 3(32), 2002.

T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M. Greenwood, T. Carver,
K. Glover, M. R. Pocock, A. Wipat, and P. Li. Taverna: a tool for the composi-
tion and enactment of bioinformatics workflows. Bioinformatics, 20(17):3045-3054,
2004.

M. Paolucci, N. Srinivasan, K. Sycara, and T. Nishimura. Towards a Semantic
Choreography of Web Services: from WSDL to DAML-S. In In Proceedings of the
International Conference on Web Services (ICWS 2003), pages 22—26, 2003.

E. Sirin, J. Hendler, and B. Parsia. Semi-automatic composition of web services
using semantic descriptions. In Web Services: Modeling, Architecture and Infras-
tructure workshop in ICELS 2003, Angers, France, April 2003.

R. Stevens, C. Goble, P. Baker, and A. Brass. A Classification of Tasks in Bioin-
formatics. Bioinformatics, 17(2):180-188, 2001.

R. Stevens, H. Tipney, C. Wroe, T. Oinn, M. Senger, P. Lord, C. Goble, A. Brass,
and M. Tassabehji. Exploring Williams Beuren Syndrome Using ™Y Grid. In Bioin-
formatics, volume 20, pages 1303-310, 2004. Intelligent Systems for Molecular
Biology (ISMB) 2004.

D. Tran, C. Dubay, P. Gorman, and W. Hersh. Applying task analysis to describe
and facilitate bioinformatics tasks. Medinfo, 2004:818-22, 2004.

M. D. Wilkinson, D. Gessler, A. Farmer, and L. Stein. The BioMOBY Project Ex-
plores Open-Source, Simple, Extensible Protocols for Enabling Biological Database
Interoperability. Proc Virt Conf Genom and Bioinf, 3:16-26, 2003.

C. Wroe, C. Goble, M. Greenwood, P. Lord, S. Miles, J. Papay, T. Payne, and
L. Moreau. Automating experiments using semantic data on a bioinformatics grid.
IEEE Intelligent Systems, 19(1):48-55, 2004.

C. Wroe, R. Stevens, C. Goble, A. Roberts, and M. Greenwood. A Suite of
DAML+OIL Ontologies to Describe Bioinformatics Web Services and Data. The
International Journal of Cooperative Information Systems, 12(2):597-624, 2003.

