USER-ORIENTED SEMANTIC
SERVICE DISCOVERY

A THESIS SUBMITTED TO THE UNIVERSITY OF MANCHESTER
FOR THE DEGREE OF MASTER OF PHILOSOPHY
IN THE FACULTY OF SCIENCE AND ENGINEERING

2004

By
Pinar Alper

Department of Computer Science

Contents

Abstract

Declaration

Copyright

Acknowledgements

1

2

Introduction
1.1 Motivation for Discovery
1.2 Common Discovery Architecture
1.2.1 Component Descriptors.
1.2.2 Discovery Mechanism
1.2.3 Purpose of Discovery
1.2.4 Stakeholders in Discovery
1.3 e-Science and ™ Grid Project Overview
1.4 ™Grid In silico Experiment Lifecycle
1.4.1 Requirements for Discovery in ™Grid
1.4.2 Architecture and Stakeholders
1.4.3 Services in ™Grido oo
1.4.4 Descriptors of Services
1.4.5 Service Discovery Mechanism
1.4.6 Trader Deployment
1.5 Research Questions
1.6 Road Map for Thesis

Literature Survey and Background

2.1 Scopeof Analysis

10

11

12

13

14
15
16
17
19
20
20
21
23
25
25
27
29
30
31
31
32

33

2.2

2.3

24

2.5

2.6

2.7

Resource Discovery on The Grid 34

2.2.1 Discovery Systems in the First Generation Grid 36
2.2.1.1 Globus Monitoring and Discovery System 2 (MDS2) 36
2.2.1.2 Condor Matchmaker 38
2.2.2 Discovery Systems in the Second Generation Grid 40
2.2.2.1 Service Oriented Grid 40

2.2.2.2 Information Models for Interoperability on the Grid 40
2.2.2.3 Globus Monitoring and Discovery System 3 (MDS3) 41

2.2.3 Remarks on Discovery on the Grid 42
Distributed Object Discovery 42
2.3.1 OMG-Naming Service 42
2.3.2 OMG-Trading Service 43
2.3.3 Remarks on Distributed Object Discovery 44
Web Services 45
2.4.1 Web Services Description Language 46
2.4.2 Web Services Discovery with UDDI 48
2.4.3 Enhanced Web Service Discovery 53

2.4.3.1 UDDI Enhancements 53
2.4.4 Remarks on Web Service Discovery 53
Semantic Web Technologies 54
2.5.1 Resource Description Framework RDF 57
2.5.2 RDF Schema 58
2.5.3 Ontologies 59
2.5.4 Ontology Languages 61
255 Reasoningo 62
2.5.6 Use of Ontologies and Reasoning 64
Semantic Web Services oo L oo 65
2.6.1 Semantic Web Service Discovery: Top-Down approaches . 66

2.6.1.1 OWL-S: OWL Services 66

2.6.1.2 IRS-II: Internet Reasoning Service 71

2.6.1.3 WSMF: Web Service Modelling Framework . . . 75
2.6.2 Semantic Web Service Discovery: Bottom-Up Approaches . 76
2.6.3 Remarks on Semantic Web Services 7
Semantic Grid 79
271 Geodise 80

2.8 Summary . .o ... 82

Service Discovery in ™ Grid: Early Efforts 86

3.1 ™Grid Domain Ontology and ™ Grid Information Model of Services 88

3.2 Pedro Data Capture Tool 90

3.2.1 Use Of Pedro In ™Grid 92

3.3 ™Grid Viewo 93

3.3.1 UDDI Compatibility 93

3.3.2 WSDL Extensions 95

3.3.3 Metadata Extensions 96

3.3.3.1 Discovery Facilities 96

3.4 The Semantic-Rich Approach 97

3.4.1 Remarks on Semantic-Rich Approach 99

3.5 The View-Only Approach 100

3.5.1 Remarks on View-Only Approach 102

3.6 Reflections on the Two Approaches 103

3.6.1 Profiles of Previous Approaches 103
3.6.2 Analyzing Previous Approaches with Respect to ™ Grid’s

Requirements oL 104

Service Discovery in ™ Grid: Feta Approach 108

4.1 Introduction 108

4.2 Basis of Feta’s Information Model 109

4.3 Feta’s Information Model of Services 110

4.3.1 Modelling Operations not Services 110

4.3.1.1 Attributes of Operations 112

4.3.2 Parameters 112

4.4 System Overview 112

4.4.1 Trader Components 114

4.4.2 'Trader Client Components 114

4.4.3 ™Grid Domain Classification 114

4.4.4 System Operation L. 116

4.5 Capability Publishing 117

4.5.1 Generation of Feta Descriptions 117

4.5.1.1 Feta Descriptions for Plain Web Services 117

4.5.1.2 Feta Descriptions for Soaplab Services 119

4.5.1.3 Feta Descriptions for Scufl Workflows 122

4.5.2 Annotation of Feta Descriptions 122

4.5.3 Publishing of Annotated Descriptions 122

4.6 Feta Search Engine L 122
4.6.1 Merging Descriptions and Domain Ontology 123

4.6.2 Converting XML Descriptions to RDF 123

4.6.3 Querying Feta Descriptions 127

4.6.4 Feta Canned Queries (Feta API) 127

4.7 Taverna Feta Plug-In 128
4.7.1 Query Buildingo 128

4.7.2 Results Displaying and Results Integration to Workflow . . 129

4.8 System Implementation. 130
4.9 Evaluation Lo 130
4.10 Chapter Summary 132

5 Conclusions and Future Work 134
5.1 Contributors to Discovery Process 136
5.2 ™Grid Discovery Requirements and Feta 138
5.3 Futureworko 138
5.3.1 Intended Use of Feta in ™Grid 138

5.3.2 Information Model Extensions 140

5.3.2.1 Service Non-Functional Properties 140

5.3.3 Supporting Different Forms of Discovery 141

5.3.3.1 Knowledge Driven Workflow Design 141

5.3.3.2 Discovery by Browsing 141

5.3.4 GUI Extensions 141

5.3.5 Building a Custom Annotator 142

5.3.6 Managing Changes to the Domain Ontology 142

5.3.7 Use of Feta Outside the Scope of ™Grid 142

5.3.8 Enhanced Discovery in ™ Grid: Going Beyond Feta 143
Bibliography 144
A "™Grid Service Schema v.2 as XSD 154
B Extract of ™ Grid Domain Classification 160

List of Tables

2.1

3.1
3.2

4.1
4.2
4.3
4.4

5.1

Comparison of Discovery Systems Surveyed 83

Analysis of Previous Efforts With Respect our Survey Categories. 103
The Addressing of Discovery Requirements by Semantic-Rich and

View-Only Approaches. 105
Two Different Service Interfaces to BLAST. 111
Sizes of Different Versions of ™ Grid Domain Classification 116
A Sample RDQL Query and the Graph Pattern it Specifies 126
Analysis of Feta With Respect to Our Survey Categories 133
The Addressing of Discovery Requirements by Feta. 139

List of Figures

1.1
1.2

1.3
1.4
1.5

2.1
2.2

2.3
24
2.5
2.6
2.7
2.8
2.9

2.10

2.11

2.12

2.13

2.14

Common Discovery Architecture in Distributed Environments. . .
An Example of Generic Resource Description Model and its aug-
mentation with Domain Knowledge.
An In Silico Experiment as a Workflow.
In silico Experiment Lifecycle in ™Grid.
An Overview of The Architecture and Interaction of ™ Grid Com-

ponents. Lo e

Context of Our Analysis.
An Example Mapping of MDS2 Auxiliary Resource Types to LDAP
Information Modelo
Screenshot of MDS2 Directory Browser
An Example Classified Advertisement.
An Example IDL Description.
Web Services Enabling Standards
A Sample WSDL Description for a Sequence Alignment Service

UDDI Information Model,
The XML Fragment Corresponding to the UDDI Entry for the

Sequence Alignment Service L.

The Information Food Chain for Applications on the Semantic Web.

The Semantic Web Languages
A Sample RDF Graph Representing a Group of Statements About
a Web Service
A Sample Sub-Class Hierarchy of Concepts in the ™ Grid Domain
Ontology
A closer look at the Ontology Layer of the Semantic Web language

16

19
22
24

26

35

37
38
39
43
45
47
49

51

55

56

o7

60

2.15

2.16
2.17
2.18
2.19

2.20
2.21
2.22

3.1

3.2
3.3
3.4
3.5
3.6
3.7

3.8

4.1
4.2
4.3

4.4

4.5
4.6
4.7
4.8

The inferred classification hierarchy based on separate class de-

SCTiptions.
The Screenshot of the Protégé Ontology Editor
The OWL-S Profile of a Sequence Alignment Service
The OWL-S Process of a Sequence Alignment Service
The Unified Problem-solving Method description Language (UPML)
Framework.
A IRS-IT Task Description in OCML.
A IRS-IT Problem Solving Method Description in OCML.
The screenshot of EDSO Ontology displayed in the OilEd ontology

editor.o

A Contextual Diagram of Information Models supported by User-
Facing components and the Traders in ™ Grid Service Discovery
Frameworks
™WGrid’s Suite of Ontologieso
™Grid Service Schema V.1 oo
A Screenshot of the XML Data Entry Tool Pedro
RDF data corresponding to UDDI Based Service Information.

RDF representation of a WSDL Description in the View.
Architectural Overview of the Semantic-Rich Approach to Service
Discovery e
Architectural Overview of the View-Only Approach to Service Dis-

COVETY + v o v e e e e e e e e e e

A Conceptual View of the Information Model of Feta
Architectural Overview of Feta.
An Extract of Classifications in The Simplified ™ Grid Domain
Ontology.
WSDL Description of BLAST Service and its Corresponding Skele-
ton XML Description. oL
WSDL Description of Soaplab BLAST Service.
Skeleton XML Description Generated for Soaplab BLAST Service
A Closer View of The Discovery Engine.
Sample XML Description and its Corresponding RDF Represen-

tation.

63
64
69
70

72
73
74

81

87
38
91
92
94
95

97

121

4.9 GUI Panel for Building Search Requests. 128

4.10 GUI Panel for Displaying Search Results 129
5.1 A Summary of Three Service Discovery Approaches in ™Grid. . . 135
5.2 The Lifecycle of Reasoning Employed During Discovery. 137

Abstract

The need for discovering components has existed since the emergence of net-
works and distributed computing. Recently, developments on service based dis-
tributed computing and the semantic web are beginning to enable flexible service
based architectures, where services can be discovered and composed into work-
flows for achievement of high level tasks. Currently there exist a large amount
of research interest focused on providing fully automated service discovery and
composition. In this thesis we describe the requirements from the Bioinformatics
domain, particularly the ™ Grid project, in which a semi-automated approach
is desired where the users are chiefly in charge of selecting and composing ser-
vices rather than unattended software agents. We report on the User Oriented
semantic service discovery system, Feta, that has been developed based on the
domain’s requirements and outcomes of previous service discovery solutions in
™WGrid. Our findings point out that a discovery system that is to be deployed in
a real life bioinformatics setting, and is expected to assist users, should support

lightweight semantic descriptions and a user-oriented model of services.

10

Declaration

No portion of the work referred to in this thesis has been
submitted in support of an application for another degree
or qualification of this or any other university or other

institution of learning.

11

Copyright

Copyright in text of this thesis rests with the Author. Copies (by any process)
either in full, or of extracts, may be made only in accordance with instruc-
tions given by the Author and lodged in the John Rylands University Library of
Manchester. Details may be obtained from the Librarian. This page must form
part of any such copies made. Further copies (by any process) of copies made in
accordance with such instructions may not be made without the permission (in
writing) of the Author.

The ownership of any intellectual property rights which may be described
in this thesis is vested in the University of Manchester, subject to any prior
agreement to the contrary, and may not be made available for use by third parties
without the written permission of the University, which will prescribe the terms
and conditions of any such agreement.

Further information on the conditions under which disclosures and exploita-

tion may take place is available from the head of Department of Computer Science.

12

Acknowledgements

I would like to express my deepest gratitude to my supervisor Prof. Carole Goble,
who has always encouraged me and guided me during my studies. I would also
like to thank Dr. Phillip Lord and Dr. Chris Wroe for their patience with my
endless questions and their guidance throughout the project.

Finally special thanks to my husband Koray Alper for his caring, patience
and support.

13

Chapter 1
Introduction

The concept of discovery has been a focal point of attention since the emergence
of networks and distributed computing. It is possible to find incarnations of the
discovery concept within nearly every distributed computing paradigm. These
components have a crucial role in sharing and orchestrated use of diverse types
of resources in closed or open environments.

Recently, the emergence and widespread use of web based protocols and ser-
vice orientation has introduced possibilities for open and flexible service based
architectures where services can be discovered and composed into workflows.
Moreover, openness of the environment has fuelled research on providing un-
ambigious semantic descriptions of services to cater for increased automation in
service discovery and composition activities known as the Semantic Web Services
research.

In this thesis we focus on discovery. Initially we take a general approach and
describe its role in distributed environments, the motivations behind it, and the
common way it is performed. Then we describe the reflections of these as a set of
discovery requirements in the bioinformatics domain, and particularly the ™ Grid
project, where the users are chiefly in charge of selecting and composing services
rather than unattended software agents. We then analyze stereotypical discov-
ery systems, Traders, in different distributed environments explaining how each
adopts an information model and a discovery mechanism to meet the particular
environment’s needs.

We investigate the role of the Trader Information Model and the discovery

mechanisms that is to be adopted in ™ Grid’s environment. We report on the

14

CHAPTER 1. INTRODUCTION 15

User Orientated semantic service discovery system, Feta, that has been devel-
oped based on the domain’s requirements and the outcomes of previous service
discovery activities in ™ Grid. Our findings point out that a discovery system
that is to be deployed in real life applications, and is expected to assist users in
discovery should support light-weight semantic descriptions, and a user-oriented
model of services.

In this chapter we first describe the general set of motivations behind discovery
systems in distributed environments. We will then provide an identification of
common characteristics of discovery systems. Later the context in which our
work falls is described by giving an overview of the ™ Grid Project and the role

of discovery within ™ Grid. Finally the road map for the thesis is given.

1.1 Motivation for Discovery

Distributed systems such as the Web or the Grid are composed of large numbers
of components and large numbers of bindings between these components and
their users. Examples of these components can be:

e Compute Resources, which are defined as “systems accessible via a net-
work”[27] on the Grid (e.g. clusters and file servers).

e Distributed software objects shared within enterprise application integra-
tion platforms (e.g. Common Object Request Broker Architecture CORBA).

e Services, which are defined as “network-enabled entities that provide some
capability through the exchange of messages” [27] on the Web.

In order to be able to create bindings to either of these components, a mech-

anism for discovering them is required. The reasons for this are:

e [t would not be feasible for requesters to perform discovery on their own
given the large number of components in the environment.

e Unanticipated need for (re)use of components may emerge during operation
of distributed systems.

e To make distributed systems more reliable static bindings to components
should be avoided. Dynamic bindings to components should be established
whenever needed.

e Discovery is also needed for component mobility. Users of a component need
not be aware of the location of it or its binding details until the component

is required.

CHAPTER 1. INTRODUCTION 16

Figure 1.1: Common Discovery Architecture in Distributed Environments.

Based on the above motivations, specialized components in the distributed
environment are developed to aid requesters in discovering components to be
able to establish a binding to them. These have been defined as middle-agents
[28] or traders [70] in the literature.

Middle-agents mediate between providers and requestors of components, and
therefore provide a loosely coupled architecture between them. The middle agents
may have different behaviours [28]. “Facilitators/Brokers” actively take part
during the establishment of the binding between the requestor and provider.
Whereas “Matchmakers” also known as “Yellow Page/Directory” or “Trader”
middle agents collect adverts of components from providers to aid requestors in
their search without intervening in the binding stage. The focus of our attention
will be on the latter type of agents that aid the discovery stage only. We will use
the term Trader to refer to these types of agents within our analysis.

In the following sections, we will introduce common characteristics of discovery

systems briefly. Particular examples of these systems will be given in Chapter 2.

1.2 Common Discovery Architecture

The commonly observed discovery architecture and interactions within this ar-
chitecture can be seen in Figure 1.1. There exist three parties in the architecture
namely the Trader, the Requestor and the Provider. The operations within this
architecture are as follows:

e The Provider publishes (or registers/advertises) descriptions of its services

to the Trader. The advertisements stored within the Trader are component

CHAPTER 1. INTRODUCTION 17

descriptors that describe what the component at the provider’s side has
to offer together with its binding details. The publication might either be
temporary or permanent. In certain distributed environments like the Grid,
up to date information on the status of frequently changing/failing compo-
nents is vital, so temporary publishing, also known as soft-state registration
or component description leasing, is needed [27]. In such cases the provider
repeatedly performs the publish operation to announce the presence of its
components on the network

e Requestors in need of a component contact the Trader to make an inquiry

about existing components that match their requirements. The trader uses
a matching method to answer the inquiry and returns information on re-
sulting components to the requestor. Matchmakers are special kinds of
Traders that also take the Provider’s preferences on potential users of their
components into account during matching.

e By making use of the information obtained from the Trader the requestor

binds to the provider’s component to obtain the desired service.

While Figure 1.1 displays a single Trader assisting discovery, multiple Traders
may as well work in cooperation to answer discovery requests. Peer to peer orga-
nization, or federations of Traders are also common in distributed environments
where the discovery function is designed to scale when the number of providers
and requestors increase. We should note that the architecture and its operations
displayed in Figure 1.1, where Providers and Requestors are de-coupled from
each other by the Trader, is not the only existing approach to discovery. Alter-
natives such as discovery without Traders via multi-cast [90] also exists; however,
we will limit our analysis to the Provider-Trader-Requestor architecture and its

operations throughout the thesis.

1.2.1 Component Descriptors

Component descriptors within the Trader are composed of names and/or prop-
erties. Traders specialized in component lookup only provide unique names as
component descriptors. Traders with unique naming can employ Hierarchical or
Flat naming schemes., whereas in other Traders, which are focused on discovery
rather than lookup, the descriptor is a group of properties one of which may be
the name of the component.

Component properties published to a Trader are descriptions ranging from

CHAPTER 1. INTRODUCTION 18

simple (e.g. attribute value pairs) to complex (e.g. a conceptual description in
an Al-based formalism). The content of descriptions can be composed of, but
not limited to, information on:

e Component capabilities like what the component does or what the compo-
nent is;

e Component provider details;

e Component status, or availability;

e Providers’ usage policies on the component;

e Component accessibility details.

Depending on whether the discovery is performed within a closed or open

environment the information model supported by the Trader can accordingly be:

1. Specific, so that descriptions conform to a commonly agreed information
model which predefines what the component capabilities are [10][1]. An
example of this type of description could be found within a trader in a grid
environment that predefines capabilities of resources by specifying types for
them (e.g. a resource can be defined to be either a workstation or a storage
device on the network) and also predefining the properties that they may
have (e.g. a workstation can be defined to have properties such as CPU
load, memory size, etc.)

2. Generic, so that the information model defines the minimal commonly
agreed characteristics of the shared components without predefining com-
ponent capabilities. These models need to be augmented with knowledge of
different domains in an open environment to be able to make descriptions
of capabilities. An example of such a situation is given in Figure 1.2 where
the components subject to discovery are Web Services (i.e. software appli-
cations with web enabled interfaces). Web services can be used in a variety
of domains for providing different functionalities. To be able to give a com-
plete description of the web service its description consists of two parts.
The generic part [20] [86] models a service to have endpoints operating over
input/output messages of certain data types. The specific part models the
functionality of the service (e.g. HotelBooking) and what messages the
service consumes (e.g. reservationNo).

Whichever the nature of the information model is, the descriptions are gen-

erally mapped to an underlying back-end data model/schema (e.g. eXtensible
Markup Language (XML), Resource Description Framework (RDF) or Relational

CHAPTER 1. INTRODUCTION 19

A Generic Schema Hierarchy

N =X 15 A Specific Domain ontology
ToE WEb. Senices] lﬁ Accomodation -One particular domain
“Ehd Pomis A - Hotel -Types of functionality
+Operations L Hostel 4
& (] BookingSenice (Hofe/Booking)

*Input/Output messages HustelBooking | . Tumeg of parameters (Hotel

L HolelBooking ResemaﬁonNo)

WS
Description

Weblinterface

Y

Figure 1.2: An Example of Generic Resource Description Model and its augmen-
tation with Domain Knowledge. The figure is a simplified form of its original in
[78].

Schema) for storage and retrieval within the Trader.

1.2.2 Discovery Mechanism

Based on the descriptors stored, Traders provide two basic functionalityies for
discovery. These are discovery by name (i.e. lookup) and discovery by properties.

Traders providing lookup functionality perform a unique name to binding
details mapping for components. Hierarchical unique names inherently support
lookup via browsing the name hierarchy.

Traders providing discovery by properties allow requestors to make search re-
quests/queries over the component’s properties. The matching mechanism could
also range from simple to complex depending on the nature of descriptions. An
example simple matching mechanism could answer questions like “find a linux
machine with CPU Load less than 20 percent” where the types of resources and
their attributes are all pre-defined by the Information Model supported by the
Trader. The requestor only supplies the desired resource type and attribute value.
A complex matching mechanism would be a logical subsumption checking algo-
rithm that decides whether there exist any offers whose conceptual description
subsumes the request.

The matching mechanism of the Trader could be offered through an Applica-
tion Package Interface (API) that reflects the Trader’s information model or it

can be offered as solely reliant on the back-end storage schema (e.g. Relational

CHAPTER 1. INTRODUCTION 20

Schema) and its querying capabilities (e.g. SQL).

Depending on the algorithm used during the matching the inquiry results
can be composed of exact matches and inexact matches. The trader might also
support ranking of the exact or inexact matches to further assist the selection

process.

1.2.3 Purpose of Discovery

Discovery can be done for different purposes, and the purpose of discovery has
implications for the descriptions of components.

In cases where the discovered components are information consuming / pro-
ducing or world-altering entities such as distributed objects or web services, an
orchestrated use of them to achieve a higher level task may be desirable. For
example a client (a human, or a software agent) may be searching for a credit
card balance checking service to use it together with a hotel booking service
that accepts credit card balance confirmation and produces a reservation num-
ber. Such discovery can be defined as discovery for composition. Descriptions
of composable components generally include information on pre-conditions that
need to be satisfied prior to establishment of a binding to the component, or
post-conditions/effects that will take place after use of the component.

On the other hand in certain environments such as the computational Grid,
where discovery is performed for tasks like job submission, orchestrated use of
discovered components is rarely required. Therefore discovery is done for the

purpose of discovery only.

1.2.4 Stakeholders in Discovery

All of the interactions in the discovery architecture take place between software
agents. These agents act either on behalf of human users or themselves:

e The Providers of component descriptions may be either human users or
software agents. Examples of human provided descriptions are textual de-
scriptions for components, or categories or name hierarchies that the com-
ponents can be grouped under. On the other hand an example of a solely
machine generated description could be a periodically produced load status
report by a computer cluster that would like to announce its presence and
free CPU cycles to the network.

CHAPTER 1. INTRODUCTION 21

e The Requestors for components may also be human-users or software agents.
An example of a software agent that initiates discovery could be a process
scheduling application that is in need of clusters with free CPU cycles to
share, or a more intelligent web agent, or a human-user looking for a hotel
reservation service to compose with other services to achieve a high level
task like travel itinerary generation.

e The Trader agent within the architecture operates without human interven-
tion with respect to a pre-defined matching procedure. However, there are
middle-agents such as negotiators that we have excluded from our analysis
which may refer to interactions with human users during discovery.

To this end we have described the common characteristics of discovery sys-

tems. Now we will introduce the context in which our discovery system, Feta,

has been developed.

1.3 e-Science and "™ Grid Project Overview

Computation is being increasingly used in real life activities and Science is no
exception to this. e-Science [30], which can be defined as collaborative use of
diverse computational resources — instruments, databases, applications, network
resources — to assist scientific activities, is currently an active area of research
and development.

Among all scientific disciplines Biology has been one of the pioneers that
have adopted the use of computational resources to undertake its activities. A
new class of experiments termed “in silico” has been defined by this commu-
nity. Biological in silico experiments complement traditional experiments by
using computational analysis methods to process data, which is obtained from
traditional wet laboratory bench experiments. Both the biological data residing
in several information repositories, and the tools used for processing that data
are highly fragmented and autonomous in nature; therefore integrating them is
a serious challenge. Until recently in silico experiments were conducted in an ad
hoc fashion. Almost all data and tools were made accessible to the web via web
applications and bioinformaticians had to do all the integration with minimal au-
tomation support (i.e. copying and pasting data across web forms, writing screen
scraping, or data format converting scripts).

" Grid [83] is a UK e-Science project that is being undertaken to address the

CHAPTER 1. INTRODUCTION 22

£ scull workbench 18] x]

Tools and Workflow Invocation

J\J \._ff .I L/.‘ .l
T
Save as . Li . ‘ ™ Show types ||ND ports JIVamca\ ﬂ| ¥ Fit to winciow

Inputs to Workflow

Adaptor shim
Operational services

Workflow Steps

-------------- Outputs of Workflow

i =l8lx|
=- gaMIPSFas‘taPrmemSequence ~ o o 1 [-
,1° ot Sy User defined
O qutput __.--"alternate for the
5] ‘a alternatet &7 service o a T
A2 input == input

'""'0\ output == output

Figure 1.3: An In Silico Experiment as a Workflow.

integration problem in biological in silico experiments by exploiting the Grid tech-
nologies [27]. Grid technologies aim to enable large-scale, and dynamic assembly
of diverse resources into transient confederations named Virtual Organizations.
Due to the fragmented and autonomous nature of resources (i.e. data and tools)
within the bioinformatics domain, ™ Grid’s focus is more on Information Grid,
where the challenge is the integrated use of heterogeneous information provid-
ing resources rather than the traditional sharing of large-scale volatile compute
resources.

Within ™Grid in silico experiments are formalized either as workflows or
distributed queries which integrate information providing resources. An example
assembly of bioinformatics resources in an in silico experiment (formalized as a
workflow) can be seen in Figure 1.3. The figure displays a screenshot of ™ Grid’s
workflow development environment Taverna'[71]. The description for the sample
in silico experiment in Figure 1.3 is as follows:

1. The scientist starts the experiment by fetching the Arabidopsis Protein

Sequence for a certain protein ID from the Munich Information Center for

"http://taverna.sourceforge.net/

CHAPTER 1. INTRODUCTION 23

Protein Sequences (MIPS) Database.

2. Later a sequence similarity search for this sequence is done against known
Arabidopsis protein coding genes in the MIPS database

3. In parallel to this, the sequence is converted to a format compatible with
the EMBOSS? toolsuite [77] and back translated using the backtranseq tool
of EMBOSS to make a best estimate of the likely nucleic acid sequence it
could have come from.

4. Finally the resulting nucleic acid sequence is processed by the restriction
tool in EMBOSS toolsuite to find restriction enzyme cleavage sites on the
sequence

The screenshot also displays functionally neutral adaptor services within the
workflow. These services, called “Shims” [47] are used to overcome syntactic
incompatibilities among services and they are functionally neutral within the in
silico experiment context. The workflow designer can also define alternates for
the functionally significant services in the workflow. These alternates are invoked
in case their counterparts fail to execute during a workflow run.

The core set of services that ™ Grid provides are centred around allowing
integration of information providing resources (i.e. tools and databases). These
are workflow enactment, distributed query processing, and resource discovery ser-
vices. In addition to these the project aims at providing provenance management,
change notification and personalization services to better support the e-Science
scientific process [83].

Among the core services of ™ Grid, resource discovery is the one that is the
focus of our work described in this thesis. To be able to position Resource Dis-
covery within to the overall ™ Grid architecture we want to describe the ™ Grid

in silico experiment lifecycle in detail here.

1.4 "™Grid In silico Experiment Lifecycle

As stated in the previous section, one way of formalizing in silico experiments
in ™Grid is as workflows: it is this workflow based integration approach that
we have chosen to provide discovery support for. We see resource discovery
is an integral part of workflow design during which the building blocks of the

workflow are obtained. Each step in these workflows represents a stage in the in

’http://www.hgmp.mrc.ac.uk/Software/EMBOSS/

CHAPTER 1. INTRODUCTION 24

Forming
experiments

T
.10
L

_A--

Fersonalization

Discovering and PR
reLsi ng By L‘-j_fj
Experments and =
rESOLMCES % Executing and

rmonitaring
EXpEerments

v

=haring M anaging lifecycle,
services & provenance and
Experments ..< _ results of
ExpEriments i
-_— I\ 1
'i 6 TE

S

Figure 1.4: In silico Experiment Lifecycle in ™ Grid.

silico experiment during which biological data is processed using bioinformatics
services (i.e. bioinformatics resources —applications, tools, databases— exposed as
services)[40].

Figure 1.4 depicts the in silico experiment life cycle in ™ Grid. As observed
from the figure ™ Grid components aid biologists to (1) discover services or previ-
ously designed workflows (i.e. experiments), (2) edit discovered workflows or build
new ones from scratch using the discovered services, (3) personalize services and
workflows by attaching usage experience or comments metadata to their descrip-
tions, (4) execute workflows and monitor their executions, (5) manage temporary
and final results of executions, (6) and share these workflows with the community
by publishing them.

The overall architecture and interactions of ™ Grid components that aid each
activity in the experiment lifecycle can be seen in Figure 1.5. The scientist can
interact with the key components of the system through the workflow workbench
Taverna.

The discovery stage of the lifecycle (See Figure 1.4 Stage 1) is achieved by the

CHAPTER 1. INTRODUCTION 25

use of the Discovery Framework (See Figure 1.5 Stage 1). However, use of the
discovery framework is not the only mechanism to find and incorporate services
into workflows. Users can also discover services by a ‘Scavenging’ facility provided
by the workflow workbench. Scavenging requires users to provide a link to a low-
level service descriptions documents or service end points at a particular service
provider site. Using this link the workbench harvests all available services hosted
at the particular site. Service selection is followed by the experiment design
where services are composed into workflows (Stage 2 in both figures), which is
the main functionality of the workbench component. During design the user may
wish to add personal metadata (Stage 3 in both figures), for example experiences,
comments, or thoughts to the set of descriptions of services/workflows in hand
that have been retrieved during the discovery stage. This way the discovery
process within a research group would improve by the sharing of experience.
Once the design is complete it is sent to the enactor component for execution.
The workbench interacts with the enactor on behalf of the user during execution
and monitoring of workflows (Stage 4 in both figures). The Enactor stores any
temporary or final result to the information repository (Stage 5 in both figures) to
enable sharing of these results within the community. Finally once the workflow
execution is complete the user may publish this workflow with the intention of
future re-use (Stage 6). This way the experiment lifecycle is completed to be
re-initiated with the discovery stage.

In the service-oriented distributed setting, where ™ Grid components are de-
ployed and used, one of the most important services is the resource discovery
service. The large number of activities that are achieved through the use of
discovery framework in Figure 1.5 demonstrates the importance of discovery ser-

vices.

1.4.1 Requirements for Discovery in ™ Grid

1.4.2 Architecture and Stakeholders

The desired discovery architecture within ™ Grid also conforms to the loosely
coupled architecture and its operations which we have described in Section 1.1.
Characteristics of stakeholders within ™ Grid architecture and their implications
for resource discovery can be summarized as follows:

e Providers of resources within the environment that ™ Grid operates are

CHAPTER 1. INTRODUCTION 26

Publish @

Services -
Providers
Eublish
= Ahiorkd] o i =
- —EBersinalize Discovery Frarmework
S gy By publishing
“ s Metadata — -
F '::h Enactor
_ Segrch for i 5
r: 1“\] Servicestorkflows Execute v ol o i
TR Subrnit ternp orangtinal
w results

| nfarmati an
Fepository

Retieve| Results

(Ll okl o) PR

Wiorkflow Results

Provenance
Browser

Scientists

Figure 1.5: An Overview of The Architecture and Interaction of ™ Grid Compo-
nents.

non-profit bioinformatics institutions or research labs that share their data
and applications by exposing them as Services. These are shared in an
open environment by which we mean that the services can be used by
parties unknown to their provider without prior agreements on their us-
age. Lack of prior agreements also means that providers may change or
withdraw their services anytime without notice, therefore it is solely the
requestor’s responsibility to adapt to such situations. The descriptions pro-
vided by these parties are generally composed of textual descriptions of
service functionalities and low-level invocation interface descriptions.

e Requestors of resources initiating discovery in ™ Grid are currently limited
to human-users. Users in ™ Grid are “knowledgable, opinionated scientists
who may be required to justify their methodologies under peer review”[57].
Therefore they want to be involved in all the stages of service selection
process. However discovery initiated by software-agents, which we term as
dynamic discovery, has been identified to be needed for three particular

cases in ™ @Grid. These are:

CHAPTER 1. INTRODUCTION 27

1. Discovering and composing adaptor “Shim” services to be able to over-
come syntactic incompatibilities among services brought together in a
workflow.

2. Selecting among user-defined true replicas of services and swapping
them for originals at times of service failures during workflow enact-
ment to provide for improved reliability.

3. Pro-actively discovering, and suggesting the candidate services that
could come before or after a certain operational step in a workflow.

Workflow building scientists (i.e. bioinformaticians or biologists) in ™ Grid
can also act as Annotation Providers and generate domain specific de-
scriptions for services in addition to the low-level invocation interface de-
scriptions published by providers. It should be noted that users in ™ Grid,
including those who provide annotations have minimal familiarity with re-
cently used complex formalisms for representing domain-knowledge. There-

fore they seek user-friendly tools to aid the annotation process.

1.4.3 Services in ™ Grid

The entities that are of interest to users for discovery are centred around the
notion of information consuming and producing workflow building blocks which
we term as Operations. Operations may correspond to:

e ‘Plain’ stateless Web services, by which we mean single web service opera-
tions that are described within WSDL documents and that may correspond
to an operational task in the workflow.

e Stateful Web services. This category includes Soaplab 3 [79] analysis ser-
vices that wrap command line tools or distributed objects and expose their
stateful interaction patterns.

e Web services that have extra implicit semantics. This category includes
BioMOBY services [59], which are atomic web services (i.e. services with
single operations) that are registered with a specialized bioinformatics ser-
vice registry named MOBY-Central. The registry imposes additional con-
ventions to the invocation of services by acting as intermediary during in-
teractions and mandating a specific messaging layer.

e Other Workflows. Taverna workbench enables incorporation of previously

designed workflows into others. The workflows designed within Taverna are

3http://industry.ebi.ac.uk/soaplab/

CHAPTER 1. INTRODUCTION 28

represented in its modelling language named Scufl.

e Web based Web services —also known as Representational State Transfer
(REST) [33] based services — which require all the information required for
service invocation to be encoded in a single HTTP GET or POST request.
The web based services that provide access to the SeqHound [63] biological
sequence database * are examples of this type.

e Taverna compatible local Java objects. Taverna enables incorporation of
local Java objects’” methods in to the workflow design as operational steps.

While all these operations differ in their invocation mechanisms these dif-
ferences are hidden from the users while they are interacting with the Taverna
workbench and its associated enactor Freefluo®. Taverna provides a uniform rep-
resentation of all above types of services under the name of Processor to its
users. Moreover, Freefluo does not pose any restrictions on the providers of ser-
vices. Instead it has been designed in an extensible way so that Processors for
any additional type of service are developed as and when needed.

Taverna and Freefluo’s unified way of access to the world of different service
entities only partially alleviates the complexity of developing workflows given the
large numbers of services, and the communities expectations to spentd minimum
time for workflow development.

e The number of services within the bioinformatics domain is large enough
to necessitate specialized components for discovery. Currently there are
over 600 services that can be incorporated in to ™ Grid workflows 6. The
number of services keeps growing as more bioinformatics service providers
supply service based access to their ’legacy’ applications by use of wrapper
frameworks such as Soaplab.

e In bioinformatics most workflows are developed in-house, experimented
with and then they are either thrown away or modified to be turned into
new experiments at a fast pace. Therefore any facilitiy that speeds up the

process of experiment design is greatly appreciated.

‘http://seqhound.blueprint.org/
Shttp://freefluo.sourceforge.net/
Shttp://www.mygrid.org.uk/

CHAPTER 1. INTRODUCTION 29

1.4.4 Descriptors of Services

Similar to the common discovery architecture of Section 1.1, service descriptors
in ™Grid contain names, textual descriptions and more structured descriptions
based on an information model of services. Given that the stakeholders initiating
discovery are human users, and they are provided with an common abstraction
over different types of services the information model is expected to address dif-
ferent aspects of thiese abstracted Operations, which are:

1. Characterization of capabilities,

2. Non-functional properties,

3. Third-party assertions.

Regarding capabilities [94], services in ™ Grid are characterized by their inputs
and outputs and a group of domain specific, user-oriented attributes,which are
are:

e The overall functionality or task performed by a service. Like all others this
attribute has no link to the invocation mechanism of a service but is quite
useful to enable their selection in a biological in silico experiment context.

e The underlying method used by the service. Many services delivering bioin-
formatics tasks use certain algorithms (methods) to achieve these. Exper-
iment designing biologists can have their own trust or choice regarding a
particular method, therefore it is a useful descriptive attribute.

e The resources accessed during execution. Different services operate over
different data sets, and the particular data set used by a service during
execution is an important criterion for selection.

e The toolset exposed by services. As described previously in this Chapter,
bioinformatics services expose bioninformatics tools or applications. Bi-
ologists do have different levels of trust or choice regarding these tools,
therefore would like to select services accordingly.

Given that ™ Grid operates in an open environment and biologists can com-
pose and use services in ways unanticipated by their providers, domain-specific
conceptual descriptions become necessary. Similar to the example we gave in
Figure 1.2, the Trader in ™ Grid is expected to augment the above characteriza-
tion with domain-specific conceptual descriptions, where it is defined what the
input,output, task, method etc. attributes of a particular service actually are.

Regarding non-functional properties, there does not exist an exhaustive list

of properties expected to be addresses by a discovery system. However users in

CHAPTER 1. INTRODUCTION 30

MY Grid would like non-functional service information, such as service provider
details, licensing requirements, reliability, temporal and spatial availability, to be
incorporated in to a service description.

Finally, the discovery system in ™ Grid is expected to allow publishing of 3rd
party metadata assertions to a service. As described in the in silico experiment
lifecycle, these third-party assertions would provide information on community
experience or comments on using/accessing a particular service. Since each party
can make assertions using their own models and vocabulary, no explicit schema

should be imposed for 3rd part assertions.

1.4.5 Service Discovery Mechanism

Based on descriptors of services, the users want to perform discovery based on
service capabilities, non-functional aspects, third-part descriptions. Furthermore
discovery is expected to exploit the domain knowledge that has been used within
the descriptions of services.

Since discovery is mostly intended to assist human-users, their information
seeking behavior drives the desired forms of discovery. Users in ™ Grid would
want to :

e Make keyword based searches on names/textual descriptions of services.

e Browse through the classification hierarchy of services based on their do-

main specific characteristics.

e Express search requests that may partially or fully describe a desired service

with respect to the information model supported by the Trader.

The discovery framework is expected to exploit all three aspects of the Infor-
mation Model:

1. Exploiting Capability descriptions:

e Searches based on Input/Output types, “Which services accept a pro-
tein sequence or something general?” “Which services produce a BLAST
Report or something more specific?” or suggestions such as “These ser-
vices accepting a protein_sequence can come next after your workflow
step producing a protein_sequence”.

e Searches based on Task, Resource, Algorithm, and Application at-
tributes, such as “Which services perform the bioinformatics task of

sequence_alignment or a more specific task? Which services use the

CHAPTER 1. INTRODUCTION 31

Needleman_and_Wunsch_global_sequence_alignment_algorithm or a de-
scendant of it?”.
2. Exploiting Non-Functional Aspects. We do not provide an exhaustive list
of possible search requests here but examples include:

e “Which services have the average response time of 3000ms seconds?

e “Which services are provided by the European Bioinformatics Insti-
tute?”

e “Which services are provided that I am licensed to use?”

e “Which services are in my locality?”

“Find all alignment services except the ones provided from Japan”.
3. Exploiting third party metadata aspects. Since there is no schema imposed
on 3rd party metadata the questions that can be asked can not be enumer-
ated, but examples include:
e Which services have the highest quality rating issued by European
Bioinformatics Institute?

e Which services are marked as reliable by people from my research lab?

1.4.6 Trader Deployment

Due to the globally distributed and fragmented nature of services it is required
that:
1. Descriptions should be publishable in different environments such as service
registries, local information repositories or web servers.
2. Both service providers and third-party users should be able to publish and
manage their own descriptions of services.
3. Since the main aim of discovery is to support users during workflow design,
the Trader is expected provide a uniform interface to its discovery facilities

from within the workflow workbench.

1.5 Research Questions

To address the requirements outlined in this Chapter, two discovery systems have
been built during the course of ™ Grid project that have sought answers to the
following questions:

e What are the architectural components needed for discovery?

e What is the Information Model that should be supported by the Trader?

CHAPTER 1. INTRODUCTION 32

e What is the desired role of semantic descriptions and reasoning within the
discovery framework?

Our research hypothesis is that the desired discovery system in ™ Grid is one

that combines the strengths, and avoids the weaknesses of previous approaches

to discovery in ™ Grid.

1.6 Road Map for Thesis

The rest of the thesis is organized as follows:

Chapter 2 provides a survey of stereotypical discovery systems in different
distributed environments. The necessary background information regarding our
work is also given in Chapter 2 in line with the survey.

Chapter 3 describes previous efforts for service discovery in ™ Grid with a
comparative discussion that leads to the motivation for our work.

Chapter 4 describes our discovery system, Feta.

Chapter 5 concludes the thesis with a brief overlook of which of discovery
requirements have been addressed by Feta and points out the possible future

research regarding discovery in ™ Grid.

Chapter 2

Literature Survey and

Background

This chapter serves two purposes; firstly it provides a survey of discovery mecha-
nisms in different distributed computing environments; secondly it provides back-
ground information to form a basis for the following chapters of the thesis. The
chapter contains a substantial amount of information on various topics. Read-
ers, who are particularly interested in obtaining background information for the
follow-on chapters should refer to sections 2.5 and 2.4 on Semantic Web Tech-
nologies and Web Services. Those who are interested in the more specific context
that our work falls into, should refer to sections 2.6 and 2.7 on Semantic Web

Services and the Semantic Grid.

2.1 Scope of Analysis

The emergence of the concept of discovery dates back to the emergence of net-
works and distributed computing. Therefore, there are numerous examples of
discovery systems in distributed environments. In this chapter we limit our anal-
ysis to stereotypical discovery systems in the context displayed in Figure 2.1.
Our analysis will cover :

e Discovery on The Grid (First Generation), where mostly compute re-
sources of diverse types are shared within closed communities and the de-
scriptions of resource capabilities are mostly pre-defined and commonly
agreed.

e Discovery of Grid Services (Second Generation Grid),where there are

33

CHAPTER 2. LITERATURE SURVEY AND BACKGROUND 34

on-going efforts to increase interoperability of closed Grid systems, by devel-
oping common information models for resource description and using web
based application integration protocols for resource sharing.

e Distributed Object Environments, where a single type of components,
software objects, are subject to discovery in closed environments.

e Web Services, which are largely influenced by distributed object systems
regarding discovery and make use of the Web based protocols for discovering
and integrating software applications in open environments.

e Semantic Web, which is seen as an enabling technology for seamless dis-
covery and integration of resources on the Web. Semantic Web technologies
bring in machine-interpretability to descriptions of web resources, therefore
enabling increased automation of many distributed computing activities in-
cluding discovery.

e Semantic Web Services where semantic web technologies are used to
describe web services so that they can later be discovered, composed and
executed by intelligent software agents. As depicted in Figure 2.1 the scope
of discovery in ™ Grid overlaps with the Semantic Web Services area. While
we describe semantic web service discovery in this chapter we will analyze
discovery in ™ Grid in Chapter 3.

e Semantic Grid While classified in the Semantic Web Services area ™ Grid
together with few other projects [24] can also be seen as a pioneer for the
Semantic Grid [39]. Like the Semantic Web Services, The Semantic Grid
follows a synergetic approach and aims to exploit Semantic Web technolo-
gies to build a Grid infrastructure for seamless and automated sharing and
integration of diverse types of resources for the collaborative solution of

science and engineering problems.

2.2 Resource Discovery on The Grid

Characteristics According to a recent definition The Grid is concerned with
“coordinated resource sharing among dynamic collections of individuals, institu-
tions and resources named Virtual Organizations” [36]. Examples of resources
that can be shared on the Grid are CPU cycles, data storage systems, network
resources, scientific instruments and databases. The distinctive feature of the

Grid is its focus on large-scale, high-performance and dynamic membership of

CHAPTER 2. LITERATURE SURVEY AND BACKGROUND 35

Distributed ;
Dhject Systems

Figure 2.1: The ellipses represent the research areas that will be surveyed in this
chapter. The arrows represent the evolutionary paths of research areas.

Semantic
Wieb

Semantic
Web Services

resources to a virtual organization temporarily formed to solve a problem. These
features imply certain characteristics for resource discovery within the Grid.

Timely information of the system is critical to the operation of the Grid. Grid

Information Services (GIS) are defined [27] to be the components that provide
the essential “system information” to enable not only discovery but also resource
monitoring, job scheduling activities on the Grid. GISs (i.e. Traders of the Grid
environment) have three major characteristics, these are:

e Soft-State Registration: Resources on the grid may be large in size; thou-
sands of resources can be shared in one particular Grid system at one time.
In addition to their large number, resources are subject to quick change of
status or failure. Hence any information regarding resources is considered
old. To increase reliability of information, resource descriptions are time
stamped and advertised for a limited period of time, which is known as
soft-state registration.

e De-centralized organization: To cope with the large amount of resources
and even larger number (i.e. tens of thousands) of requestors searching for
resources, decentralized organization of discovery components that work
cooperatively to answer discovery requests is inevitable in the Grid.

e Single layer capability description: Resources shared on the Grid are mostly
characterized by what they are, since it suffices to be the only indicator of
their capabilities (for example CPU cycles, printers, clusters). Such a single
layer description is due to the fact that resources shared can expose a single
capability. Whereas in other distributed systems, where a single type of
resource (e.g. a web service) can expose multiple capabilities, there needs

to be a layered description for the capability by means of what the resource

CHAPTER 2. LITERATURE SURVEY AND BACKGROUND 36

does.

Stakeholders Discoverers of resources on the Grid are both human users
(e.g. system administrators) and software agents. Being able to deliver up-to-
date descriptions about resources to the GIS in a timely manner requires increased
automation in description production and submission. Such an automation can
be possible in case the description producers are software agents. In most of the
Grid Systems these provider agents (e.g. software agents responsible for managing
a pool of machines) periodically generate and submit resource information to the
GIS. Similarly requestors of resources can also be software agents such as job
queue managers that is responsible for finding suitable resources for scheduling a
group of jobs.

Information Models As a consequence of characteristics of the Grid GISs
operate over simple and mostly specific information models that largely pre-define
what type of resources can be shared in the environment and what their properties
can be [10].

2.2.1 Discovery Systems in the First Generation Grid
2.2.1.1 Globus Monitoring and Discovery System 2 (MDS2)

Globus [34] is an open source toolkit that includes software services, and libraries
for resource monitoring, discovery, security and file management on the Grid. The
component within Globus responsible for discovery is the Globus Monitoring and
Discovery Service (MDS 2). Being a typical GIS, MDS 2 proposes distributed
organization for discovery components (i.e. Traders) and provides protocols for
federated resource information publishing and querying. Soft-state registration
is mandated for maintaining resource information within MDS components.

Information Model MDS2 [27] is based on Lightweight Directory Access
Protocol (LDAP) [80] as its underlying data model. LDAP is a commonly used
network directory service specification which still has a strong usage base within
networked environments. LDAP provides a generic information model and a
protocol for querying and manipulating it.

An example of an MDS2 resource description based on LDAP information
model given in Figure 2.2. The LDAP information model is centred around
hierarchically named entries which have typed attributes (see names “hn=hostX”

and “perf=Iload5, hn=hostX”). Entries themselves are also typed by one or more

CHAPTER 2. LITERATURE SURVEY AND BACKGROUND 37

dn: hn=hostX name

objectclass: computer npefs)

system: mips irix values

e | i

dn: queue=default, hn=hostX dn: perf=load5, hn=hostX dn: store=scratch, hn=hostX
objeciclass: service objectclass: perf objectclass: storage
objeciclass: queue objectclass: loadaverage objectclass: filesystem
url: gram://hostX/default period: 10 free: 33515 MB
dispatchtype: immediate load5: 3.2 path: /disks/scratch1

Figure 2.2: An example mapping of MDS2 auxiliary resource types to LDAP
information model. Figure is taken from [27]

objectClasses which define the group of attributes an entry would have. As
seen in the figure entry named “store=scratch, hn=hostX” has two objectClasses
namely, storage and filesystem which indicates that the entry is supposed to have
attributes free and path respectively.

Being a generic data model, LDAP does not prescribe what objectClasses
should exist. In our example the objectClasses such as computer, storage, filesys-
tem are imposed by MDS2. MDS2 prescribes a set of auxiliary objectClasses,
influenced by an information Model of Grid Resources [10], that define properties
significant for discovery.

Discovery Mechanism Discovery of resources by MDS2 Trader can be done
either by browsing the LDAP entry hierarchy or by sending search requests con-
forming to the LDAP protocol.

Discovery via browsing is suitable for human users (e.g. system administra-
tors) of the MDS Trader. The screen shot of an MDS2-LDAP browser is given
in Figure 2.3. The screenshot displays the hierarchy of entries corresponding to
Host Computers and particular resources on these computers such as processors,
memory etc.

According to the LDAP protocol, during search for an entry, firstly the portion
of the tree to be searched is specified along with a group of filters for desired at-
tribute values of entities. For each matching entry the requested set of attributes
are returned as a search response.

The LDAP data model and inherently the MDS2 Trader has certain limita-
tions for discovery. Firstly, no relations between entries can be defined other than
the hierarchical relationship among them. Secondly, no join operations are pos-

sible during searches. Finally, the hierarchical scheme of LDAP is optimized for

CHAPTER 2. LITERATURE SURVEY AND BACKGROUND 38

B Browser root || Name | Walue Type | Size |

=g, gis-demo ElabjectClass MdsDevice text attribute el
{23 Mds-Host-hn=lucky 7. mcs.anl.goy ElobjectClass MdsCpu text atfribute &

=0 Mds-Vo-name=CGT EobjectClass MdsCpuCache text atribute 11
| E-20 Mds-vo-name=Test ab EIMds-Device-name cpuQ text attribute 5
(23 Mds-Host-hn=de-User isi.edu ds-Cpu-vendor MIPS text attribute 4
£ (21 Mds-Host-hn=jupiter isi.edu ds-Cpu-mor:!eI R.10000 text attribute &
=0 Mds-Device-Group-name=processors S CRy version e It et 4
T 2 Mds-Cpu-speediHz 195 text attribute 3
el =cou 0 Mds-Cpu-Cache-12kB 4056 text atrbute 4

- Mdks-clevice-name=cpu 1 ElMds-validfrom 20020509221917Z textatrbute 15
& Mds-clevice-name=cpu 2 FElMds-validto 20020509222017Z text atiribute 15
-1 Mds-device-name=cpu 3 ElMds-kespto 20020509222017Z text attribute 15
B-1 Mds-device-name=cpu 4 [#subschemasubentry cn=5ubschema operational att... 12
B-1 Mds-device-name=cpu 5

-0 Mds-device-name=cpu &

-0 Mds-device-name=cpu 7

=1 Mds-Device-Group-names=meamaory

@11 Mds-Device-Group-name=flesystems

#-{] Mds-Device-Group-name=networks

-] Mds-Software-deploy ment=operating system
-] Mds-Software-deployment=jobmanager

i (11 Mds-Host-hin=odin.isi.edu

(3 Mds-Host-hn=sarek.isl.edu

&1 Mds-Host-hn=gorkor.isi.edu

B

B

{2 Mds-Host-hn=clc-user 2.isi.edu
(11 Mds-Host-hn=manta-inx.isi.edu

Figure 2.3: Screenshot of MDS2 Directory Browser

read and browse operations but is not equally efficient for directory tree updates

or inserts.

2.2.1.2 Condor Matchmaker

Condor [22] is a well-known high-throughput Grid system developed at the Uni-
versity of Wisconsin. High-throughput computing aims at maximizing the amount
of work done over a certain period of time rather than achieving highest-performance
per time frame. Since its aim is high-throughput, being able to discover as many
resources as possible for achievement of a task —termed job in Condor- is vital.
The Condor system also emphasizes that resources on the Grid are distributively
owned and their usage may be subject to policies set by their owners.

Data Model To be able to cope with distributive ownership, and policy re-
quirements for resource discovery Condor provides a language called the Classi-
fied Advertisement (ClassAd) Language for describing characteristics of resources,
constraints on characteristics and semantics for evaluating the constraints [75].
The ClassAd language is used for describing both resources and discovery requests
for resources.

A ClassAd for a workstation with idle compute cycles is given in Figure 2.4.
As seen in figure the ClassAd is a list of properties which are mappings from

attribute names to expressions. In the simplest cases, the expressions are simple

CHAPTER 2. LITERATURE SURVEY AND BACKGROUND 39

Type "Machine";

Name "leonardo.cs.wisc.edu";

DiskFree = 2048;

Memory = 128;

Owner = "thain";

SpeaksFTP = true;

LoadAverage = 0.75;

Untrusted = {"tannenba", "wright"};
Constraint = !'member (Other.Owner, Untrusted);
Rank = Other.RequiredMemory;

Figure 2.4: This example is a simplified version of the ClassAd that can be found
in [75]

constants (integer, floating point, or string). Attribute expressions can also be
more complex. These complex expressions can be built by use of arithmetic and
logical operators. An example use of the logical negation operator describing the
usage policy of the advertised machine is given by the Constraint property in
Figure 2.4. This property value states that the machine is only willing to accept
jobs from trusted agents.

Unlike the MDS2 system, Condor better supports distributive ownership by
not prescribing what the properties can be; in other words ClassAds are schema-
less except the type of attribute values (i.e. string, int).

Discovery Mechanism Both advertisements and requests are collected by
a centralized matchmaker, called the Condor Matchmaker, for processing. The
matchmaker evaluates expressions of both adverts and requests to find matching
pairs. In Condor the stakeholders of discovery (providers of both resource clas-
sAds and job classAds) are software agents. Therefore the Condor matchmaker
also supports ranking of matching results to further assist the resource selection
process (see attribute Rank in Figure 2.4). Similar to soft-state registration in
MDS2, resource classAds in Condor are periodically submitted to the match-
maker. Unlike MDS2, Condor does not introduce a de-centralized architecture
for multiple collaborating matchmakers. However, Condor is being transformed

to support a de-centralized matchmaker to allow for better scalability.

CHAPTER 2. LITERATURE SURVEY AND BACKGROUND 40

2.2.2 Discovery Systems in the Second Generation Grid

Recently, surveys [96] [53] show that there exist a vast number of Grid systems
with autonomous information models and different resource sharing mechanisms.
Hence concerns for interoperability have increased within the Grid community
recently. The Global Grid Forum (GGF), which is a community-driven collabo-
ration working to aid development of Grid Technologies via standardization, is
the main driver behind the solutions to achieve interoperability on the Grid. The
work to build the next generation of interoperable Grid systems is condensed
around two tracks, these are: conception of a common information model, and a
web service standards based resource sharing framework (a.k.a. Service-Oriented

Grid).

2.2.2.1 Service Oriented Grid

The service-orientation effort, initiated by the Globus project and currently un-
dertaken by GGF, is called the Open Grid Services Architecture (OGSA) [35].
OGSA proposes virtualization of grid resources as Web Services (see Section 2.4
for details on Web Services). The virtualization can also be seen as the wrap-
ping of Grid Resources with web accessible applications. The recently conceived
infrastructure that is to enable the necessary virtualization is called the Web
Service Resource Framework (WSRF) [26], and the Web Service-Grid Resource
couple is termed the WS-Resource. WSREF brings in additional standards to web
services to be able to accommodate characteristics of Grid resources in the new
Web services based framework. Examples of these standards are specifications for
representing and managing the state of a Grid Resource (Service Data), specifica-
tions for representing the patterns of communication between the Grid Resource
and its virtualizing Web Service and specifications for Trader services (Service

Groups) that would allow discovery of WS-Resources.

2.2.2.2 Information Models for Interoperability on the Grid

Regarding conception of a common information model of interoperability, there
are two strong candidates, the Grid Laboratory Uniform Environment (GLUE)
Schema [10] and Common Information Model (CIM) [1].

GLUE schema [10], which is being developed by the DatatTAG Grid project,

CHAPTER 2. LITERATURE SURVEY AND BACKGROUND 41

is a technology-independent information model mainly targeted to support dis-
covery and monitoring on the Grid. The GLUE Schema’s technology indepen-
dence allows it to be mapped to different underlying schemas. In fact the GLUE
Schema has been adopted by First Generation GISs [27] [23] where it has been
mapped to different underlying schemas such as the LDAP Schema [27] and the
Relational Schema [23]. The GLUE Schema models Grid resources in 3 categories
as: Storage Resources, Computing (Cluster) Resources, and Network resources.
The schema also differentiates between resources and services which makes it
compatible with the service-oriented Grid.

CIM [1], which has been proposed by an industrial collaboration called the
Distributed Management Task Force DMTF, is an object-oriented technology
independent schema for defining real world managed objects that occur in com-
puter and network environments. Due to its object-orientation the managed
objects within CIM are not only defined by their attributes but also by the man-
agement operations they support. Similar to the GLUE Schema, CIM also has
the notion of Services within its model. Compared to GLUE Schema CIM model
has a broader scope and is more elaborate. It is possible to make mapping of
all elements in the GLUE Schema to the CIM elements. Recently CIM has been
endorsed by the GGF to be used for the realization of the OGSA vision.

2.2.2.3 Globus Monitoring and Discovery System 3 (MDS3)

The product of efforts on increased interoperability that falls in our context is the
latest version of the Globus Monitoring and Discovery System, MDS3 [2]. MDS3
is a service-based re-implementation of MDS2. The principles behind MDS2 such
as soft-state registration, distributed Traders are preserved within MDS3. The
difference between two systems is that resource providers and requestors interact
with the MDS3 Trader, which is provided as a Grid Service, via web-service
protocols instead of the LDAP protocol used in MDS2. In addition, resource
descriptions conform to the GLUE Schema, which is mapped to XML Schema as
the underlying model. Descriptions kept in XML format are queryable by XML
query languages such as XPath.

CHAPTER 2. LITERATURE SURVEY AND BACKGROUND 42

2.2.3 Remarks on Discovery on the Grid

The stereotypical Traders on the Grid we have chosen for surveying in this thesis
have the following common characteristics (also summarized in Table 2.1) (1) sin-
gle layer information models for describing what are the resources that are being
shared, (2) simple attribute value based underlying models to store and query
resource descriptions, (3) effective matching methods used during discovery, (4)
support for distributed soft-state resource publishing, and (5) Trader coopera-
tion to cope with scalability, high-performance and timeliness requirements of
the Grid.

While these traders such as the Condor matchmaker and the MDS2 system
are tailored for the Grid, they may not provide desired discovery facilities in an
open environment where resources exhibit multiple capabilities and no single de-
scription for them exists. In such environments richer descriptions of resources
and a smarter service selection process would be needed to achieve seamless in-
tegration. While there exists increased automation in terms of description and
discovery on the Grid, the discovery process is performed with respect to pre-

defined agreements between providers and requestors.

2.3 Distributed Object Discovery

Characteristics Another environment for distributed computing that is fre-
quently acknowledged within the discovery context is the distributed object based
middleware infrastructures such as the Object Management Group(OMG)-Common
Object Request Brokerage Architecture (CORBA) [68]. CORBA allows interop-
erability among distributed software objects by allowing their remote invocation
via a broker and by providing a group of auxiliary functions that are commonly
needed in a distributed environment (e.g. discovery, lifecycle management, secu-
rity for objects). Among the auxiliary functions object discovery is provided via
the OMG Naming [69], and Trading [70] services.

2.3.1 OMG-Naming Service

Information Model and Discovery Mechanism The OMG Naming service
allows providers to associate names with CORBA objects and allows requestors

to locate those objects via lookup. It employs a hierarchical naming scheme. The

CHAPTER 2. LITERATURE SURVEY AND BACKGROUND 43

Interface sequenceAnalysis{
void performAnalysis (in string program_name,
in string database_name,
in string query,
out string result)

Figure 2.5: An Example IDL Description.

Naming service is not further described here.

2.3.2 OMG-Trading Service

Information Model. Discovering objects by their properties is provided by the
OMG Trading service [70]. The OMG Trader allows providers to publish descrip-
tors for objects called Service Offers, which conform to certain Service Types.
The Service Type represents the information needed to describe the object. It is
composed of:

e The Interface Type of the object (i.e. object capability), which is a pointer
to the computational signature of the object expressed in the CORBA Inter-
face Description Language (IDL). A sample IDL description of an object’s
interface is given in Figure 2.5. According to this IDL description the object
has an interface named sequenceAnalysis and an operation named perfor-
mAnalysis that has three input parameters and one output parameter all
of type string.

e Zero or more property types for the object, which are composed of name,
type and mode triples (e.g. name=loadPercentage, type=int, mode=mandatory).
Property types are typically used to represent non-functional aspects of the
object.

The Service Offers submitted to the Trader contain the adhered Service Type

name, the reference to the the object and zero or more property values.

Properties of objects advertised in the OMG Trader can also be dynamic.

Dynamic properties are evaluated at discovery time to provide the most up-to
date information about an object. This aspect of OMG Trader is similar to
the timely and up to date system information requirements of Grid Information

Systems.

CHAPTER 2. LITERATURE SURVEY AND BACKGROUND 44

The Service Type mechanism is the only modelling element of the OMG
Trader to describe the capability of an object (i.e. IDL) and its other aspects
(e.g. non-functional, provider related)

Discovery Mechanism. The OMG Trader provides interfaces for registra-
tion and object search. Via the registration interface, providers of objects can
register Service Types or they can register objects that adhere to a certain Service
Type. Via the search interface it is possible discover objects that implement a
particular IDL interface (e.g. sequenceAnalysis) and has certain values for the
properties advertised in a Service Type (e.g. loadPercentage= 50). The OMG
Trader specification also introduces the concept of linking to form federates of
Traders.

Stakeholders Requestors for objects within the CORBA environment are
both human-users, and software agents.

The OMG CORBA specification has a Dynamic Invocation Interface which
provides mechanisms for making dynamic calls to objects discovered via the
Trader Service. Even though dynamic discovery and invocation are possible,
it is rather hard for call making programs to interpret what the operations of
the newly discovered object do and what the parameters actually correspond to,
due to lack of semantics associated with methods and their parameters. Hence
dynamic discovery and invocation have been used in a limited fashion in CORBA,
where objects were discovered based on their invocation interface via the Trader,
and all objects with the same interface are assumed to have the same seman-
tics for the operations and parameters. This way the dynamic aspects of the

discovered objects are their providers, and their location.

2.3.3 Remarks on Distributed Object Discovery

Our discussions in the previous subsection underline the most important char-
acteristics of object discovery systems which chiefly suppport object lookup via
unique names and discovery via object types and properties. The IDL based
typing of objects is far from being a meaningful description of the object’s capa-
bility to both humans and machines. Due to this fact use of such Traders has
been limited to closed environments where providers and requestors are aware of
each other and given the IDL each party can interpret the capability of an object
based on their prior agreements.

Having described the discovery of Distributed Objects where objects are shared

CHAPTER 2. LITERATURE SURVEY AND BACKGROUND 45

(uonisodwo))
SMP13d9
(A19n00s1Q)
1adan

(uonejuasaiday)
S-TAX TTAX

WSDL

(Invocation)

SOAP
(Message Exchange)

HTTP URI
(Transport) (Identification)

Figure 2.6: Web Services Enabling Standards

in a closed environment where mostly everything is commonly agreed upon and a
single binary protocol is used for communication, we will proceed to a vision that
enables sharing of software applications in an open heterogeneous environment
namely the Web Services.

There exists a big debate on the similarities and differences of Web Services
and Distributed Objects [92] [38]. However, there is no doubt that Distributed
Object systems have given way to Web Services. Furthermore regarding discovery
we observe similarities between the two, which we will point out in the summary

section at the end of this chapter.

2.4 Web Services

Characteristics Web Services [93] are the recent paradigm for distributed com-
puting which uses the World Wide Web and its associated protocols as a medium
for sharing, and integrating software applications.

According to the World Wide Web Consortium’s (W3C) definition, a Web Ser-
vice is “a software system identified by a Uniform Resource Identifier, whose pub-
lic interfaces and bindings are defined and described using the eXtensible Markup
Language (XML). Its definition can be discovered by other software systems.
These systems may then interact with the Web service in a manner prescribed

by its definition, using XML based messages conveyed by Internet protocols” [93].

CHAPTER 2. LITERATURE SURVEY AND BACKGROUND 46

W3C’s definition of Web Services contains implicit references to the enabling
standards (i.e. languages and protocols) of this distributed computing paradigm
presented in Figure 2.6.

All standards displayed in Figure 2.6 are based on the foundational markup
language XML and its schema XMIL-Schema. Not surprisingly, web services’
foundational protocols for transport of information are web based transport pro-
tocols such as HT'TP or F'TP. Based on these two foundations the standards can
be summarized as follows:

e Simple Object Access Protocol (SOAP) is an XML-based protocol that
defines a framework for passing messages between systems over the internet.
SOAP typically is used to establish remote procedure calls between web
services and their clients over the web.

e Web Services Description Language (WSDL) is an XML based language for
describing web services as a set of endpoints operating on messages.

e Universal Description Discovery Integration-UDDI is a Directory Model to
enable discovery of Web Services.

e Business Process Execution Language for Web Services (BPEL4AWS) is a
standard, rapidly proceeding to become the de facto standard for specifying
compositions of web services as process models.

Within the Web Services environment the aforementioned Provider-Trader-
Requestor Architecture (see Figure 1.1 of Section 1.1) and its operations are
adopted as the Web Services Model [87]. Since the focus of this chapter is on
discovery we find it essential to provide detailed analysis of Web Services stan-
dards for description and discovery namely WSDL and UDDI in the following

sub-sections.

2.4.1 Web Services Description Language

WSDL [20] is the W3C recommended language for describing interfaces of web
services. A sample WSDL description of a well known bioinformatics sequence
alignment service BLAST (Basic Local Alignment Search Tool) is given in Fig-
ure 2.7. The WSDL specification describes service interfaces in two layers as
abstract and concrete.
e The abstract layer enables description of service operations in terms of
input and output messages. The example in figure 2.7 describes a sin-

gle operation named searchSimple delivered through the location http:

CHAPTER 2. LITERATURE SURVEY AND BACKGROUND 47
<definitions name='Bl ast"' > A\
<message nane='searchSinpleln' >
<part nane='program type='xsd:string />
<part nane=' dat abase' type='xsd:string' />
<part nane='query' type=' xsd:string'/>
</ message>
<nmessage nanme='sear chSi npl eCQut' >
<part nane='Result' type='xsd:string />
</ message>
<port Type name='Bl ast' > Abstract
<oper ati on nane='searchSi npl e
par aret er Or der =' progr am dat abase query' >
<docunent ati on>
Perforns Blast on a given sequence w th using designated
dat abase
</ document ati on>
<i nput nane='searchln' nessage='tns: searchSinpleQut '/>
<out put nanme='searchQut' essage='tns: searchSinpleCut '/>
</ operation> /
</ port Type>
<bi ndi ng name=' Bl ast' type='tns: Bl ast'> \
<soap: bi ndi ng
styl e="rpc'
transport="http://schemas. xn soap. org/ soap/ http' />
<oper ati on nane='searchSi npl e' >
<soap: operati on soapActi on='searchSi nple' style="rpc'/>
<i nput name='searchln'>
<soap: body encodi ngStyle=" http://schemas.xm soap... '/>
</i nput >
<out put nane='sear chQut' >
<soap: body encodi ngStyle=" http://schemas.xm soap... '/>
</ out put > c ‘
</ oper at i on> oncrete
</ bi ndi ng>
<servi ce nanme='Bl ast Servi ce' >
<port name=' Bl ast' binding="tns:Blast'>
<soap: address |l ocation="http://xm .nig.ac.jp/xddbj/Blast'/>
</ port >
</ servi ce>
</ definitions>)

Figure 2.7: A Sample WSDL Description for a Sequence Alignment Service

CHAPTER 2. LITERATURE SURVEY AND BACKGROUND 48

//zml.nig. ac. jp/xddbj/BlastDemo. 'The operation has input and
output messages named searchSimpleln and searchSimpleOut respectively.
The input message is defined to be composed of three parts named, pro-
gram, database and query. Each of these parts is a parameter to the service.

e The concrete layer maps abstract operations and messages to physical

endpoints in terms of ports and bindings.

WSDL has a role similar to that of IDL in distributed object computing
platforms. However the description contained in WSDL documents is not limited
to the invocation signature like the case of IDL. WSDL documents also contain
information on how to bind to a particular service via use of different web-based
protocols for message exchange (e.g. SOAP, MIME) and transport (e.g. mailto,
http, ftp, etc.) In WSDL, operations and messages can be bound to multiple
physical end points implementing different protocols for communicating with the
service. Although no single protocol is mandatory, SOAP is the most commonly
used XML based protocol [15] that enables exchange structured information over
web-based transport protocols (e.g. HTTP).

However, similar to IDL, WSDL also suffers from lack of semantics. The
WSDL specification does not allow metadata to be attached to the port types,
operations, and messages to better describe their meaning. Following from our
example in Figure 2.7, though the names of these message parts happen to be
descriptive of their nature to a human, the WSDL specification has no means to

describe what these parameters actually are.

2.4.2 Web Services Discovery with UDDI

Returning to our area of interest in this survey, the web services de facto standard
for discovery is UDDI. It is a service registry specification jointly proposed by a
group of industrial collaborations [7]. Being oriented towards e-business, UDDI
allows XML based registration of businesses and their Services (see the XML
fragment in Figure 2.9). UDDI provides three types of information on services
these are:

e white pages, including address, contact, and known identifiers;

e yellow pages, including industrial categorizations based on standard tax-

onomies;
e green pages, containing the technical information about services that are

exposed by the business. Green pages include references to specifications

CHAPTER 2. LITERATURE SURVEY AND BACKGROUND 49

<businessEntity>
name, contacts, description, identifiers,
categories Xl

[| <tModel>

<businessService>(1..n) name, description

- URL pointer to specifications
name, description /

<bindingTemplate>(1..n) 1
pointer to technical]
fingerprint

_

Figure 2.8: UDDI Information Model

for Web Services, as well as support for extensibility via pointers to various
file and URL based external discovery mechanisms if required.

The UDDI Information Model, given conceptually in Figure 2.8, identifies
four core types of information. The businessEntity element is a container for
white pages information. The businessService element is used to represent a
group of services provided by a businessEntity. The yellow pages and green pages
functionality is achieved through the use of the use of binding Template and tModel
elements. The use of tModels —abbreviation for Technical Models— in UDDI is
two-fold [25]:

1. They define the technical fingerprint of services (i.e. green pages infor-
mation). UDDI suggests that tModel entities can be representatives of
technical descriptions (e.g. WSDL) in the registry.

2. They provide abstract namespace references to be used in the categoriza-
tion of businesses, and business services (i.e. yellow pages information). The
UDDI specification enables its users to use tModels to represent taxonomies
such as North American Industrial Classification Scheme (NAICS) [3] for
businesses or United Nations Standard Products and Services Code (UN-

SPSC) [6] classification for products.

It should be noted that UDDI specification does not impose any restrictions
on the usage of the tModel entities, so the correspondents of tModels are not
explicitly specified. tModels are references stored in the UDDI registry which are

representatives of various technical specifications which reside outside the UDDI

CHAPTER 2. LITERATURE SURVEY AND BACKGROUND 50

Registry. So UDDI is not a repository for specifications but is a notice board
announcing their existence.

We will follow our previous example of the BLAST service and describe how
such a service could be registered in the UDDI registry. Before proceeding with
the example, we should note that web services operate in an open heterogeneous
environment where they need rich descriptions that contain not only invocation
interface description but also several non-functional properties [72] such as settle-
ment methods, temporal /spatial availability, delivery methods, security facilities,
Quality of Service by means of performance, reliability and so forth. There-
fore, our example UDDI description of the BLAST service will include not only
reference to its invocation interface description (WSDL), but also its provider’s
geographic location, the functionality provided by the service by means of an
industrial classification and its quality rating. The only mechanism provided by
UDDI to describe service properties is the tModel references.

Figure 2.9 displays how a service description for the desired service might be
registered in the UDDI registry both from a conceptual view and its concrete XML
representation. Using the industrial classifications already registered in the UDDI
registry we can associate a service with the UNSPSC classification code of “DNA
Sequencing” products. Using the code for UK in ISO3166 Geographical taxonomy
we can associate the service with its geographical location. If a classification for
quality ratings has been registered with the UDDI registry we might associate
it with our service by referencing its tModel key. Additionally a tModel for the
WSDL description of the service can be generated as a pointer to the WSDL
document on the providers site.

Discovery Mechanisms UDDI Registry provides two APIs; one for publish-
ing of XML Service descriptions conforming to its information model, and one
for making inquiries about services by their:

e Names: It is possible to locate businesses and their services by key word
based searches on their names published in the UDDI registry. (i.e. whitepages
lookup)

e Properties: It is possible to locate services that are associated by a par-

ticular tModel. (i.e. yellow and green pages lookup)

51

CHAPTER 2. LITERATURE SURVEY AND BACKGROUND

=3 Geographical
Taxonormy Mode for

<bi ndi ngTenpl at es>
<bi ndi ngTenpl at e bi ndi ngKey="..

e UK
UDDI Registry —— -
I Business Entity . MyBusiness ’—lwlude\
2T Business Service: MyService
<™ tModel
Bincing Ternplate \ﬂ@dustn'al
Service Descriptions l Crassification Node
- for DNA
Ty Sedqiencing
b Prodiicts
UDDI Registry Interface he L N \
ta ~ \
Ry ForWSDL| iodel N |
) . e location \ \
Inoiry Publishers =k service \ |
Intertace g & Irtertace \ |
Vo
1 I
1 1
1 I
1)
| |
Service Requestor Service Provider | i
]
(Wl P
1 1
1 1
1 1
1 1
1 1
L 1
1 1
1 1
1 1
1 1
| |
<busi nessServi ce busi nessKey="..." serviceKey="..."> ! i
<nane>BLASTer vi ce</ nane> ! !
! :Corresponds
<description xni:lang="en"> H Ito
Basi ¢ Local ALignnent Service | !
</ descri pti on> ! !
! !
!]
II 1’
." serviceKey="..."> /l H
| /
! 1
1 1
!]
1 1

<accesssPoint URLType="http">
http://xm .nig.ac.jp/ xddbj /Bl ast Deno

v

1

1

</ accessPoi nt >
<t Model | nst anceDet ai | s>
<t Mbdel | nst ancel nf o t Model Key="[t Mbdel Key for Service I
<i nstancebDetai | s> !
<overvi ewURL> !
http://xm .nig.ac.jp/xddbj/wsdl /Bl ast.wsdl !
</ over vi ewURL> h
</instanceDet ai | s> ’/
</t Model | nst ancel nf o> H
</t Model | nst anceDet ai | s> !
</ bi ndi ngTenpl at e> !
</ bi ndi ngTenpl at es> !
*/
Key for UNSPSC] "

<cat egor yBag>
<keyedRef erence t Model Key="[t Model
keyNane="Deoxyri bonucl ei c acid DNA sequenci ng products"

keyVal ue="41105600"/ >

</ cat egor yBag>
</ busi nessSer vi ce>

Figure 2.9: The XML Fragment Corresponding to the UDDI Entry for the Se-

quence Alignment Service

CHAPTER 2. LITERATURE SURVEY AND BACKGROUND 52

The tModel based search mechanism provided by UDDI is similar to the
“Service Type” based searches of OMG Trader. UDDI’s tModels, which are en-
couraged to represent WSDL descriptions, correspond to OMG Trader’s Service
Types, which are representatives of IDL descriptions. (See Table 2.1 for a com-
parison of these systems). Also similar to the OMG Trader, the most recent
version of the UDDI specification (Version 3) brings support for federated UDDI
nodes. Since this specification is fairly new this feature has not been implemented
in discovery systems that extend UDDI or are based on it.

Stakeholders in Web Service Discovery Even though UDDI descriptions
indirectly relate services with properties, these descriptions are ambiguous for

software agents and even for humans because:

e UDDI allows registration of services that are not restricted to computational
web services. This causes the UDDI Information Model to be too generic
so that it does not have explicit links to other Web Services standards like
SOAP, WSDL in its specification.

e Associating a service with a tModel merely says that the service is related
to the entity represented by the tModel. But this association does not
describe the nature of the relationship for our example case we can not
specify whether the service selling DNA sequencing products or providing

training on them or has some other relationship to them.

e The taxonomies registered in UDDI represent a hierarchy where each node
is uniquely identified by a tModel key. Neither relationships among nodes
of the hierarchy nor their properties can be reflected and used during service
description and discovery. For example, if the service description references
the tModel corresponding to “London” in the ISO hierarchy this service
will not be in the result set for our search since the knowledge of London
being in UK is not stored in UDDI.

e There is no direct way to attach properties to services.

Therefore UDDI based descriptions is not suited to allow dynamic discovery
of services by software agents. It is rather intended for human-users who can
search for services based on key word search or industrial classifications based

searches.

CHAPTER 2. LITERATURE SURVEY AND BACKGROUND 53

2.4.3 Enhanced Web Service Discovery

Several research groups have drawn attention to the fact that UDDI has limi-
tations for discovery, and have proposed extensions to it rather than using it in

conjunction with external discovery facilities.

2.4.3.1 UDDI Enhancements

In [76] an extension to the UDDI Information model has been proposed. The
extension element named qualityInformation will enable the information to ex-
plicitly hold Quality of Service information like scalability capacity, performance,
throughput, reliability on services.

In [9] an extended UDDI registry, named UDDIe, has been developed by the
University of Cardiff as part of the UK e-Science initiative. The extended registry
allows attachment of metadata to UDDI descriptions in the form of user-defined
named properties (e.g. Service’s quality rating is 5*). Additionally, the idea
of service leasing or temporary registration has been introduced. Service leasing
is similar to soft-state registration in the Grid Information Services and aims to

avoid service descriptions in the registry becoming stale.

2.4.4 Remarks on Web Service Discovery

Service Registries provide detailed specifications for registry content manage-
ment, replication, publish/subscribe based notification of registry updates, multi
registry interactions and custody and ownership of service advertisements. In
short, they provide the specifications for the Universal Business Registry with
reliable and well-maintained content. While having strong commitment to these
aspects, service registries do not provide much more functionality than early
name/directory services such as LDAP or CORBA. UDDI provides a technical
fingerprint, tModel, based lookup mechanism which is simplified for the sake of
genericity which makes UDDI usable in multiple domains. The interpretation
of tModels is not addressed within the UDDI specification. It is rather left to
different domain specific search facilities that could be augmented with UDDI.

To this end we have described the UDDI approach to discovery its limitations
and immediate solutions to these limitations. Work on discovery of web services
is certainly not limited to UDDI.

Based on the observations that service registries and WSDL lack support for

CHAPTER 2. LITERATURE SURVEY AND BACKGROUND 54

metadata and lead to ambiguous descriptions, recent efforts focus on develop-
ment of unambiguous knowledge rich service descriptions and smarter service
selection procedures. These recent efforts are termed the Semantic Web Services
(SWS). Prior to describing SWS we find it necessary to describe the Semantic
Web Technologies that are the key enabler of SWS.

2.5 Semantic Web Technologies

In parallel to the emergence of Web Services paradigm the initial design of the
World Wide Web has been revised by its inventor [14] to cater for increased
automation. A new vision termed “The Semantic Web” has been conceived. The
aim of the semantic web research activity is to transform current web content,
which is mainly targeted to humans, into a machine understandable format. Once
web content becomes machine understandable the number of activities performed
by unattended software agents on behalf of humans will dramatically increase.

Figure 2.10 displays the big picture of the semantic web, also known as the
Semantic Web Food Chain [29]. Within this vision of increased automation the
prime consumers of web content are software agents, rather than human users.
In order for the agents to understand web content, data in it needs to be formally
represented. Creation of formal data is achieved via the development of ontolo-
gies, and annotation of web pages using those ontologies. Ontologies are formal
specifications of vocabularies used to describe a specific domain. Ideally there
would be a single ontology for each domain of information on the web, however
such an expectation is unrealistic, and it is anticipated that there will be multi-
ple ontologies which can be articulated and linked to each other by the help of
Articulation Toolkits (see Figure 2.10).

The added value of introducing agents to the web comes from their ability
to integrate large amounts of highly distributed information (that comes from
the annotations) on the web into metadata repositories (see Figure 2.10), and to
be able to infer new information that has not been explicitly stated within the
annotated web resources. This way agents act as knowledge intermediaries for
humans (1) by integrating highly distributed information on the web, and (2) by
mimicking their reasoning capabilities by the help of inference engines.

Human users are at the top of the Semantic Web food chain that consume

the composite knowledge generated for them. To realize such a food chain, a

CHAPTER 2. LITERATURE SURVEY AND BACKGROUND 55

Ontology Articulation End
Tookit User

Ontology Construction
Tool

Community

\ Portal

Inference Engine

— Gr —
i Metadata

L | Annotated Repository
Web-Page Annotation Web-Pages
Tool

Figure 2.10: The Information Food Chain for Applications on the Semantic Web.
This figure is taken from [29].

CHAPTER 2. LITERATURE SURVEY AND BACKGROUND 56

Complex Languages | Trust
for describing RDF
Vocabularies Proof

| Logic Framework |

Limited Vocabulary
Framework for RDF |

Rules |

Metadata | Ontology |
Statements about

Resources 1\ | RDF Schema |
| RDF Model and Syntax |

alnreubis
uondAiou3g

Foundational

Language ‘\ | XML | | Namespaces |
Identification
Mechanism and 4 | URI || Unicode |

Character set

Figure 2.11: The Semantic Web Languages

stack of data, metadata, information and knowledge representation formalisms
is necessary. The group of formalisms that assist each step in the semantic web
food chain is called the semantic web language stack shown in Figure 2.11. At
the lowest layer of the stack resides the URI and Unicode standards that en-
able identification and encoding of resources such as web pages all over the web
written in different natural languages. Above them is XML which is a foun-
dational markup language which also provides unique naming for markup tags
via its namespace mechanism. XML also acts as the serialization language for
languages at the higher levels of the stack. RDF is the next language in the
stack that provides the mechanism to state facts (i.e. provide metadata) about
the resources. RDF’s schema language RDF(S) is the provider of the mechanism
to build vocabularies that are used in RDF statements. RDF(S), which is itself
a primitive ontology language, provides the foundations for more sophisticated
ontology languages that allow machine interpretable specification of knowledge
such as the recent W3C Recommended web ontology language OWL. The Rules,
Logic, Proof and Trust layers above ontologies are currently in their development
stage.

Within our survey we will be focusing on three levels of the Semantic Web
Language Stack. These are RDF, RDF(S) and Ontology layers.

CHAPTER 2. LITERATURE SURVEY AND BACKGROUND 57

2.5.1 Resource Description Framework RDF

The Resource Description Framework (RDF) [58] is a World Wide Web Consor-
tium (W3C) recommended metadata standard primarily developed to describe
Web resources. Within the RDF Data model metadata about a resource is pre-
sented by RDF Triples. Triples are in the form of statements composed of a

Subject, a Predicate, and an Object;

s issuedB

Grpremiod

s hasR ating

= haswalue | European Biainfarmatics Institute

Figure 2.12: A Sample RDF Graph Representing a Group of Statements About a
Web Service. The unique identifiers of resources (shown with ellipses) are replaced
with names for the sake of readability.

To be more precise, RDF is based on the idea of identifying resources using web
identifiers (called Uniform Resource Identifiers, or URIs) and providing metadata
about resources (i.e. subjects) in terms of simple properties (i.e. predicates) and
property values (i.e. objects).

Using simple statements (i.e. triples) it is possible to build a graph of nodes
and arcs, representing the resources and their properties and values (See Fig-
ure 2.12). As seen in the figure we can state facts about a web service with the
following group of statements “The service (identified by its WSDL URL) has a
quality rating which has been issued by an institution (identified by its web page
URL) named European Bioinformatics Institute and has value 5*” in RDF.

Within RDF here are no restrictions on the statements, other than the fact
that resources and properties need to have URIs. This is similar to the schemaless
description language of Condor Matchmaker of the Grid with the difference that
the describing statements of a resource are uniquely identified since RDF aims to
operate in an open environment like the Web.

RDF Data can be queried via query languages that allow expressing graph
patterns as queries. A detailed description and discussion of these languages is

beyond the scope of this thesis [74]. However it can be noted that among the

CHAPTER 2. LITERATURE SURVEY AND BACKGROUND 58

existing languages for querying RDF data, RDQL stands out as the most widely
implemented and used language. RDQL is a SQL-like syntaxed query language
that allows specification of a graph pattern to be matched against the graph of
RDF data. Following our example it is possible to pose the question “Find me the
names of all institutions who have issued a quality rating to a particular Service,

and have issued the value 5* to the rating ” as an RDQL query.

2.5.2 RDF Schema

RDF metadata statements about web resources are of limited value if they are not
stated using a controlled vocabulary. RDF user communities also need the ability
to define the vocabularies (terms) they intend to use in those statements, specif-
ically, to indicate that they are describing specific kinds or classes of resources,
and will use specific properties in describing those resources.

Following our example in Section 2.4.3, the service can be described using
classes such as ws:Service and using properties such as ws:hasRating, ws:issuedBy.
Similarly, people interested in describing the organizations would want to use
classes such as o0:Organization or o:LicensedOrganization and use properties such
as o:hasName, o:hasAddress to describe them. RDF itself provides no means for
defining such application-specific classes and properties.

Instead, such classes and properties are described as an RDF vocabulary, us-
ing extensions to RDF provided by RDF Schema (RDFS) [16]. RDFS does not
provide a vocabulary of application-specific classes and properties. Instead, it
provides the facilities needed to describe such classes and properties, and to indi-
cate which classes and properties are expected to be used together (for example, to
say that the property o:hasAddress will be used in describing an o:organisation).
In short, RDFS provides a type system for RDF. Additionally, it allows classes
and properties to be to be organized in a hierarchical fashion: for example a class
o:StandardsOrganization might be defined as a subclass of 0:Organization, or the
property o:hasAddress can be defined to be a sub-property of o:hasContactDetail.

The sub-class and sub-property relationships are transitive, and the transitive
closure of such classes can be exploited during querying of RDF statements. This
is also known as RDF(S) reasoning. As an example suppose that the description
of our example service is made in RDF which describes it to be “a service located
in the city of London”. And lets further assume that this RDF statement con-

forms to a schema which defines the class London as a sub-class of UK, meaning

CHAPTER 2. LITERATURE SURVEY AND BACKGROUND 59

“London being a city in UK”. In such a case our queries for “services located in
UK” would also return the service located in London.

Even with the use of RDF(S) there is still knowledge about web resources
that we cannot express in the descriptions. RDF(S) is limited to describing sub-
class/super-class relationships but there maybe other relations among terms that
we would like to express; such as “Organisations located in the UK who have
supplied at least one web service rating are UK Rating Organizations”. This is
a kind of knowledge that needs to be expressed with languages that are more
expressive than RDF(S). These languages are ontology languages that reside on
the layer above RDF(S) in the Semantic Web Language Stack (see Figure 2.11).

2.5.3 Ontologies

To be able to provide more expressive descriptions of web resources the knowl-
edge regarding those resources need to be specified in unambiguous machine-
interpretable forms. At this point ontologies take stage. Several definitions of an

ontology exist one of them is as follows;

An ontology may take a variety of forms, but necessarily it will include
a vocabulary of terms, and some specification of their meaning. This
includes definitions and an indication of how concepts are inter-related
which collectively impose a structure on the domain and constrain the

possible interpretations of terms [89].
Another well-known definition by Gruber is:

Ontology is a specification of conceptualizations, used to help pro-

grams and humans share knowledge [41].

Ontologies represent knowledge in a domain via concepts, relations, instances

and axioms [81].

e A concept represents a set or class of entities or ‘things’ within a domain.
For example a DNA _Sequence is a concept within the domain of molecular
biology. Concepts may either be (1) Primitive concepts which only define
the necessary conditions (in terms of their properties) for being a member
of the class that the concept represents (e.g. The concept DNA_Sequence
can be defined to have sequence units of Nucleic_Acid. This concept def-

inition expresses that all DNA_Sequences have sequence unit of Nucleic

CHAPTER 2. LITERATURE SURVEY AND BACKGROUND 60

sequence protein_structure_feature
biological_sequence

protein_sequence

, nucleotide_sequence
DNA_sequence

primer_sequence
forward_primer_sequence

Figure 2.13: A Sample Sub-Class Hierarchy of Concepts in the ™ Grid Domain
Ontology

Acid, however not everything having a sequence unit of Nucleic Acid is a
DNA _Sequence) or (2) Defined concepts which define properties that are
both necessary and sufficient for things to be a member of the class. An
example of a concept described using other concepts can be the description
of Enzyme as a composite concept using concepts Protein and Reaction,
joined with the relation catalyses - to define Enzyme as a Protein which

catalyzes a Reaction.

e Relations describe the interactions between concepts or a concept’s proper-
ties. Using relations concepts may also be organized into taxonomies (e.g.
Sub-Class, IS-A relationships). An example of a taxonomy of classes with
respect to sub-class relationships in the ™ Grid domain ontology is given in
Figure 2.13.

e Instances are the ‘things’ represented by a concept. An example of an
instance can be one of the inputs of our example BLAST Service, which can
be defined to be an instance of the concept DNA _sequence_data. Normally
instances are not specified within an ontology. Instances of concepts are

stored in Knowledge Bases.

e Axioms are used to constrain values for classes or instances. An example of
an axiom from the ™ Grid ontology can be one that defines classes aligning

and retrieving to be disjoint.

CHAPTER 2. LITERATURE SURVEY AND BACKGROUND 61

2.5.4 Ontology Languages

Ontologies are specified in Knowledge Representation Languages. These lan-
guages can be object (frame)-based, logic —particularly Description Logic (DL)—
based, or a combination of both.

e Frame-based representations [51] have the notion of frames or classes which
represent concepts of the ontology. Each frame has an associated collection
of slots or attributes which can be filled by values or other frames. At-
tributes of frames are local so they are only applicable to the frames they
have been associated with. Frames are popular for their human-friendly
approach to modelling and its similarity to other object-based modelling
approaches such as Unified Modelling Language (UML) [12]. Frame based
representations have later been extended to be able to represent fragments
of First Order Logic. These extended formalisms, such as F-Logic [50] or
Operational Conceptual Modelling Language OCML [66], are also known
as classical ontology languages.

e Description Logics (DL) are logics with well-defined semantics. DLs de-
scribe knowledge in terms of concepts and relations (roles). The major
characteristics of Description Logics are that:

(1) They allow the describing of new concepts, known as defined concepts,
from atomic ones using concept constructors, which can be relations
or operators (e.g. conjunction, disjunction). This way the knowledge
model is built up from small pieces in a descriptive compositional way.

(2) They are equipped with decidable reasoning procedures that can be
used for consistency checking of defined concepts, and for subsumption
checking between defined concepts.

DL based Semantic Web ontology languages and their relationships are given

in Figure 2.14. Following from the figure:

e DAML-ONT [60], developed as part of the US DARPA Agent Markup
Language, is a simple language for expressing more sophisticated RDF class
definitions than permitted by RDF(S).

e OIL [32] (the Ontology Inference Layer), developed by a group of European
researchers, is an early ontology language for the web that integrates frame
based primitives with reasoning capabilities of Description Logics.

e DAML+OIL [44] is an expressive description logic formed as a result of
a merge of DAML-ONT and OIL. DAML+OIL extends the vocabulary of

CHAPTER 2. LITERATURE SURVEY AND BACKGROUND 62

Onlologies for

i

.

! = e — ¥ .

; o — | Web Services

Expressed in Expressed in

__

/ Fmrm

Darpa Agent Markup Ontology Inference
Language (DAML) Layer (OIL)

Ontology

Predecessar o Languages

Based on

Figure 2.14: A closer look at the Ontology Layer of the Semantic Web language
Stack

RDF(S) for describing properties and classes: DAML+OIL classes can be
names (i.e. atomic) or expressions (composite). Additionally a variety of
constructors are provided for building class expressions (e.g. intersectionOf,
unionOf and complementOf). DAML+OIL also support a set of axioms
(e.g.subClassOf, sameClassAs, disjointWith) that can be used to define
subsumption or equivalence or non-equivalence among classes, which may
be primitive or defined.

e The recent W3C recommended language Web Ontology Language (OWL) [61]
is derived from its pre-decessor DAML4OIL by incorporating the lessons
from its design and use. OWL is different from DAML4OIL in two as-
pects; firstly OWL does not allow qualified number restrictions to be made
on values of properties that a class has, and secondly it allows properties
to be symmetric. Both DAML+OIL and OWL are tightly integrated with
RDF(S). RDF(S) is used to express their machine readable specification.
More detailed descriptions of expressivity of these web ontology languages
can be found in [44] [46].

2.5.5 Reasoning

As we have previously mentioned, Description Logics are equipped with reasoning

capabilities which are mainly used during :

CHAPTER 2. LITERATURE SURVEY AND BACKGROUND 63

Inferred Classification Ontological Descriptions
Similarity Search Service _____---="""" Class(BLAST Service complete WebService
——————)) restriction (isFunctionOf someValuesFrom (BLAST))
rotein data service restriction (performsTask someValuesFrom alignment)))

\\\ Class(Protein Data Service complete WebService
restriction (hasInput someValuesFrom (Protein)))

BLASTp sery\ice

InterProScan service

Class(BLASTp Service complete WebService

restriction (isFunctionOf someValuesFrom (BLAST))
restriction (performsTask someValuesFrom (alignment))
restriction (hasinput someValuesFrom (Protein)))

Figure 2.15: The inferred classification hierarchy based on separate class descrip-
tions.

e Ontology development to (1) check consistency between the defined con-
cepts and axioms within the ontology, (2) deduce implied subsumption re-
lations between concepts in the ontology. Subsumption checking allows
automated generation of an inferred classification hierarchy among defined
concepts in the ontology. The left hand side of Figure 2.15 displays such a
classification from ™ Grid that is generated by the DL reasoner using the
ontological descriptions of different types of bioinformatics services, dis-
played on right hand side of the figure, defined in the ™Grid domain on-
tology. Ontology development is generally done by use of ontology editors.
Figure 2.16 displays the screenshot of the ontology editor Protégé [52] dis-
playing the ™ Grid bioinformatics domain ontology. In the screenshot both
the subsumption hierarchy of concepts and restrictions on concepts can be
seen. Ontology editors [52] [13] integrated with DL reasoners are partic-
ularly useful for developing and maintaining large and complex ontologies
with multiple authors.

e Ontology deployment. Besides providing the common vocabulary and meta-
data framework, the higher level expressive power of ontologies are un-
leashed when reasoners are used for answering questions within Semantic
Web enabled applications. A questions such as “Which service accepts an
input of ontological type DNA _sequence?” can be answered by a reasoner

if the question is formulated as a defined class which is a service that has

CHAPTER 2. LITERATURE SURVEY AND BACKGROUND 64

the hasInput property with the restriction of property value being an in-
stance of DNA _Sequence. Such a description could then be processed by
the reasoner and placed in a service classification hierarchy like the one in
Figure 2.15. The sub-classes that are classified under our defined concept
(i.e. our question) would be the result of the question.

DL Reasoners employ optimized tableaux algorithms for subsumption, and
consistency checking among concepts. Examples of widely-used DL reasoners are
FaCT [43] and RACER [42]. The performance of such tools can be limited based
on the size of the ontology and the associated knowledge base they operate on.
As the expressivity of the ontology language increases, the cost of performing
reasoning over it increases as well. The least expressive Description Logic ALC

has reasoning procedures with exponential time, and space complexity [43].

T mygrid-reasoned-protege Protégé2.1.2 (file\C:\Documents%20and®205ettings' koray' Desktop)Ni grid-reason: =10l x|
Project Ect Window OwWL Code Help

DS@ - 2R = AR B S B EBE
(E1]) OW Clagses I E‘]]Pmpertiesl I:mFormsl I \ndividualsl Me«adatal

Subslass Relationship <> TI.C) global_sligning {=n} fype=avkClass, name=nsiMO_0000192) H=E T

Aszserted Hisrarchy oM B R Namel [Jaraore I_ﬁ &éj +(> |
) physical_synthesi -
e Ehsical Synthesisng (03 = Jhsamo_ooomaz ("] Property Value | Lang |
=H.C)generic_process {ent Dlrar 7
¢ velfs: commey

—@)dlsp\aymg ien} "
—EYjoining fen} reffs:comment D) rdta label glabal_alighing en
@removmg {en}
—{Chinserting {en}
—’\E)retnewng {en}
—{C) manipulsting {en}
—{C)merging {en} oo e
(T parsing {en} Asserted | inferred | [P0 propertie [T [gel 1L (B 3
&) summarising fen) 9 (F =) hslthas_festure
(G itering teny Asserted Condtions UG *@ @ Ol nstrhas
—@ca\culating {en} = MECESSARY & SUFFICIENT
—’\E)trans\atlng {en} @ aligning {en}
—|C)searching {en} {33 nalihas_festure globsl_distribution fen}
= Cialigning {en} NECESSERY
—@ gapped_aligning {en}

® ; i

L Z) pairwise_global_aligring {en}
EHLC) local_alighing {en}

—@ pairyvise_local_aligning {en -

{.C) multiple_local_sligning {en}

B sy Towre Jop > 2 QK

—’\E)dlshngulshmg {en}
-G myarid_bioinformatics _service_operation {an}
5-(Chinformatics_process {en}
-0 protein_function {en}
—é)keywurd_ssarch_meihud ien}
-G bioinfarmatics_process {en}

B
ﬂ & B % Logic View (" Properties View

Figure 2.16: The Screenshot of the Protégé Ontology Editor

2.5.6 Use of Ontologies and Reasoning

We have described Semantic Web technologies and their mechanisms for repre-

senting knowledge in a machine interpretable way for increased automation of

CHAPTER 2. LITERATURE SURVEY AND BACKGROUND 65

web related activities. Ontologies not only provide the controlled vocabulary to
be used in marking up web resources (e.g. html pages, wsdl descriptions), but also
inherently provide a machine-interpretable representation of complex taxonomic
and logical relations among these vocabulary terms.

Ontologies can be used to make web search engines smarter by going beyond
the current keyword-based approach and allow pages to be found that contain
syntactically different, but semantically similar terms.

Another very important application area, which is the focus of our attention,
is web service discovery. Service ontologies can be used to generate semantically
richer service descriptions that would allow a more intelligent service selection
process to take place. This semantic discovery process can be called conceptual
trading/matchmaking. In conceptual matchmaking both the service advertise-
ments and service requests are defined ontologically and subsumption reasoning
is used to find matches between requests and adverts.

Our previous figure (Figure 2.14) of ontology languages also display examples
of such service ontologies, namely DAML-S and OWL-S, which describe char-
acterisic aspects of Web Services. DAML-Services (DAML-S) is expressed in
DAMLA+OIL and OWL-S which is an evolved version of DAML-S is expressed in

OWL. These ontologies will be analysed in detail in the following sections.

2.6 Semantic Web Services

Characteristics and Stakeholders The holy grail of semantic web services
(SWS) is to enable software agents to: discover previously unseen services; com-
pose discovered services to achieve a given goal; and invoke services without any
need for human-intervention at any of these stages. Such a level of increased au-
tomation would allow software agents to achieve a high level task like “Make my
travel arrangements for the next WWW conference” given by a human. To en-
able software agents to perform these tasks, machine understandable conceptual
descriptions of web services are required.

Having said that, we should also underline that within SWS research, the
possibility of human-users being involved in service related activities, and partic-
ularly discovery, is not ruled out. As we will be surveying in the following sections
humans as well as software agents can benefit from a smarter service selection

mechanism that is enabled by use of semantic web technologies.

CHAPTER 2. LITERATURE SURVEY AND BACKGROUND 66

The state of the art on SWS discovery can be analyzed under two categories

of approaches which are top-down and bottom-up.

e Top down approaches, based on the research from the Agents community
[86] [62][8] and Problem Solving Methods community [17][67], start with
developing their own high-level models of web services and provide ground-
ings of their models to existing Web Service technologies such as WSDL or
UDDI.

e Bottom-up approaches that (1) adopt simpler semantic service descriptions
that do not cover service composition (process) and invocation layers and

(2) use simpler reasoning procedures for discovery.

2.6.1 Semantic Web Service Discovery: Top-Down ap-

proaches

In the following three sub-sections we will introduce and compare three ap-
proaches to service description namely, OWL-Services (OWL-S) [86], Web Ser-
vices Modelling Framework (WSMF) [17] and Internet Reasoning Service-1I (IRS) [67],
and present how each approach has been (or is being planned to be) used to realize

the SWS vision.

2.6.1.1 OWL-S: OWL Services

Among the three approaches the most popular and adopted one is OWL-S [86].
OWL-S is an upper ontology for services developed by the agent community.
OWL-S supplies providers of web services with a core set of markup language
constructs for describing various aspects of a web service, including its capabil-
ities, non-functional aspects (e.g. location, industrial classification, quality of
service parameters), interaction patterns, and its invocation details in an unam-
biguous, computer-intepretable form.

OWL-S, which is expressed in the ontology language OWL, is a follow-up of
a former effort named DAML-S [11], which was expressed in DAML+OIL.

The Information Model The OWL-S ontology is structured into three sub-

ontologies that describe different aspects of a web service. These parts are :

e Service Profile: describes “what the service does” and is aimed to be used
during service discovery. It provides the constructs to generate a black-

box description of the capability of the service via 'modelling elements’

CHAPTER 2. LITERATURE SURVEY AND BACKGROUND 67

for Inputs, Outputs, Pre-conditions and Results (also termed as Effects)
(IOPEs). The profile ontology also provides constructs for describing non-
functional aspects of a service. The sub-ontology explicitly models the
properties: service name, textual description, service parameter, and service
category. The category and parameter elements are generic properties that
can be used to classify services with industrial classifications or to define

non-functional aspects of services.

e Service Model: describes “how the service works” and is aimed to be used
during interaction with the service. The execution of a service is seen as
a process/workflow execution, and constructs to describe the service’s con-
stituent steps and their composition are provided. The Service Model on-
tology provides process constructs (atomic and composite) each of which
also has IOPEs. Process constructs are brought together by control con-
structs, for which there are four types: sequential, concurrent, conditional,

and iteration.

e Service Grounding: describes “how to access the service” and is used for ex-
ecuting the service. The constituent steps of the service process model are
mapped to concrete services. The process model is mapped to WSDL con-
structs that describe real-world service endpoints. Even though grounding
to WSDL is not mandatory, grounding constructs for mapping to descrip-

tions other than WSDL have not been proposed.

The OWL-S profile and process models of our example BLAST sequence align-
ment service can be seen in Figure 2.17 and Figure 2.18 respectively.

The profile description (Figure 2.17) for the BLAST service provides service’s
geographic location and quality rating as service parameters. Service parameters
are the metadata constructs of the OWL-S Profile ontology. The service’s inputs
and outputs are just identified by their URI’s which point to their description in
the Service Process ontology.

The process ontology for our example service (Figure 2.18) defines a single
atomic process named doBLAST for the service. Please note that the semantic
types of inputs and outputs of the service are defined by associating them with
corresponding concepts from the domain ontology (defining them as instances of
concepts from the ontology). In our example this domain ontology is the ™ Grid
domain ontology which defines the semantic types of inputs to be SWISSPROT ,

CHAPTER 2. LITERATURE SURVEY AND BACKGROUND 68

BLAST and DNA_sequence and the outputs to be BLAST_Report. Our example
does not have pre-condition or post-condition descriptions. However OWL-S’s
process ontology allows specification of pre/post-conditions as axioms written in
an ontology language or rules written in a Rule language.

OWL-S Based Discovery Systems. From the discovery perpective the
significant part of OWL-S/DAML-S ontologies is the Profile ontology, which has
received the most attention from the pioneer adopters of SWS technology. OWL-
S based service Traders commonly use DL reasoning and sometimes additional
Information Retrieval Techniques to enable semantic service search.

In [73] a UDDI registry has been augmented with a DAML-S based match-
maker that stores links to DAML-S profile descriptions for services in the UDDI
registry. The matchmaker is augmented with a DL reasoner that accepts ser-
vice search requests which are also represented as DAML-S service profiles. By
performing DL reasoning the matchmaker evaluates matches between service ad-
vertisments and service search requests. The matches can be of varying degree.
The possible scenarios during service search are exact match, inexact match,
plug-in match and failure. An exact match between service request R and ad-
vertisement A happens when A and R are the same conceptual descriptions. A
plug-in match happens when the Advertisement subsumes the Request, a sub-
sumes match happens when the request subsumes the advertisement, and finally
a failure occurs if there are no subsumption relationships between conceptual
descriptions of adverts and requests.

Similarly in [56] DAML-S profiles are used for representing service adverts and
services requests, and a DL Reasoner is used to develop a semantic matchmaker
that extends the previous matchmaker’s algorithm [73] to add another degree of
matching, intersection match, to the service selection process. An intersection
match occurs when the intersection of the conceptual descriptions of Requests
and Adverts lead to a new conceptual definition which is satisfiable (i.e. non-
contradictory). This matchmaker has been built to demonstrate the practicality
of the use of a subsumption reasoner during service discovery. The system shows
that DL reasoning technology can cope with the scalability requirements of service
discovery in a realistic e-commerce scenario.

In [49] a well-known algorithm for matchmaking among agents named LARKS
[84] is used within a semantic service matchmaker integrated with a UDDI reg-

istry. The notable difference of this matchmaker from the others is that the

CHAPTER 2. LITERATURE SURVEY AND BACKGROUND

69

<profile:servi ceName>BLAST Service</profile:servi ceNane>
<profile:textDescription>

Basi ¢ Local Alignnent Service

</profile:textDescription>

<!-- specification of geographic |ocation -->

<profil e: servi ceParanet er >
<addPar am Locati on rdf:|D="BLAST-Location">
<profil e:servi ceParanet er Nane>
BLAST Servi ce CGeographic Location
</profile:servi cePar amet er Name>
<profil e: sParaneter
rdf : resour ce="&count r yOnt ol ogy; #Uni t edKi ngdont' / >
</ addPar am Locati on>
</ profile:serviceParanet er>

<l-- specification of quality rating for profile -->
<profil e: servi cePar anet er >
<addParam Qual ityRating rdf: | D="Rating">
<profil e:servi ceParanet er Nane>
Servi ceQual i tyRating
</ profile:serviceParanet er Nane>
<profil e: sParaneter
rdf: resource="&rati ngOnt ol ogy; #Good"/ >
</ addParam Qual i t yRati ng>
</profile:serviceParaneter>

<I-- gpecification of quality rating for profile -->
<l-- Descriptions of Inputs Qutputs -->

<profile: hasl nput rdf:resource=

"&bl ast ProcessOnt ol ogy; #pr ograni'/ >
<profile: haslnput rdf:resource=

" &bl ast ProcessOnt ol ogy; #dat abase"/ >
<profile:haslnput rdf:resource=

" &bl ast ProcessOnt ol ogy; #query"/ >
<profil e: hasQut put rdf:resource=

" &bl ast ProcessOnt ol ogy; #result"/>

Figure 2.17: The OWL-S Profile of a Sequence Alignment Service

CHAPTER 2. LITERATURE SURVEY AND BACKGROUND

<process: Atom cProcess rdf: | D="doBLAST" >
<process: hasl nput rdf:resource="#progran/>
<process: hasl nput rdf:resource="#dat abase"/ >
<process: hasl nput rdf:resource="#query"/>

<process: hasQut put rdf:resource="#result"/>

</ process: At oni cProcess>

<process: | nput rdf:|D="database">

<process: paranet er Type rdf: datatype="4&xsd; #anyURl ">

&y Gri d_Domai n; #SW SS_PROT

</ process: par anet er Type>
</ process: | nput >

<process: | nput rdf:|D="query">
<process: paranet er Type rdf: dat at ype="&xsd; #anyURl " >

&y Gri d_Donai n; #DNA_sequence

</ process: par anet er Type>
</ process: | nput >

<process: | nput rdf:|D="program >
<process: paranet er Type rdf: dat at ype="&xsd; #anyURI " >

&y Gri d_Domai n; #BLAST

</ process: par anet er Type>
</ process: | nput >

<process: Qutput rdf:|ID="Result">
<process: paranet er Type rdf: dat at ype="4&xsd; #anyURl " >

&nyGr i dDomai n; #BLAST _REPORT

</ process: par anet er Type>
</ process: Qut put >

Figure 2.18: The OWL-S Process of a Sequence Alignment Service

CHAPTER 2. LITERATURE SURVEY AND BACKGROUND 71

layering of the OWL-S ontology suite is collapsed into one single representation
for services where there is a single profile like description that directly maps to a
WSDL operation at the grounding level. In addition to DAML-S’s association of
ontology terms with service inputs/outputs the system allows further constraints
to be defined on these using rule languages. During service selection a set of filters
are applied. These filters can selectively be turned on and off to tune speed and
accuracy of service search. Examples of speed enhancing relaxed match filters
are the description namespace consistency filter that checks whether adverts and
requests use same vocabulary, the text filter that calculating similarity between
textual descriptions within requests and adverts based on term frequency and so
forth. Exact matching filters are those that operate over the reduced space, such
as the subsumption and rule evaluation filters. Details of the algorithm can be
found in [49].

2.6.1.2 IRS-II: Internet Reasoning Service

IRS-II [67] has a knowledge-based approach to Semantic Web Services that has
roots in research on reusable software components. IRS-II is based on the Unified
Problem-solving Method description Language (UPML) [31] developed within the
IBROW Project.

Information Model UPML uses logical formalisms and ontologies to de-
scribe the problem solving capabilities of software components. The components
of the UPML framework that have given way to the modelling elements of IRS-II
can be seen in Figure 2.19. The UPML framework (hence IRS-II) distinguishes
between the following classes of components (each corresponding to ontologies)

to describe a service’s capabilities [67]:

e Task models: they provide a high level generic description of the task to
be solved. The Task element is used to model service requestors’ search re-
quests in the web services environment. Task models contain descriptions of
inputs, outputs, the goal to be achieved and applicable preconditions. The
Task description for our example BLAST Service is given in Figure 2.20.
Similar to the OWL-S Profile ontology, the task description provides infor-

mation on inputs, outputs and ontological terms that define their domain

type.

CHAPTER 2. LITERATURE SURVEY AND BACKGROUND 72

e Problems solving methods (PSM) provide implementation independent de-
scriptions of reasoning processes that can be used to solve a task. PSMs
can be seen as abstract algorithms for achieving solutions to stereotypical
knowledge-intensive tasks (e.g. diagnosis, classification, design, monitor-
ing, etc.). They act as reasoning templates that need to be instantiated
with domain knowledge for each new application (e.g. medical diagnosis,
mechanical vehicle diagnosis). Similar to tasks they can have pre/post con-
ditions, inputs and outputs. The PSM definition for our example service is
given in Figure 2.21. It has a very similar structure to the task. The only
difference is that it provides an additional pre-condition stating that the

database needs to exist in order for the service to execute.

e Domain Models which contain the necessary knowledge to instantiate the

reasoning templates for different domains.

e Bridges that provide mappings between the above three elements. An ex-
ample of a bridge would be an ontology that is used to map between two

different ontologies used to represent tasks and PSMs.

Task [* Bridge PSM

Ontologies
Bridge Bridge

A 4
Domain
Model

Figure 2.19: The Unified Problem-solving Method description Language (UPML)
Framework.

CHAPTER 2. LITERATURE SURVEY AND BACKGROUND 73

(def-class alignment _report_provision (goal -specification-

t ask)
?t ask
((has-input-role :val ue dat abase
:val ue program
:val ue query)
(has-output-role :val ue report)

(database :type SW SS_PROT)

(program :type BLAST)

(query :type DNA sequence)

(has-goal - expressi on
:val ue (kappa (7?psm ?sol)
(= ?sol (BLAST_REPORT

(rol e-val ue ?psm dat abase)
(rol e-val ue ?psm progran
(rol e-value ?psmquery)))))))

Figure 2.20: A IRS-IT Task Description in OCML.

Within IRS-IT all modelling elements of UPML are represented in an ontol-
ogy language called the Operational Conceptual Modelling Language (OCML).
The OCML modelling allows specification and operationalization of functions,
relations, classes, instances and rules. By operationalization it is meant that
descriptions in OCML can be interpreted and used as working code.

IRS-IT uses PSM and Task elements of UPML to describe web services (e.g.
a Sequence Alignment Service) and the goals that can be achieved by them (e.g.
obtaining a BLAST Report) respectively. By distinguishing between tasks (i.e.
service requests that can be made) and PSMs (i.e. methods to achieve the re-
quested tasks) IRS-IT allows a service to be associated with multiple tasks and a
task with multiple services. An example of such a case could be given from the
Amazon web services !. These services might both be used for bibliography search
and book buying. Using UPML’s separation of tasks and PSMs it is possible to
advertise these two capabilities for the same service.

The UPML Framework allows PSMs (i.e. services) to decompose tasks into
subtasks for their solution. However, this aspect of the framework has not been
reflected within the IRS-II implementations, therefore each PSM corresponds to

an atomic service in IRS-I1.

"http://www.amazon. com/gp/aws/landing. html

CHAPTER 2. LITERATURE SURVEY AND BACKGROUND 74

(def-cl ass sequence_al i gnment _service (primtive-nethod)

?psm
((has-input-role :val ue dat abase
:val ue program
:val ue query)
(has-output-role :val ue report)

(database :type SW SS_PROT)
(program :type BLAST)
(query :type DNA sequence)
(has-precondition
:value (kappa (?psn) (database-exists
(rol e-val ue ?psm dat abase))
(has- post condi tion
:value (kappa (?psm ?sol)
(= ?sol (BLAST_REPORT
(rol e-val ue ?psm dat abase)
(rol e-val ue ?psm program
(rol e-value ?psmquery)))))))

Figure 2.21: A IRS-II Problem Solving Method Description in OCML.

Similar to OWL-S’s grounding ontology IRS-II also allows description of bind-
ing information for inputs and outputs of PSMs. The parameter binding informa-
tion together with an actual list of providers (i.e. endpoints) for a certain PSM
is kept within the discovery system.

Discovery Mechanisms In addition to its UPML based Information Model,
IRS-IT also provides an implemented infrastructure that embodies a service se-
lection component called the IRS-Broker.

Within IRS, tasks and PSMs are linked to each other by a “tackles-task”
relation which connects a PSM to a Task. For our example the relation is (tackles-
task sequence-alignment-psm sequence-alignment-task). This association is based
on the assumption that PSMs are always created in the context of some task that
they solve. When a request arrives to achieve-a-goal IRS-II finds all the PSMs
which are linked to the specified task via a tackles-task relationship.

In short, even though PSMs and tasks are semantically described by associ-
ating ontology terms with their inputs, outputs and pre/post conditions these
descriptions are not exploited in any way during service selection. This is due
to the assumptions on (1) the tackles-task relationship guaranteeing that a PSM
actually addresses a task and (2) service requestors have discovered their goal

(i.e. task) descriptions. This is quite a limiting assumption when we compare

CHAPTER 2. LITERATURE SURVEY AND BACKGROUND 75

IRS-IT to all other service discovery systems; in fact we can claim that IRS-II
does not perform discovery from our context. Our criticism of IRS-II is justified
by recent efforts for a Task/Goal discovery tool to be incorporated into the most
version of IRS, IRS-III. The goal discovery tool allows human-users to find goals

based on their inputs/outputs, pre/post conditions.

2.6.1.3 WSMF: Web Service Modelling Framework

WSMEF [17] is an e-commerce oriented SWS effort, which also has its roots in
UPML. WSMF aims to exploit semantic descriptions and reasoning facilities at all
stages of a real life e-commerce scenario. Similar to OWL-S, WSMF provides an
ontology called the Web Service Modelling Ontology (WSMO) to enable semantic
web service discovery, composition and execution.

Information Model In its current status WSMF is subject to intense de-
velopment and all of its specifications are in draft status. However the high level
conceptual model has been developed [55]. The main modelling components of
the WSMO ontology are Goals, Web Services, Ontologies and Mediators.

e Goals specify objectives that requestors of a web service may have. Within
WSMO Goals are defined by post-conditions and effects both of which cor-
respond to logical axioms.

e Mediators provide links between modelling constructs. Mediators of WSMO
are similar to Bridges in UPML framework.

e Web Services provide descriptions of the following aspects of a service:

1. Capability: pre-conditions (inputs), assumptions, post-conditions (out-
puts), and effects of a service by associating each with a logical axiom.

2. Non-functional properties: a group of pre-defined properties that give
metadata regarding quality of service aspects of a web service (e.g.
reliability, security, accuracy).

3. Interfaces: The interface sub-part of WSMO is similar to the OWL-S
process model. The Interface ontology is currently under development.
However WSMO has identified the following modelling elements to be
used for the interface description of web services orchestration: errors,
compensation and message exchange patterns, and will provide on-
tologies for all. Developers of WSMF have criticized OWL-S for not
differentiating between inner working mechanisms of a composite web

service, and its external interface. Therefore WSMF promises such a

CHAPTER 2. LITERATURE SURVEY AND BACKGROUND 76

differentiation in its Interface ontology [55]. WSMF architects plan to
use a Web services orchestration standard, namely BPEL4WS, which
makes such a distinction for composite web services, as a basis for the
development of their future Interface ontology

4. Grounding: in order to develop a grounding sub-ontology WSMF plans
to make use of the OWL-S grounding ontology.

e Ontologies will be used for modelling knowledge of different domains. They
provide the basic glue for semantic interoperability and are used by the
three other WSMO components

All modelling elements described above have a fixed set of properties for spec-

ifying their cross-domain properties. This common set of properties is incorpo-
rated into WSMO from the Dublin Core Metadata Element Set [5]. Examples of
these core properties are title, creator, author, subject, description, date, etc.

The formal grounding of WSMF conceptual elements is done in the Web

Services Modelling Language. WSML is a modular, frame-based family of formal
representation languages with its roots in Description Logics, First-Order Logic
and Rule Languages. We will not describe the WSML languages in detail because
they are currently subject to development.

Discovery Mechanism

Due to the incomplete status of WSML languages, and WSMO modelling el-

ements, there is no usable WSMO based Trader implementation available. How-
ever, developers of WSMO ontologies have reported experiments on the use of the
ontology language F-Logic to represent goals and services and use of reasoning

to perform service matchmaking. [54].

2.6.2 Semantic Web Service Discovery: Bottom-Up Ap-

proaches

In addition to the top-down SWS frameworks — OWL-S WSMO, and IRS that
aim to address all activities in the services oriented setting — some research
groups have taken more pragmatic approaches using simpler information models
for describing services and using simpler reasoning mechanisms for web service
discovery.

Such a system that has also managed to reach to the level of practical use

is reported in [59]. The Trader system named MOBY-Central is a centralized

CHAPTER 2. LITERATURE SURVEY AND BACKGROUND 7

registry of biological web services. The information model supported registry has
an atomic view of web services (i.e. single operation). A service is defined as
a combination of input/output parameters, their object types, and the service
with its service type. Hierarchies of biological Object-Types and Service Types
are stored within MOBY-Central. These hierarchies can be seen as simplified
biological domain ontologies for data and services. During service search, which
can be done via the MOBY-Central API, it is possible to search for services based
on their service types and the object types of their inputs/outputs. The registry
also takes the sub-class relationships into account during service search.

In [91] a framework, named METEOR, for semantically organized peers of
service registries is described. Similar to MOBY-Central, this system provides
semantic discovery by allowing parts of WSDL files, namely the operations and
message part elements, to be annotated by ontology terms. The system has
simplified ontologies in the form of taxonomies of terms for describing (1) semantic
types for data that can be input and output to services, and (2) semantic types for
services representing their functionalities (e.g. flight_reservation service). These
taxonomies are stored in UDDI. The system allows clients to search for services
based on the semantic types of their inputs, outputs and functionality by taking

the hierarchical relationship of ontology terms into account.

2.6.3 Remarks on Semantic Web Services

The application of Semantic Web technologies to services is mainly aimed at en-
abling software agents to perform service discovery, composition and invocation
on behalf of humans. Therefore three conceptual SWS frameworks OWL, WSMO,
and IRS try to address all these activities, by providing machine-understandable
specifications for service capability description, service composition description,
and service execution mechanisms (see Semantic Web Services columns of Ta-
ble 2.1). From the discovery perspective the significant part is the capability
description and non-functional properties of services.

At the capability description layer OWL-S provides the single layer Profile
sub-ontology, which makes no distinction between the task performed by a ser-
vice and the actual service description. In contrast IRS-II and WSMF make such
a distinction by providing two layers (i.e. Task/PSM, Goal/Web Service layers) of
modelling elements for capabilities. The reason for keeping tasks separated from

the actual web service descriptions is a possible n-to-m mapping between them,

CHAPTER 2. LITERATURE SURVEY AND BACKGROUND 78

i.e. the same web service can serve different tasks and different (competing) ser-
vices can serve the same task. Such a separation also allows usage of different ter-
minologies in tasks and service descriptions. However, when tasks/goals and web
services are separated, as in WSMF and IRS-II, it is necessary for the tasks/goals
(possible service requests) to exist prior to service publishing/discovery. Services
can only be advertised linking them to an existing task/goal. Similarly, during
discovery requestors need to point out a goal that needs to be achieved by the ser-
vice. However, it has not been addressed by WSMF or IRS-IT how the requestors
find or define their goals.

On the other hand the bottom-up approaches also provide a service capability
description either by using existing web service description technologies (WSDL)
or by designing their own simple models.

In both approaches the service selection procedure involves inferencing mech-
anisms ranging from simple (crawling of subclass hierarchies) to complex (de-
scription logic reasoning between conceptual definitions) to match service adver-
tisements with service requests.

SWS is quite a new area of research and most of the semantically enhanced
Traders developed in this area are not in widespread use. Therefore, up to now,
issues that could arise upon deployment and wide spread use have not been
the focal point of SWS research agenda. However there are early reports of
experiments in the performance area. In [48] a performance analysis for the
previously described (see Section 2.6.1.1.) semantically enhanced Trader has been
given. It is reported that the Trader is publicly deployed and has proved to be
“practically usable” [48] with certain assumptions such as putting an upper limit
on registered services and excluding ontology loading time. Regarding reliability
of content and timeliness of service information in SWS Traders, there is no
known research experiment. This is not surprising since conventional Web Service
Traders (without semantics support) suffer from unreliability and staleness of
content [21] and this aspect has recently started gaining research attention in the
web services community [9]. As may be recalled from the Grid or the Distributed
Object Traders, issues such as scalability and reliable Trader content were being

addressed by means of soft-state registration and Trader federation.

CHAPTER 2. LITERATURE SURVEY AND BACKGROUND 79

2.7 Semantic Grid

Characteristics The final area of distributed computing from which we will
analyze a Trader is the Semantic Grid [40]. With an influence from the Semantic
Web activity, the Semantic Grid is defined as ? “an extension of the current Grid
in which information and services are given well-defined meaning, better enabling
computers and people to work in cooperation”. We interpret the term services as
referring to the diverse types of computational resources and services that provide
access to them on the Grid (both first and second generation).

The Semantic Grid activity is seen as an important enabler for the current
e-Science activity which is defined as “global collaboration in key areas of science
and the next generation of infrastructure that will enable it” [30]. There are a
large number of projects currently undertaken, especially in the UK to realize
the e-Science vision. The ™ Grid project in the context of which our work falls
is also a part of the e-Science activity.

From a discovery perspective, efforts in ™ Grid can be classified in the SWS
area rather than the Semantic Grid area. This is due to ™ Grid’s focus on discov-
ery of information producing and consuming service entities rather than discov-
ery of different computational resources. However, at the same time services in
"™ Grid have certain characteritics which coarsely describe the resources they are
associated with (recall the resource and application characteristics of ™ Grid
service entities). OGSA based Second Generation Grid defines how the future
Grid infrastructure will be. Therefore efforts on semantic service discovery in
™YGrid can also be seen as early experiments of describing services and their
associated resources on the Bioinformatics Grid.

Currently there are no examples of a semantically enabled second generation
Grid Trader whose information model fully supports the OGSA vision and its
enabling infrastructure, the Web Services Resource Framework (WSRF). This is
mainly due to exploratory research efforts on deciding how the service oriented
Grid should be realized. For the time being the specifications seem to have
stabled with the recent WSRF effort. Hence we anticipate that there will be
more efforts on semantically describing and discovering services conforming to
the WSRF framework in the near future.

On the other hand, in parallel to efforts in ™ Grid, there are pioneer examples

http:/ /www.semanticgrid.org/

CHAPTER 2. LITERATURE SURVEY AND BACKGROUND 80

of efforts on integrating semantic web technologies for discovery on non-service
based Grids [85] [24]. Within this section we will analyze one of these semantic

Grid Trader systems built within the Geodise e-Science project.

2.7.1 Geodise

The Geodise [24] toolkit is a suite of tools for Grid-enabled Computational Fluid
Dynamics analysis, design optimization and search within the Matlab environ-
ment. The Geodise toolkit acts as a client to remote compute resources that
are exposed to the Grid as Matlab Functions. These functions are grouped in
three categories as: (1) functions which allow the user to run and control jobs
on Grid compute resources, (2) functions which are used to archive, query, and
retrieve data, and (3) functions which are used to notify the user. These func-
tions are brought together in workflows within a knowledge based problem solving
environment.

Information Model. Geodise Functions are described in the Engineering
Design Search and Optimisation (EDSO) Tasks ontology. A screenshot of the
OilEd ontology editor displaying the EDSO ontology is given in Figure 2.22.
EDSO function ontology is a DAML-S influenced ontology written in DAML~+OIL
for describing Matlab functions in terms of their inputs, outputs, the task they
perform as classification functionalities based on the aforementioned three cate-
gories, the tool set they invoke, or the algorithm they implement.

Discovery Mechanism. To take full advantage of the function descriptions
expressed in DAML+OIL, Geodise makes use of DL reasoning during function
discovery.

The function trader of Geodise is a knowledge-based system called the In-
stance Store [45]. The Instance Store provides efficient DL reasoning by the help
of database querying. The Instance Store infers the classification hierarchy among
concepts in an ontology and then stores this classification and the instances (a.k.a.
individuals) of concepts in the classification in a database. Within Geodise, con-
ceptual descriptions of Matlab functions are stored in the Instance Store.

Additionally, the Geodise environment provides requestors with a GUI tool
that helps to build a conceptual descriptions of the function that they wish to
incorporate into their workflow. This description of a request for a function is then
sent to the Instance Store which for conceptual matchmaking between requests

and adverts.

CHAPTER 2. LITERATURE SURVEY AND BACKGROUND 81

B s S ioll

4
* File Log Reasaner Help Export

[2lelela] (=@ v ala)

i [P]
| e =
_'l & Class Hierarchy —1of x|
[l go_arcnive “{function jobHandle = gd_johsubmitRELHOST) k hy
[Z] ge_certinfo A [ad_inhsubmit Submits a eampirte jnb in a Glnhus GRAM jabh manager =@

This command subrmits the eompute job deseribed by the a Resource & [£] EDSo_ontology
unelivn
ApplicationRelatedFunstion
GdFunction

Gpecification Language (ROLY string 1o & Glabus semver running & GIAM

[T gu_createproxy
ad_datagraup
[o_datagraupadd

arameter
GdFunctionParametor
Hakki_pro_pararneter
CptionsmatanFarameter
RELstructDataEntry
‘ib_pro_parameter
fluentdatastruetureEntry
gambitDataStructEntry
meta_result_structura_data_snt
taskdataStructureDataEntry

indicating o
Function Type

ad_fluentpoll
ad_fluentsub
[T get_gambitpoll
1] ul_s
[T oe_gambitsus
[T gd_getcadmodel
ad_getfile
[T ad aetaarmbitioumal
[T gel_jobkin
unl_jubpull

Al
: ‘gd_ﬁnmpmmmn . Cl ass

Inferred instance of

gd_jobsubmit Relati

ad_malcedir property | fil
H gd_progpall funclioninput host

[T gd_proesub functioninput RSL

add_proxyinfo relatedFunction od

[T ad_proxyquery relatedFunction yd_johstatus

1] go_putiie relatedF unetion k gd_jobldll

functionOutput jobHandle

[T ga_rrrfile
JobStatus | . .
= genmte,innm,me : Geodise Properties of NGuFuncuun

[T] generate_sample_paints

[oramwnwon functions as the class the
b instances service is
instance of

[T nost1

D
i |_codownloads|GeodiseFunctions.owl ane
I T

Figure 2.22: The screenshot of EDSO Ontology displayed in the OilEd ontology
editor.

CHAPTER 2. LITERATURE SURVEY AND BACKGROUND 82

There are two types of stake holders who might initiate discovery in Geodise,
Firstly, the users may search for functions they would like to incorporate into
their workflow by making use of the GUI search tool. Secondly, the workflow
development environment can use discovery to make suggestions to the user on
the functions that might come next within a workflow. Such suggestions are

based on matching signatures (inputs/outputs) of services.

2.8 Summary

A comparison of the basic discovery approaches surveyed in this chapter is given
in Table 2.1.
Based on the remarks that we have made at the end of each section we can

draw the following conclusions

e The components subject to discovery on the Grid are described by a single-
layered Information Model. This is due to the fact that these components
generally exhibit a single capability which is characterized by what the
component is rather than what it does. Moreover, in order to describe Grid
resources in a way that would enable effective discovery, Traders in the Grid

use simple attribute value based information models such as GLUE.

e For the case of distributed objects (DO) discovery and existing web service
(WS) discovery technologies there is a great similarity in the way descrip-
tions are made and discovery is provided. This is largely due to the fact that
WSs have emerged from DOs and they essentially provide similar function-
ality from a discovery perspective. Within DO traders objects are typed
and discovered by Service Types which is a combination of the interface
specification of the object and its properties, whereas in WSs, the typing
and discovery is done over the tModel mechanism. Due to the openness of
the WS environment the types that tModels correspond to are not defined
within the Trader. Interpretation of typing of services is left to particular
domains with different needs; however, typing with respect to the inter-
face description (i.e. WSDL) is suggested. We have previously mentioned
that in WS and DO environments the type of entities subject to discov-

ery are of a single kind, a service, or a software object. These entities are

83

CHAPTER 2. LITERATURE SURVEY AND BACKGROUND

PoAdAING SWIO)SAG AI0A0DSI(T Jo uostredwo)) :1°Z d[qR],

UOYDLISL
- - - - - + - - + + + || -boy -dway,
oddng
42PDLT,
- - - - - - + + + + + N
fiu200051p
buyyvypruy
suewWNH pue sjuede A\G JuaSI[[eju] suewn suewn SURWN] pue syuady oIem)jog 549P]0YIYDIS
asodung
uoI1yed0AU] 29 uorjrsoduro)) Surpurg uorsstuqng qor fiu20008Y T
Suruoseay odAT,

ordurig sorprodoad 901ATOG Sunjuer

‘sod£y O/1 pue s[o Aq A19n00 pue uor)
pue od4f, -POINY ®IA | [PPONY Aq | SId 1AV ~enyead ‘PO
Suruos | 901AI0G ®BIA Suruos Suruos AI9A02S1(] AI9A02SI(] Iopel], | soreng) Kyrodoad 1000301g Jur 4200
ey 1A A1940081(J | -B9Y OI8O~ — | %Y 1Td | 1dV Iddn | IdV Iddn DINO | YredX AVsserD dvant fiuaa00s17
"SOWD N
anbwu))
— — — — — — — | reoryoreIolg — — [eomIeIoly || pa dnyoo

sIojotrereJ
Jjo Sur
Sur -punoixr) Surpunoar) UOYDULLOS
— TASM | -Punoxsn sm dVOS TASM Tdsm Tdsm 1dl -u] bwpurg
soryrodoxd SUOISU9IXd §91742d 04
[euorjouny s[yorg | SO0 + seryredorg sAVSSe[D DUoIUNS
— — | -uoN SM — 901ATIOG sorprodoad S[OPOIN} 100(qO | ANTO | ssorewoydg ANTO -UON
suoroung sodA,
Jjo [PPOIN | O/I sed4f, SoT)I sod Ay
9STPOaY) 2o1A10g | -[iqede) SAA SINSd S[OPOIN} S[OPOIN} 901ATIOG §2222)29DdD))
s[eox) ysey, o[goIg

o8en3ue|
TMO 10 av sse 1PPON DIvd
TIO+TINVA FUBAS[OLI] o130~ TINDO |TIO+TNVA FURASOLI FURASTOLI] FURAS[OLI] TINX 10puoyH dvdl pPuH-ovg

SWRSAQ sjuaw
ddy R poseq -ooueyuUy
esipoep | dn-wojjog ANSM | -01d T1-SHI SIMO 1adn 1adn vd4d0D ESAN 10puoH ¢SAN
PLID
pLID s30alqQO ‘uexr)
or1juRUWIDg S9OIAIDS (OAA dljuewag S9OIAIDS O peInqrijsi(y |puodes pPLIDH uex) 9sai g

CHAPTER 2. LITERATURE SURVEY AND BACKGROUND 84

typically characterized with their inputs and outputs and they exhibit mul-
tiple capabilities in different domains. However, the WS and DO modelling
approaches and their Traders provide no means for describing the actual
interpretations of capabilities of services by means of actual interpretations
of whet input/outputs actually are. This deficiency does not cause much
problem given that they operate in a closed environment; however within

an open environment such information is crucial.

e The SWS effort aims to tackle this problem by incorporating formal seman-
tic into descriptions of services and pointing out the need of domain specific
knowledge. The grey-shaded area in Table 2.1 denotes that the modelling
frameworks of SWS need to be augmented with knowledge of different do-
mains to be used for discovery. The formal approach to richer descriptions
also enable increased automation via machine understandability. Within
all SWS approaches we observe that descriptions are made in knowledge
representation formalisms with different levels of expressivity. And we also
observe that the Trader undertakes its job by use of inferencing procedures
to provide smarter service selection given the formal and knowledge rich
service descriptions. Among the SWS efforts we see WSMO and OWL-S as
the candidates most likely to become the standards in SWS in the future.
We would like to emphasize that WSMF provides larger coverage of aspects
of a service, in terms of its non-functional properties which we think will
be of great importance when SWS become mundane. Furthermore, we also
anticipate that the issues related to scalable discovery and reliable (up to
date) Trader content will be of great importance once deployment of these

technologies happen.

e The bottom-up discovery approaches in SWS have simpler information
models and simpler reasoning mechanisms when compared to top-down ap-
proaches. These systems are focused on providing descriptions only at the
capability layer in terms of semantic typing of service functionalities, and in-
puts/outputs of services. Their discovery mechanisms employ simple forms
of reasoning where sub-class or is-a relationships among domain terms used

in descriptions are taken in account.

e In the Semantic Grid, we observe that the SWS models may not be appro-

priate or may need extending to describe diverse types of resources subject

CHAPTER 2. LITERATURE SURVEY AND BACKGROUND 85

to discovery. For the particular case we analyzed, namely Geodise, resources
were Matlab functions with custom functionalities, and they were charac-
terized not only by their by their inputs/outputs and function types but

also by the resources they access, the toolset they invoke, etc.

As stated in Chapter 1 the resources subject to discovery in ™ Grid are in-
formation consuming and producing entities, a subset of which are web services.
As a consequence, the service discovery setting in ™ Grid contains capability de-
scription models and service search mechanisms similar to those in SWS. On the
other hand, together with other e-Science projects ™ Grid is a pioneer for the Se-
mantic Grid. In fact the ™ Grid model of services have a lot of similarities with
the EDSO model of Matlab functions in Geodise. In both of these projects the
entities are characterized by inputs/iutputs and a characterization of their func-
tionality, the resources they access, the algorithms they use, or the tool set they
belong to. This similarity demonstrates convergence of efforts for not only de-
scribing services but also describing the resources that are accessible them which

will be widely used in the next generation Grid infrastructure.

Chapter 3

Service Discovery in ™Y Grid:
Early Efforts

This chapter aims to elaborate the service discovery setting in ™ Grid. In order
to meet some of the requirements for service discovery outlined at the begin-
ning of this thesis, ™ Grid has previously experimented with two solutions that
could be categorized within the Semantic Web Services area. These two solu-
tions, which we refer to as the ‘Semantic-Rich’” Approach and the ‘View-Only’
Approach, have explored the boundaries of the research questions outlined in
Chapter 1. Both approaches have implemented the Provider-Trader-Requestor
architecture. Furthermore, both approaches have reflected to the requestors an
information model, that captures their view of different types of entities subject
to discovery. This information model is called the ™ Grid Service Schema V1.
(see gray-shaded hexagonal in Figure 3.1). The differences in the two approaches
can be summarized as follows.

e The Semantic-Rich Approach has been given this name due to its adop-
tion of high expressivity in service descriptions via DL based representa-
tions. Additionally, DL reasoning has been used at all stages of the discov-
ery lifecycle including the generation of service descriptions and querying
of them. In this approach two Traders: one responsible for domain specific
searches and the other for domain independent, have worked cooperatively.
The Information Model supported by these is a combination of the UDDI
Information Model and the ™ Grid service schema v1 seen in Figure 3.1

e The View-Only Approach as its name implies is entirely based on the

"™WGrid component, named the View, as the Trader. The distinguishing

86

CHAPTER 3. SERVICE DISCOVERY IN MYGRID: EARLY EFFORTS 87

%

User Facing Comp

drives

A

drives

evolved into Trader Client

Layer

Trader Layer

Transf?rmations

mapped to

View Semantic
N Find y
View-Only Approach v
! y App Semantic-Rich Approach Feta Approach

Figure 3.1: A Contextual Diagram of Information Models supported by User-
Facing components and the Traders in ™ Grid Service Discovery Frameworks

characteristic of this approach is its semantic support at the minimum scale,
where the the domain ontology has been used as a controlled vocabulary
and has been integrated to service descriptions through metadata attach-
ments. No reasoning support has been provided during the generation of
descriptions or their querying. Furthermore the Information Model sup-
ported by the Trader in this approach has been a UDDI and WSDL based
one for describing services and their capabilities. Adoption of WSDL rather
than the ™ Grid Service Schema for service capability description within the
Trader has mandated some transformations to take place (see Figure 3.1),
which will be described later in the chapter.
These two frameworks have been built by making use of a set of common
components to different extents. We will first provide an overview of these com-

mon components namely the ™ Grid Domain Ontology, the Pedro data capture

CHAPTER 3. SERVICE DISCOVERY IN MYGRID: EARLY EFFORTS 88

Specialises
e

___________ « Contributes ta

Lpper level
ontology
Task Infarmatics aolecular Biolooy Fuhlishing Qrganisation
ontology antalooy antalooy ontalogy antology

Bininformatics
__ 1 EV

antolagy

! | Weh Serice
antolagy

Figure 3.2: ™ Grid’s Suite of Ontologies. Figure is taken from [95].

tool, and the ™ Grid View service registry. Later the way these components have
been used in two approaches will be analyzed in detail, finally we will provide a

comparative analysis.

3.1 "™Grid Domain Ontology and "™ Grid Infor-

mation Model of Services

Within ™ Grid a suite of ontologies have been developed. These ontologies not
only model the knowledge of the domain but also provide the necessary mod-
elling elements for describing bioinformatics resources (databases, tools) and the
services that provide access to them.

Figure 3.2 shows the suite of ™ Grid domain ontologies [95]:

e The upper level ontology is a foundation for all other ontologies; it provides
the high-level categories that can be commonly found in a life-sciences on-
tology, such as Structure and Substance.

e The Informatics ontology captures basic informatics concepts such as data,
database, metadata and so forth.

e The Bioinformatics Ontology builds on the Informatics ontology which has a
rather generic view and introduces bioinformatics specific resource descrip-
tions such as the SWISS-PROT database, BLAST _Application or EMBOSS

CHAPTER 3. SERVICE DISCOVERY IN MYGRID: EARLY EFFORTS 89

Tool suite

e The Molecular Biology ontology describes molecular biology concepts, data
of which is largely subject to processing and integration within the ™ Grid
domain. Examples of concepts in this ontology are protein, nucleic_acid or
DNA _sequence.

e The Publishing Ontology provides the concepts to be used to describe sci-
entific literature, which is important source of biological knowledge in the
domain. Examples include article, abstract, citation, reference.

e The Organization Ontology provides concepts to describe organizations and
the instances of those concepts such as European Bioinformatics Institute.

e The Task Ontology provides a classification of tasks that can be performed
by a bioinformatics service in ™ Grid’s domain. Examples include retriev-
ing, aligning, global aligning, local aligning.

e Finally and most importantly the Web Service Ontology provides :

1. An OWL-S profile influenced generic sub-ontology for services also
known as the ™ Grid Service Schema, which provides constructs for
describing users’s view of capabilities of different bionformatics ser-
vice entities outlined in Chapter 1. Characterization of capabilities is
done via attributes for semantic types of input/output parameters of
services. In addition to parameter types, other bioinformatics specific
service attributes— task, resource, application, method, that can be
associated with services —are defined in this schema. When used in
descriptions, these attributes link the description to the annotation vo-
cabulary, which corresponds to named concepts within the molecular
biology, informatics and bioinformatics sub-ontologies. A diagram of
the simplified view of the ™ Grid Service Schema Version 1 is given in
Figure 3.3. The schema supports describing service entities and also
their subcomponents. This feature has been particularly developed to
be able to describe workflows and their sub-components. Hence there
are two entities in this schema both representing units of functional-
ity, both allowed to have input/output parameters and bioinformatics
specific aspects. This schema has later been modified and used in Feta
as well (see Figure 3.1). A detailed discussion of important aspects of
the recent schema will be given in Chapter 4 where we describe Feta.

The differences between the ™ Grid service ontology and other service

CHAPTER 3. SERVICE DISCOVERY IN MYGRID: EARLY EFFORTS 90

ontologies surveyed in Chapter 2 (e.g. OWL-S, WSMO) are those of
omission because the requirements of the domain largely simplifies the
expected model of services. The ™ Grid service ontology does not pro-
vide any schema similar to OWL-S process or grounding models. The
purpose of such models is to describe (a) how to interact with a service
and invoke it or (b) how to compose services into workflows. Given
that in ™ Grid the interactions with services are handled by Freefluo
in an invisible way and users want to compose services into workflows
manually, the need for such schemas is eliminated. The "™ Grid service
schema only captures capability descriptions; other aspects of services,
such as non-functional properties, are not modelled in this schema.

2. A group of conceptual descriptions of commonly used bioinformatics
services. These descriptions are defined using the classes and prop-
erties from the above generic ontology other the other domain sub-
ontologies. Examples of these descriptions such as BLAST service,
BLASTp and so forth were given in Figure 2.15 of Chapter 2.

The suite of domain ontologies was initially developed in DAML4OIL lan-
guage, later exported to OWL. In addition to the OWL based version, two less
expressive snapshots of the ontology have also been used for service discovery in
"™ Grid. These are the RDF(S) based domain classification and the ™ Grid do-
main vocabulary which is a controlled vocabulary of named concepts. The service
sub-ontology has also been recast as an XML Schema (see Figure 3.3) and used

to configure an XML data entry tool for service annotation purposes.

3.2 Pedro Data Capture Tool

Pedro [37] is an open source tool for ontology aware data entry. Pedro provides
a GUI based interface to allow users to generate XML instance documents with
respect to a given XML Schema in a simple form filling fashion. Figure 3.4
displays a sample screenshot of Pedro. Panel A shows a hierarchical view of
elements in the generated XML instance, Panel B shows the immediate child
elements of the selected node in the hierarchy. In Figure 3.4, Panel A shows
the elements Operations, OperationInputs, OperationOutputs that exist in the
description of the ServiceDescription element named AffymetricMapperService.

Panel B shows child nodes of the serviceOperation element named getSequence.

CHAPTER 3. SERVICE DISCOVERY IN MYGRID: EARLY EFFORTS 91

- serviceOutputs (S-{<- - parameter
[Sormeateserion B-(—)| RESIee0E e B

Generated with XMLSpy Schema Editor Mo o nz il

Figure 3.3: The ™ Grid Service Schema V.1.

CHAPTER 3. SERVICE DISCOVERY IN MYGRID: EARLY EFFORTS 92

& File: C\pedro16 dist',modelsmyGridservices\DATA! FetaDescription.xmil] =] 5|
File Edit View Options Windows Help
SERWICEDESCRIFTIONS: : 2 TN
5] SERVICEDESCRIPTION -AfymetrixMappersend | [SERVICEOPERATION: getSequence ‘B
ORGAMISATION--Bininformatics group b _,/
@ {21 OPERATIONS :
@) [GERVICEOPERATION-getSequence] .
: tiankl
@ 1 OPERATIONINFUTS: | LR getSequsnce
@ 3 PARAMETER:-probeSetid-Affame & sorname
© [FORMATS: :
@ [T OPERATIONOUTFPUTS: “loperationDescriptionTexetums the DNA sequence in FASTA format for a given Afiymetrix probe set ld.
f User Entered
: value
uestindlupts OPERATIONINPUTS: |1 1 Edit
BTG OPERATIONOUTPUTS Edlit
X ioperationTask |retrieving ‘
Elements in : I |
Feta Description ; L[-rasamfcs’;‘i: 'DDB.J-FlyBase » DDBJ
roperationidethol - ide_ 1 PRINTS » EMBL_nucleotide_seguence_data
operationappii PTam-TREMBL » Ensembl
bioinformatics_database-sequence_database » FSSP
_t s »| FyBase
| BB u TEncer ” UeletE
v Annotation
Vocabulary

Figure 3.4: A Screenshot of the XML Data Entry Tool Pedro

With its intrinsic support for ontologies, Pedro allows incorporation of ontol-
ogy terms (i.e. named concepts in the ontology) as XML element values into the
generated XML instances. The ontology terms are presented to the users with
respect to their hierarchical is-a, or sub-class relationships (see popup menu).
These terms are then selected and used as values for particular fields. The opera-
tionResource field in the screenshot is one such field being filled with term FSSP.
Incorporation of ontological terms is called the annotation process.

Pedro also allows programmatic access to its inner model of XML instances,
which enables getting a hold of the generated document instance and its contents
prior to its serialization to XML. This way it is possible to serialize the description
to other formats such as OWL. Additionally Pedro provides extensibility support
for development of custom form field validation components and custom ontology

term supplier components.

3.2.1 Use Of Pedro In ™Grid

Pedro has been used to generate domain-specific descriptions of services with
respect to ™ Grid Service Schema. The reasons for using Pedro as the annotator
component in ™ Grid discovery approaches are :

e Pedro is an external tool, which was available prior to development of

CHAPTER 3. SERVICE DISCOVERY IN MYGRID: EARLY EFFORTS 93

™ Grid discovery solutions.

e Pedro generates user friendly and customizable data entry forms which
fits with the domain’s requirements on avoiding necessity for highly skilled
service annotators.

e Alternative data capturing environments, such as Protégé’s dynamic form
generation tool have been found to be less user friendly than Pedro due to
strong ties to underlying logical formalisms.

e Necessary human resources for the development of a custom built annotator

have not been available during the course of the project.

3.3 ™Grid View

The ™ Grid View [65] [64] is a UDDI-compatible enhanced service registry that
supports:

e Federation of contents of multiple registries into personalized registries,
named Views. Personalization of federated descriptions is done by attach-
ing metadata to them. The View has an underlying back-end model based
on the W3C standard, Resource Description Framework (RDF)[58] which
is also the enabler of its metadata facilities.

e WSDL based description of a services to be stored and queried in addition
to UDDI based descriptions.

e Other features such as sending of notifications when service descriptions
and service metadata are added or removed and policy-based management
of registry contents.

Within the following subsections three sub-parts constituting the View’s In-

formation Model is described.

3.3.1 UDDI Compatibility

A subset of the View’s information model, and its API is UDDI compliant. The
information model, including the UDDI part is mapped to an RDF model for
storage and querying. The View represents UDDI information model entities
and their relationships as RDF resources and properties. Figure 3.5 displays a
simplified view of the RDF data generated behind the scenes after the View is
populated through its UDDI publish APIs to register a business service entity.

CHAPTER 3. SERVICE DISCOVERY IN MYGRID: EARLY EFFORTS

BusinessService

SAZsicHEY ...
hasName

=

%

w

g T i AffymetricMaoperService

5 = BindingTemplate

w2

-1

2 rof type rof :type

o,

BN O

rdf type

Figure 3.5: RDF data corresponding to UDDI Based Service Information. The
unnamed nodes correspond to RDF blank nodes.

roff ‘type

InstanceDetails

hasOvewiewURl

Ffpfaaa ebigc. Liaff ws

94

CHAPTER 3. SERVICE DISCOVERY IN MYGRID: EARLY EFFORTS 95

* & & &

=

[l

2

® SemanticType

g

& roff e

\rdr'value

Chid_sequence

Figure 3.6: RDF data corresponding to a WSDL Description. The unnamed
nodes correspond to RDF blank nodes.

3.3.2 WSDL Extensions

The View allows registration of WSDL descriptions for web services. In addition
to the registration of links to WSDL descriptions as tModels as in coventional
UDDI registries, the View also supports content aware WSDL registration. It
processes WSDL descriptions and stores their contents with respect to modelling
elements of WSDL such as operation, portType, message Part and so forth. The
WSDL extension is based on the assumption that web service capabilities can be
described by WSDL descriptions. Figure 3.6 displays the RDF data generated
after the registration of a WSDL document for a service. As seen in Figure 3.6
WSDL elements have been mapped to RDF.

While we were introducing WSDL in Chapter 2 we mentioned the lack of
semantics in WSDL descriptions. To overcome this limitation, the View allows

attachment of metadata to certain parts of a web service description.

CHAPTER 3. SERVICE DISCOVERY IN MYGRID: EARLY EFFORTS 96

3.3.3 Metadata Extensions

The View allows metadata attachments in the form of RDF triples attached
to certain elements in the registry information model via a hasMetadata link.
Examples of these are BusinessService element of the UDDI information model
and operation and messagePart elements that come with WSDL schemas.

Figure 3.6 displays metadata attached to a WSDL message part named out01
in the WSDL description. The message part metadata is a group of RDF triples
stating that the message part has semantic type of DNA_sequence.

While the View allows metadata attachments, it is not ontology aware. Even
though metadata is attached to various parts of a service description, the ontology
that provides the terms used in metadata attachments acts as nothing more than
a controlled vocabulary. The relationships between the terms used in metadata
attachments are not stored in the View.

As an example consider the ontology term DNA_sequence that is used to
annotate the output message part out01 of operation getSequence in Figure 3.6.
Though this term comes from an ontology in which DNA _sequence is defined to
be a subclass of sequence, such a relationship is not stored or exploited in any
way in the View. Therefore our search requests for finding services that produces
a sequence would not return this service in the result set due the fact that the

View does not perform any form of reasoning.

3.3.3.1 Discovery Facilities

The View provides a UDDI-compatible inquiry API that reflects its information
model and allows finding Businesses and their services by name and by the tMod-
els that they are categorized by. Additionally it is possible to find services by their
metadata attachments. For example, we can find a service that has a metadata
attachment of type qualityRating that has value of 5*.

The WSDL based inquiry APIT allows finding operations and message parts
by name and more importantly by their metadata. This API allows a View client
to pose questions like “Find me a service that has an output message part that
has metadata of type semanticType and has value of sequence”.

To provide more flexibility to the client, the View also supports an RDQL
Query interface that allows free form querying of its underlying RDF based data.

CHAPTER 3. SERVICE DISCOVERY IN MYGRID: EARLY EFFORTS 97

I
rmyisHd Ontology | '
(L) ! |
N !
|
! Determnire subsumption !
! +w hetween requests and adverts
Tavema | e
- o) |
i : IBStar.e. S0 ™ oL Reasoner | |
Trader Clients . ! 1
| ecbateahacbarielt sdrrtcnieat st bt abacinchectalistodn G
i 3 ’/f: i] i / ——
Create sendce : — 1 Rty i Descriptions| |
P v ; : dex & DB |
e | B r— = |
pualishing/ e L | d ! T !
e | Clagsification descriptions !
5] %\’ 1 ;
bl ; !
= 2 I i Extract QWL !
\] Custom : i descriptions
’ & Client ! ! m of achvertised
y < — 1 o L]
USER 5 / 1
B ; A @ 3-Syntactic !
rowse senvice 3) i Search !
classification £ | senice | |
@ | Classification T
E 1- Gather service
; ‘ 2 Store OML ! i descrptions
i | Descriptions !
E-grosmmnmg gt o] ! AS Opacu !
chunks !

! Trader Cormponents

SEMCE
Provicer

Figure 3.7: Architectural Overview of the Semantic-Rich Approach to Service
Discovery

3.4 The Semantic-Rich Approach

The architectural overview of the Semantic-Rich approach is given in Figure 3.7.
The components in this architecture can be grouped as Trader Components,
Trader Client components, and the OWL based ™ Grid domain ontology used by
both groups.

The Trader components, are the View and the Semantic Finds component

working cooperatively to provide discovery.

e The View has been described previously. In this approach View has been
used in a minimal fashion. Neither the WSDL registration nor metadata fa-
cilities of the View have been exploited. Only its UDDI compliant interface
has been used for the purpose of registration of minimal service informa-
tion composed of service name and textual description. A more detailed

discussion of the extent of the View’s usage is given later.

CHAPTER 3. SERVICE DISCOVERY IN MYGRID: EARLY EFFORTS 98

e The Semantic Find component makes use of the Instance Store (see
Section 2.7.1). Within this architecture the Instance Store is responsible
for
(1) Consuming both the ™ Grid domain ontology and any additional onto-
logical (OWL based) service descriptions generated during publishing,
and performing DL reasoning over descriptions to generate a Service
Classification. An example extract of the service classification was given
in Figure 2.15 of Chapter 2. The Instance Store has also been responsi-
ble maintaining the classification hierarchy as new service descriptions
are added.

(2) Storing and indexing actual service instances with respect to their clas-
sification taxonomy in a database

(3) Accepting service search requests which are OWL descriptions of a de-
sired service, and returning information on matching service instances
indexed with that description or its subsumed descriptions.

The Trader Client components are: the GUI Pedro annotator; the GUI
service browser; and client side custom components that interact with the back-
end Trader components based on user requests.

e Pedro has been used to generate OWL descriptions of services with respect
to the ™ Grid service schema v.1. The Pedro tool acts as a GUI based service
publish/query interface and allows users to generate OWL descriptions to
either be submitted to the Instance Store for publishing or be used as a
search request for a desired service.

e The Service Browser is a GUI based browser that is used to display
the hierarchy of service classifications, which is inferred from the service
descriptions in the ontology, and each service instance classified with that
hierarchy.

In a typical scenario in this approach the following activities take place (see
Figure 3.7):

1. UDDI compliant description of services, composed of a BusinessService en-
tity with name, text description and links to a service/workflow interface
description (e.g. WSDL doc, Scufl script) are published by service providers
to registries. These descriptions are then gathered into the registry View
for further annotation and querying.

2. Annotators would generate OWL descriptions for a particular published

CHAPTER 3. SERVICE DISCOVERY IN MYGRID: EARLY EFFORTS 99

service using Pedro. The OWL description is then submitted to the View.
However this description is stored as an opaque chunk of information in the
View and is not processed by it. So the View only acts as a storage place
for these semantic descriptions.

3. Service inquiry requests, again generated by Pedro, are split into syntactic
and semantic parts. Syntactic inquiry requests based on keyword based
searches on service descriptions are evaluated by the View. The semantic
part of the query that contains a domain specific description of the desired
service are evaluated by the Semantic Find component. During its initial-
ization, the Semantic Find component retrieves all OWL descriptions from
the View and stores them in the Instance Store. To answer a search re-
quest, the Instance Store interacts with the DL reasoner to find out where
the OWL description of the desired service fits within the classification,

then retrieves the corresponding instances from the database.

3.4.1 Remarks on Semantic-Rich Approach

The development and use of the Semantic-Rich approach have led to the following

observations:

e The separate evaluation of semantic and non-semantic parts of service
search queries by different components has proved to be an extensible dis-
covery framework in which the View component provides domain-independent
service registration, personalization and publishing along side a Semantic

Find component that is responsible for domain dependent service search.

e By allowing services to be described by highly expressive ontology languages
and performing subsumption reasoning over the descriptions during query
evaluation; the “Semantic Find” component can be described as a fully
fledged semantic discovery component. However the Semantic Find compo-
nent’s use of DLs and DL reasoning (at discovery time) brings about costs

in two respects.

— The first one is the high technical cost, due to computational complex-
ity of DL reasoning [42] which has been experienced in the Semantic-
Rich approach.

— The second one is the cost imposed on the user base in terms of re-

quiring familiarity with description logics constructs. In the Semantic

CHAPTER 3. SERVICE DISCOVERY IN MYGRID: EARLY EFFORTS 100

Rich approach the complexity cost on users has not been experienced
since they have been faced with the user-friendly fill-in forms of Pedro
that operated over a fixed schema and allowed restricted annotation of
these descriptions with named terms from the ontology. When we con-
sider the (current) expectations of users this level of semantics support
is satisfactory. The issue then is the fact that DL based formalisms
and DL reasoning has been under-exploited since many features of DL
specific expressivity such as class union, intersection, complement, uni-
versal and existential qualifiers. Such level of semantics support can be
provided by less expressive ontology languages and simpler reasoning

as we will describe in Chapter 4.

3.5 The View-Only Approach

The architectural overview of the View-Only approach is given in Figure 3.8. In
this approach the Semantic Find component has been removed from the architec-
ture and the single Trader is the ™ Grid View service registry. The absence of
the Semantic Find component leads to extensive use of the View’s functionality
for registration of UDDI and WSDL service descriptions and service metadata
to support ™ Grid’s Information Model of services. To register information other
than a service’s name and textual description, the View’s WSDL, and metadata
publishing/querying APIs are used in addition to the standard UDDI API.

The Trader Client Components in the second approach are also the GUI
based Pedro tool, a service querying GUI and custom clients. Unlike the first
approach, the Pedro tool is not used to generate OWL descriptions of services.
Instead, using the ™ Grid service schema (in Figure 3.3) and the ™ Grid domain
ontology as a controlled vocabulary, Pedro is used to generate service descriptions
in the form of its inner record model temporarily. These inner representations
of services are later transformed into API calls with respect to the View’s UDDI
and WSDL based model.

In a typical scenario :

1. Service descriptions were gathered into the View as the first step similar to

the Semantic-Rich approach.

2. Capability descriptions of services were published at a second stage, where

the View is queried for existing services and the resulting services were

CHAPTER 3. SERVICE DISCOVERY IN MYGRID: EARLY EFFORTS 101

i
Tavema Caontrolled Yoc abulary

TraderClients ____________
; :
| |
i i . 2- Repister WSDL description Traer
ol M mabanaty P m——mmmmmmmmm—mm———— - -y
Attach metadatato ! andmetadata :
SENVICES INYIEw -] : i i
fail ! ; P i
= L ™ |
a3 i i View T
@ I '
g Cgﬁteur;[n I : o i 1- Gather senice
US_-E-R o Al . RS descriptions
\ 3 S] ! based Search
ol
Create search 'y o “@ i werUDDI_ and
requests < L : W5DOL entities
| - Keyword based
i i Search Pullish
! 1
: :
.)
3 !‘s
Sendce
Provdcier

Figure 3.8: Architectural Overview of the View-Only Approach to Service Dis-
covery

further subject to annotation, to provide a domain specific description by
using Pedro. The annotated description was then submitted to the View
via its WSDL, and metadata APIs. As seen in Figure 3.8, some transforma-
tions take place when the descriptions are transferred between Pedro and
the View inquiry/publish client modules. This transformation is necessary
due to the differences between the information models supported by the
user-facing components and the View, which is also depicted in the con-
text diagram in Figure 3.1. The user facing components adopt the ™ Grid
service schema, which models user’s view of services and their capabilities,
described previously (see Figure 3.3). Whereas the View has a WSDL based
model where services are expected to be described by WSDL documents and
be registered that way. Entities that need to be discovered that are not nec-
essarily described by a WSDL document, for example workflows and Java
objects. More importantly, a service’s WSDL description is not necessarily
a description of its capability from a users perspective for example Soaplab
services. One can argue that the WSDL schema has all the necessary enti-

ties that are needed to describe a service its operations and its parameters.

CHAPTER 3. SERVICE DISCOVERY IN MYGRID: EARLY EFFORTS 102

While we acknowledge that it is not impossible to represent ™ Grid service
entities using WSDL schema, we believe that generating artificial WSDL
descriptions for a workflow or a local java object is not an ideal way of
modelling these entities. Such difficulties were not experienced within the
Semantic-Rich approach where both the the user facing components and
the Trader adopted ™ Grid’s service schema v.1.

3. Inquiry about services is done via a custom query interface that allows users
to search the View to perform name/keyword based and metadata based
searches. Metadata inquiries exploited ontology terms attached to services,
operations and message parts during annotations. An example would be
“Find a service that has input message part metadata of value sequence”.
The role of ontology terms used in metadata attachments in the View is not
more than a controlled vocabulary. The View has no notion of relationships
between the ontology terms, and does not do any form of reasoning during

service search.

3.5.1 Remarks on View-Only Approach

Having described the main characteristics of the View-only approach, the obser-

vations made during its development and use can be summarized:

e The strict ties of the View to WSDL for describing service capabilities is
limiting. Using WSDL to describe entities such as workflows that have no

connection to WSDL is not a desired way of modelling them.

e Within the View-only approach, the Semantic Find component has been
abandoned due to its poor exploitation in the first approach. This decision
has caused the discovery system to solely rely on the View for providing
semantic support during discovery. The benefit that can be gained from
the use of an ontology for annotating service descriptions in the View is not
more than the benefit that can be gained from using a common vocabulary.
The View is not ‘ontology aware’ and does not provide any form of support
for exploiting the rich expressivity of ontology languages during discovery.
On the other hand, the View allows arbitrary RDF metadata to be attached
to service descriptions, and allows this metadata to be queried. This aspect
of the View makes it a critical component for addressing the 3rd party

metadata requirements within ™ Grid.

CHAPTER 3. SERVICE DISCOVERY IN MYGRID: EARLY EFFORTS 103
Semantic-Rich Ap- | View-Only Ap-
proach proach

Back-end Model Hybrid (RDF & | RDF
OWL)

Capabilities MY Grid Service | WSDL
Schema V1.

Non-functional Aspects | — -

Binding - WSDL

Discovery Mech. DL Reasoning View’s UDDI +

WSDL API

Discovery Purpose Composition

Stakeholders Human Users

Multi Trader Support - -

Temporary Registration | - -

Table 3.1: Analysis of Previous Efforts With Respect our Survey Categories
3.6 Reflections on the Two Approaches

3.6.1 Profiles of Previous Approaches

The analysis of the previous approaches with respect to the criteria identified in
Chapter 2 is given in Table 3.1.

The Semantic-Rich approach is similar to the Traders of top-down Seman-
tic Web Services (SWS) frameworks with its Description Logic based back-end
model, and DL reasoning based discovery mechanism (see Table 3.1). We have
previously compared the ™ Grid service schema used within the Trader in the
Semantic Rich approach to other SWS modelling frameworks. We have stated
that the ™ Grid model is a subset of these frameworks which solely focuses on the
capability layer and omits the process and invocation layers as these are being
handled by ™ Grid’s middleware and are not of interest to the user.

The View, hence the View-only approach, overcomes the limitations of UDDI
by explicating WSDL in its information model and providing support for meta-
data. It uses WSDL to describe both service capabilities and service binding
details. This representation mechanism can be misleading for entities that are
not web services (e.g. workflows) but have been described with the WSDL model
since it is the only modelling element in the View.

The ™ Grid View used in both approaches supports consolidation of contents

CHAPTER 3. SERVICE DISCOVERY IN MYGRID: EARLY EFFORTS 104

of multiple traders into Views, however it does not address coordinated evaluation
of service search requests. Similarly temporary registration is not addressed by

any of the approaches.

3.6.2 Analyzing Previous Approaches with Respect to ™ Grid’s

Requirements

Having described both approaches in detail it is useful to go back to the initial
set of requirements outlined in Chapter 1 to be able to judge how each approach
meets them. A summary of the requirements is given in Table 3.2.

Following from the table:

1. The View only approach fails to fully meet requirement no 1. regarding
a user-oriented capability based model, due to its WSDL based descrip-
tion mechanism within the Trader. The user-oriented view of services as
described in the ™ Grid service schema is abstracted from any particular
invocation interface. Therefore using WSDL to describe different types
of services is not a solution to this requirement. On the other hand the
Semantic-Rich approach supports the ™ Grid abstract model of service ca-
pabilities within the Trader and the user facing annotator and querying
components.

2. Requirement 2.a regarding dynamic discovery and composition of shim ser-
vices is not met by any of the approaches since both aimed at user-oriented
discovery for manual composition of experimentally significant services. Re-
quirement 2.b on pro-active discovery and suggestion of successor services in
a workflow design context is partially met since the ™ Grid service schema
captures necessary information by providing semantic types for parameters.
This information would be enough to answer questions that can be asked
by a workflow advisor tool in Taverna. However the mechanism that would
pose the question on has not been implemented in any of the approaches.

3. Describing the functionality of a service (3.a) is fully met by the Sematic-
Rich approach with its adoption of the ™ Grid service schema and its use of
description logics to represent descriptions and link them to bioinformatics
domain knowledge. It is partially met by the View due to its WSDL based
model and lack of support for ontologies. Neither of the approaches have

explicitly modelled non-functional aspects (3.b) of bioinformatics services.

CHAPTER 3. SERVICE DISCOVERY IN MYGRID: EARLY EFFORTS 105
Req{ Description Semantic- | View-Only
No. Rich Approach

Approach

1 User-oriented, workflow centric discovery of | Met Partially
different types of services (i.e. operations) met

2.a | Dynamic discovery of shim services Not met Not met

2.b | Dynamic and Proactive discovery of candi- | Partially Partially
date successor services in a workflow context | Met Met

3.a | Information Model - Service Capabilities Met Partially

Met

3.b | Information Model - Non-functional Aspects | Not Met Not Met

3.c | Information Model - Non-restricted 3rd party | Partially Partially
Assertions Met Met

4 Exploiting domain knowledge Met Minimally

Met

5.a | Discovery by keyword based over name/text | Met Met
description

5.b | Discovery by browsing a service classification | Met Not Met
hierarchy

5.c | Discovery by sending search requests based | Met Met
on the information model

6.a | Deployment - Unified interface for search fa- | Met Met
cilities

6.b | Management of service provider, and third- | Met Met
party descriptions by their owners

6.c | Accessibility from the workflow design con- | Met Met
text

Table 3.2: The Addressing of Discovery Requirements by Semantic-Rich and
View-Only Approaches.

CHAPTER 3. SERVICE DISCOVERY IN MYGRID: EARLY EFFORTS 106

Finally, the View component used in both approaches provides the neces-
sary infrastructure for 3rd party metadata attachments (3.c). However in
neither of the approaches have users been provided with mechanisms (e.g.
GUI based interfaces) to publish/inquire free-form metadata to service de-
scriptions.

4. By using reasoning during discovery the Semantic-Rich approach meets the
requirements, and exploits domain knowledge. The View-Only approach
provides minimal semantics support with metadata facilities and the use of
ontology as a controlled vocabulary.

5. Regarding desired forms of discovery, all three of them are supported by the
Semantic-Rich approach. This provides a classification of services based on
their conceptual descriptions, supports keyword based search over the View
and answers inquiry requests that partially or fully describe a desired service
as an OWL description. Due to its minimal support for semantics, the
View-Only approach has no means for providing a classification of services
on domain-specific criteria. Keyword based search and inquiry based on a
UDDI and WSDL model of services is supported.

6. Both approaches support deployment requirements 6.a and 6.c by providing
a unified interface to discovery facilities from within the Taverna workbench
environment. The View registry used in both approaches inherently sup-
ports owner based management of third-party assertions on services (6.b).

The development of a solution for service discovery in ™ Grid is certainly an

evolutionary process. During the development and use of the two approaches,
requirements for service discovery have been progressively articulated.

In summary the two approaches differ in two respects:

1. The Information Model. The abstract annotation model of the Semantic-
Rich approach is appropriate for describing service capabilities in ™ Grid.
On the other hand the WSDL based information model of the View-Only

approach is not suitable for the domains needs.

2. The expressivity of Semantics, and the nature and timing of rea-
soning. The View-Only approach’s support for semantics via metadata
attachments and a controlled vocabulary is not enough for the domain’s
needs [57]. The Semantic-Rich approach provides fully-fledged semantics
via the use of ontologies and DL reasoning during discovery. However, in

practice the users expectations for semantics support is largely on sub-class

CHAPTER 3. SERVICE DISCOVERY IN MYGRID: EARLY EFFORTS 107

relationships among domain concepts. This level of semantics support can
be provided by performing simpler forms of reasoning such as RDF(S) rea-

soning.

Based on these observations we have developed a third discovery facility, called
Feta which will be described in the next Chapter.

Chapter 4

Service Discovery in ™Y Grid:

Feta Approach

4.1 Introduction

Feta is the most recent service discovery effort in ™ Grid, which has been devel-
oped based on the lessons of two previous approaches. The philosophy behind its
design is:

1. To provide semantics support at the medium scale, by only allowing pre-
inferred sub-class relationships to be exploited during discovery. This way
the domain’s needs regarding reasoning and expressivity would be met with-
out imposing complexity in deployment of the system.

2. To adopt the user-oriented model of services captured in the ™ Grid ontol-
ogy [57] [95] uniformly, within the Trader and within user-facing compo-
nents to allow correct modelling of entities in both.

In this chapter we describe the most recent form of ™ Grid’s service schema
over which Feta operates. We then give an architectural overview of Feta and its
components The operation of the system is analyzed in three main parts. First
the generation and annotation of service descriptions with respect to Feta’s the
information model is presented. Next a detailed view of the mechanism that is
used to answer service search requests is given. Finally the interaction of the
system with the users during workflow design is given. We conclude with a brief

explanation of implementation details and a summary.

108

CHAPTER 4. SERVICE DISCOVERY IN MYGRID: FETA APPROACH 109

4.2 Basis of Feta’s Information Model

The desired discovery system within ™ Grid is one that aids users’ decision making
process during discovery, not one that provides fully-automated discovery and
composition by making the decisions on their behalf. In order to fully support
users during service selection, it is essential that the descriptions conform to
an information model that reflects their view of entities to be discovered in the
system. The aim of the ™ Grid service schema v.1 , which was adopted by the
previous discovery systems was to meet these requirements by

e describing services that are incorporated into workflows as operational steps,

e capturing functional aspects (capabilities) of these services in the descrip-

tions.

Our information model in Feta, which we refer to as ™ Grid Service Schema
v.2 is an evolved version of the ™ Grid Service Schema v.1. A simplified view of
Feta’s Information model is depicted in Figure 4.1,

Previously both service and operation entities were allowed to have input/output
parameters and can be identified by bioinformatics specific characteristics. The
intention was to allow workflows to be described as a service and their operational
steps to be described as operations. However, during use of this model it has been
observed that annotators become confused with the dualism between service and
operation entities when entities other than workflows were to be described. For
example, when describing a WSDL based service that has a single operation, the
functional unit that needs to be annotated to enable discovery is the operation
entity. However users had the impression that it suffices to annotate the encapsu-
lating service entity and did so, which caused these operations to be out of scope
during discovery.

Furthermore it is observed that the requirements regarding description of
workflow subcomponents, data and control flow is not clear at this stage of the
project. Therefore a uniform approach has been taken and the dualism between
service and operation elements have been eliminated in Feta by focusing capability
attributes around the notion of operations only. Analysis of description of the
internals of workflows, and their exploitation in discovery has been deferred to
future research.

The main elements of the information model is given in the UML conceptual
class diagram in Figure 4.1. The main entities are Service, Operation and Pa-

rameter that are used collectively to describe capabilities of entities subject to

CHAPTER 4. SERVICE DISCOVERY IN MYGRID: FETA APPROACH 110

-n | hasOperation ii

Operation haslnput : b
1 0.n| Parameter Service
name, description o i g
ek 1. 0.nname, description natmhe, description
method P | semantic type author i
resource transportType lganization
application format
collection type
r'S coffection format

1

I workflow |

I:,equund service|

1 [" hasOperation A
| WSDL operation }ﬁ+ WSDL service

[Soaplab service |

Corresponds to

| bioMoby service |

1 I Java Object |

Figure 4.1: A
Conceptual View of the Information Model of Feta. The XML Schema Document
corresponding to this model is provided in Appendix A

discovery in ™ Grid. The attributes of each element depicted in italic characters

are placeholders for ontology terms in service descriptions.

4.3 Feta’s Information Model of Services

4.3.1 Modelling Operations not Services

Within our model we distinguish between the core unit of functionality, i.e.
the operation and the unit of publication, i.e. the service. The service entity
embodies information on service provider, the author of the description and a
textual description of the service.

A service may provide more than one operation. ‘Plain’ web services are
good examples for this. Generally, for services described by WSDL, a single
WSDL document contains descriptions of multiple operations even though these
operations may be disconnected in terms of functionality. Therefore operations
are modelled as a separate entity in our model. The types of operations that
can be described are: a WSDL based service’s operations, a Soaplab service, a

Scufl workflow, a BioMOBY service, a seqHound service, and a local Taverna

CHAPTER 4. SERVICE DISCOVERY IN MYGRID: FETA APPROACH 111

compliant Java object.

Stateless | BlastReport doBlast(Sequence, database, program. ..);
Statefull | Jobldentifier createJob();

void setDatabase(Jobldentifier, Database);

void setProgram(Objectldentifier, Gap);

BlastReport getsomeResults(ObjectIdentifier);

Table 4.1: Two different service interfaces to BLAST, a widely used bioinformat-
ics tool. Differences Between WSDL based(Stateless/Single-Method) and Soaplab
based BLAST implementations

The notion of operation within the model corresponds to an operation from
the user’s perspective. The operation entity may not have a one to one corre-
spondence with the operation at the service invocation layer. A good example for
this is the Soaplab services which have differences from ‘plain’ web services. To
illustrate this difference the invocation patterns for two different implementations
of “Basic Local Alignment Search Tool (BLAST)” are given in Table 4.1. A group
of operations need to be invoked consecutively to perform a BLAST task with
the Soaplab implementation, whereas only a single operation needs to be invoked
to achieve the same task via ‘plain’ web service implementation of BLAST.

The difference between the invocation patterns of the services is of little in-
terest to the user. These low level service details are handled by the workflow de-
sign environment Taverna and its associated workflow enactment engine Freefluo,
which provides a common abstraction of these services to the user. It it this ab-
straction that is being described in our model. Therefore both types of services
would be modelled with a single operation entity.

Another important aspect that makes our model different from the previ-
ous one (i.e. ™Grid Service Schema v.1) is regarding modelling of workflows.
Workflows are modelled as single operations in Feta,; the internal steps, data
and control flow of workflows are not described. We believe that being able to
discover bioinformatics workflows based on their inner working mechanisms (i.e.
data and control flow) may be important and probably requires complicated (e.g.
fuzzy) matching techniques to be employed during discovery. However require-
ments for such discovery are still not clear at this stage within the project. Hence

our information model excludes description of internal structure of workflows.

CHAPTER 4. SERVICE DISCOVERY IN MYGRID: FETA APPROACH 112

4.3.1.1 Attributes of Operations

The operation entity has four attribute types that are placeholders for bioinfor-

matics influenced characteristics of an operation. These are:

(1) the overall task being performed by the operation for example pairwise_aligning,

(2) the method used to perform that task for example a particular algorithm such
as the Needleman_and_Wunsch_global_sequence_alignment_algorithm,

(3) the type of application used to provide the functionality for example The
European Molecular Biology Open Software Suite, EMBOSS,

(4) the resources that are used during the execution of the operation for example
a Protein Database like SWISSPROT. The information model allows multi-
ple instances of attributes of above types to be associated with a property.
For example an operation can be described to perform the tasks of both

“alignment” and “sequence retrieval”.

4.3.2 Parameters

The parameter entity is used to model both inputs and outputs of operations. A
parameter can be described at multiple levels by the use of its attributes. At the
highest level of abstraction a parameter can be characterized by a domain concept
for describing the semanticType (e.g. DNA _sequence). At a lower level bioin-
formatics specific format of the parameter can be specified via use of the format
attribute (e.g. AGAVE Format -Architecture for Genomic Annotation, Visualiza-
tion and Exchange Format-). Even low level transport Type descriptions that may
be of interest to the user can be made (e.g. String). Finally the structure of data
that goes in and out of services as parameters can be described via collection Type
(e.g. Single, Set, Collection) and collectionFormat (e.g. Tab_Delimited_Row)

attributes.

4.4 System Overview

Feta is not intended to meet all discovery requirements identified in Chapter 1. It
has rather been developed as a light-weight domain specific service search facility
that focuses on semantic service discovery based on service capabilities.

The architectural overview of Feta is given in Figure 4.2. Following our con-

vention in the previous chapter we group the components in the architecture as

CHAPTER 4. SERVICE DISCOVERY IN MYGRID: FETA APPROACH 113

"©1oq JO MIIATOA() [RINIOINYOLY G'F @M.Dwﬁrnﬁ

gt alal il gy
e
Afojauo
=0y
PUS s PING (S U -
e LONeEdIsse
_..~ u "ti. =i o = @
N)
.] | -y3avdL- Aaroosig
aunseay JOWRS ABOIOLO > @ M aubugepy [omewEs
- LONEIYSSEL) A
][z
=0 suoidiosap
palE]oULE L{ILIS 0 A
@ N[z} BLIaAE |
LONEIY=SE| T
LU SLULE]
suonduasan WEIe0
Ela4 : Wca dursan
aEI0UUY SUDNEIOULY Bl 4
ey ()
hd
| - gAv1dvios
-
mﬂ eRad suonpduosap 14nos uopdLasap I
=] Ela4 LUOja|ayg “1aSMM a0e a1 a7iEs
@ HAD | ORASATIA B _
Jayochu Lsl|ong ¥
ME ;N ... '
suondiuosa] elay suoidiulzap
0] Ul suonduasap aoela|

|23 |-ha0| JacL|

CHAPTER 4. SERVICE DISCOVERY IN MYGRID: FETA APPROACH 114

Trader Client (dark-grey shaded) and Trader (light-grey shaded) Components

and the ™Grid domain classification used by both.

4.4.1 Trader Components

The single Trader component in the architecture is the Feta Engine. This
component is responsible for loading service descriptions from a designated loca-
tion, accepting service search requests, evaluating them and returning resulting

services. Detailed information on the Feta Engine will be given later.

4.4.2 Trader Client Components

Trader client components, are the Feta Importer tool, Pedro annotator and Feta
Taverna GUI plug-in.

e The Feta Importer is a group of tools that aid users to generate skeletal
service descriptions (in XML format) that conform to the Feta Informa-
tion Model of services (a.k.a. Feta descriptions). These descriptions are
representatives of services that are abstracted away from their invocation
interfaces. Even though an abstraction exists it is still possible to transfer
some of the information in the invocation specific descriptions into Feta
descriptions.

e The role of Pedro in Feta’s architecture is to enable annotation of skeletal
descriptions with terms from the ™ Grid ontology. Unlike two previous
approaches, in Feta the Pedro tool has been used in its default configuration
to populate XML descriptions with either user-provided values or terms
from the ™ Grid ontology.

e The Feta Taverna Plug-in is a GUI tool used by workflow designers from
within Taverna for making search requests for services, viewing the results

and incorporating them into workflows.

4.4.3 ™Grid Domain Classification

The final component in Feta’s architecture is the ™ Grid domain ontology, which
is in the form of a classification in RDF Schema. RDF Schema, which has served
as a basis for development of many ontology languages, can be used to repre-
sent domain knowledge in a restricted but simplified manner. The expressivity

provided by ontology languages like OWL have turned out to be unnecessary for

CHAPTER 4. SERVICE DISCOVERY IN MYGRID: FETA APPROACH 115

sequence :
@ 4 @ protein_structure_feature

L®= biological_seguence
r'y :
: protein_sequence

@nucleotide_sequence

@D MNA_sequence

s primer_sequence

@for\i\tard_primer_sequence

Figure 4.3: An Extract of Classifications in the Simplified ™ Grid Domain On-
tology. The inferred sub-class relationships evaluated during service search are
depicted as dashed lines. Appendix B contains an extract from the lite version
of the classification.

describing bioinformatics resources within ™ Grid. Therefore, RDF(S) is an ideal
language for providing medium level semantics support.

In our approach we use neither the Description Logic versions (i.e. DAML+OIL
and OWL versions) of the ™ Grid ontology nor the DL Reasoners during discovery.
Instead the ™ Grid ontology in OWL is reasoned over by a DL reasoner and the
resulting classification hierarchy is stored in RDF(S) retaining only the classes,
their properties and class and property hierarchies. Two versions of RDF(S)
based snapshots of the ontology have been used within Feta. The sizes of these
are given in Table 4.2. The first one of these, which is the first-cut RDF(S)
export of the DAML+OIL ontology, has larger number of classes and sub-class
relationships. While this classification is comprehensive most of the classes in
it are not expected to be used during annotation. Therefore a cut-down (lite)
version of the classification has also been generated by taking a subset from the
larger classification. This subset contains the classes that are expected to be more
used during annotation.

The RDF(S) based domain ontology does not contain a classification for ser-
vices generated from their ontological descriptions. An example of this classifica-
tion was given in the previous Chapter in Figure 2.15. The RDF(S) classification
used in Feta covers:

e The “service sub-ontology”. This introduces classes such as service, op-

eration and parameter, and properties such as haslnput, hasOutput and
hasOperation, that can be used to describe a service.

e The ‘molecular biology sub-ontology’. This contains classes such as DNA _sequence,

CHAPTER 4. SERVICE DISCOVERY IN MYGRID: FETA APPROACH 116

Full Classification Lite Classification
of # of # of # of # of # of
Sub-Ontology Classes Properties Sub-Class Classes Properties | Sub-Class
Rel. Rel.

Service 9 28 0 9 28 0
Molecular Biology+
Bio-informatics+ 549 39 708 129 0 127
Informatics.

Table 4.2: Sizes of Different Versions of ™ Grid Domain Classification

BLAST_Report and the sub-class relationships between these classes. These

classes are commonly used to characterize inputs and outputs of services.

e The ‘bioinformatics sub-ontology’, which contains classes such as aligning,

retrieving, SWISS-PROT, EMBOSS and their subclass relationships. These
classes are used to characterize methods, tasks and the accessed resources

of a service in ™ Grid.

4.4.4 System Operation

The interaction of components within the architecture given in Figure 4.2 is as

follows:

(1)

(2)

The invocation interface descriptions of services (e.g. WSDL descriptions,
Scufl workflow scripts), which are published by service providers, are con-
sumed by the Feta Importer tool to generate skeletal Feta descriptions;
These descriptions are further annotated with the ™ Grid domain ontology
terms by annotators using Pedro;

Once the skeletal descriptions are populated and annotated they become
ready to be queried over. Annotated descriptions are loaded in to the Feta
Engine together with the ™ Grid domain classification. The Feta engine is
then responsible for answering users’ search requests by taking the sub-class
relationships between annotation terms in to account. The users are provided
with a GUI tool that allows them to choose from a list of pre-defined query
templates, to fill them in with desired values and to submit them to the
engine.

Now we will elaborate on each of the steps that take place during the operation

of Feta.

CHAPTER 4. SERVICE DISCOVERY IN MYGRID: FETA APPROACH 117

4.5 Capability Publishing

As mentioned earlier our goal in Feta is to enable discovery of services based on
their capabilities. Given that a service’s capability is not reflected in its invoca-
tion interface description published by the service providers, it becomes essential
for a secondary publishing stage to take place. During this stage a capability
description for a service is generated in addition to its interface description. Ser-
vice re-publishing can be performed by service providers or annotators who are

specialized in generating domain specific descriptions of services.

4.5.1 Generation of Feta Descriptions

To ease the process of generating service descriptions and to lower the activation
energy needed to start up a discovery system, the users are provided with spe-
cialized importer tools that generate annotation-free skeletal Feta descriptions,
using different types of low-level invocation interface descriptions. The importer
tool extracts information such as service name, textual description, parameter
names, and uses them to generate annotation free, skeletal Feta descriptions.

The reason for choosing XML as the description representation language is
due to its widespread use and strong tool support. Furthermore XML does not
introduce any restrictions on semantic annotations of services. The domain ontol-
ogy to be used for describing and discovering services is represented in a simplified
ontology language RDF(S) where there are only named classes and hierarchical
relationships between those classes. Therefore the annotation process is only
expected to consume these named classes and attach them to different parts of
skeletal XML descriptions.

In its current state the Feta Importer supports automated skeleton descrip-
tion generation for WSDL based services and Soaplab analysis services and Scufl

workflows.

4.5.1.1 Feta Descriptions for Plain Web Services

In the case of “plain” web services where each operation in a WSDL document
corresponds to an operational task in the workflow, a one to one mapping between
WSDL operations and Feta operations is performed during import. The upper
part of Figure 4.4 displays a simplified view of the WSDL description of the

DDBJ implementation of the BLAST service from our previous example. The

CHAPTER 4. SERVICE DISCOVERY IN MYGRID: FETA APPROACH 118

<definitions nanme='Bl ast' >

<message nane='searchSinpleln' >
part nane='prograni type='xsd:string' />
art name='dat abase' type='xsd:string' />
part nane='query' type='xsd:string' />
</ message>

<nessage nane='searchSi npl eQut' >
<part name='Result' type='xsd:string />
</ nessage>

<port Type nane='Bl ast'>
<operation nane='sear chSi npl e'
par anet er Or der =' progr am dat abase query' >

<docunent ati on>
Perfornms Blast on a given sequence with using designated
dat abase
</ docurnent ati on>

<input name='searchln' message='tns: searchSinpleln '/>
<out put name='searchQut' essage='tns: searchSi npleCut '/>

</ operati on>
</ port Type>

<bi ndi ng name='Bl ast' type='tns:Blast'>
<soap: bi ndi ng
style="rpc
transport="http://schemas. xnl soap. org/ soap/ http' />
<operation nane='searchSinple' >
<soap: operati on soapActi on="searchSinple' style="rpc'/>
<i nput nane='searchln' >
<soap: body encodi ngStyle=" http://schemas. xn soap... '/>
</ i nput >
<out put name='searchQut' >
<soap: body encodi ngStyle=" http://schemas. xn soap... '/>
</ out put >
</ operati on>
</ bi ndi ng>

<servi ce nanme=' Bl ast Servic
<port name='Blast' binding='tns: Bl
<soap: address |l ocation="http://x
</ port>
</ service>

st' >
.nig.ac.jp/xddbj/Blast'/>

</ definitions>

<servi ceDescripti on> v
<servi ceNane>Bl ast Ser vi ce</ ser vi ceNane>
<l ocationURL>http://xn .nig.ac.jp/xddbj/Bl ast</Iocati onURL>
<i nterfaceWsDL>http://xm .nig.ac.jp/wsdl/Bl ast.wsdl </interfaceWsDL>
<servi ceType>WSDL servi ce</servi ceType>
<operati ons>
<servi ceQperati on>
<oper at i onNane>sear chSi npl e</ oper ati onNane>
<operati onl nput s>
<par anet er >
<par anmet er Name>pr ogr anx/ par anmet er Name>
paraneter>
<par amet er >
<par anet er Name>dat abase</ par anet er Narme>
paraneter>
<par amet er >
<par anet er Name>quer y</ par anet er Nane>
ar amet er >
</ operationl nput s>
<operati onQut put s>
<par anet er >
<par amet er Nane>Resul t </ par anet er Nane>
</ par anet er >
</ oper at i onCQut put s>
</ servi ceOperation>
</ oper ati ons>
</ serviceDescri ption>

Figure 4.4: WSDL Description of BLAST Service and its Corresponding Skeleton
XML Description.

CHAPTER 4. SERVICE DISCOVERY IN MYGRID: FETA APPROACH 119

lower part of the figure displays the skeleton XML description generated by using
this WSDL file. The complete list of mappings performed during import of WSDL
descriptions is as follows:

e A WSDL service element is mapped to a service in the Feta description.

e The SOAP address of the port from which the service is delivered is mapped
to a locationURL element.

e Each operation that has been defined in the portType that the service’s
port adheres to is mapped to an operation in Feta (see portType element
with name BlastPortType).

e Each message part that makes up the input output messages of the opera-
tions is mapped to a parameter entity.

In addition to these mappings the serviceType element of the Feta description

is populated indicate that the service is a plain web service.

4.5.1.2 Feta Descriptions for Soaplab Services

For Soaplab services, whose WSDL descriptions reflect their job control interface
rather than an “atomic operational step”, the WSDL descriptions are not used
for generating skeletons.

Figure 4.5 displays a simplified view of the WSDL description of the Soaplab
BLAST service which contains descriptions for multiple operations and messages
for operations named “createJob”; “run”, “getSomeResults”. If this WSDL de-
scription were to be used, the resulting Feta description would be confusing for
end users since it involves operations and intermediary parameters that are re-
lated to the stateful invocation pattern of a Soaplab service.

Therefore, to generate skeletal descriptions for these services a specialized cat-
alog service, named Soaplab Analysis Factory Service is used. The catalog service
is itself a Soaplab service that provides information about other services hosted
on a particular site. The skeleton description for BLAST generated by obtaining
information from the catalog service is shown in Figure 4.6. The description is
composed of a single service entity and a single operation entity beneath it
for each Soaplab services. The Soaplab catalog service also provides information
on the overall number of input and output parameters of the service such as

names and default values (see Figure 4.6).

CHAPTER 4. SERVICE DISCOVERY IN MYGRID: FETA APPROACH 120

<wsdl : message nane="cr eat eJobRequest" >
<wsdl : part nane="in0" type="apachesoap: Map"/>
</ wsdl : message>

<wsdl : mressage nane="creat eJobResponse" >
<wsdl : part
nanme="cr eat eJobRet urn" type="xsd:string"/>
</ wsdl : nessage>

<wsdl : message nanme="runRequest">
<wsdl : part nane="in0" type="xsd:string"/>
<wsdl : part nane="inl" type=" xsd:string "/>
</ wsdl : nessage>

<wsdl : message nanme="runResponse" >
<wsdl : part nane="runReturn" type=" xsd:string "/>
</ wsdl : nessage>

<wsdl : port Type nane="Anal ysi sWSAppLabl npl " >
<wsdl : operati on nane="creat eJob" parameterO der="in0">
<wsdl : i nput
message="i npl : creat eJobRequest "
nane="cr eat eJobRequest "/ >
<wsdl : out put
message="i npl : creat eJobResponse"
nane="cr eat eJobResponse"/ >
</ wsdl : oper ati on>
<wsdl : operati on nane="run" paraneterOder="in0 inl">
<wsdl : i nput
message="i npl : runRequest"
name="r unRequest "/ >
<wsdl : out put
message="i npl : runResponse"
nane="r unResponse"/ >
</ wsdl : operation>

</ wsdl : port Type>

Figure 4.5: WSDL Description of Soaplab BLAST Service.

CHAPTER 4. SERVICE DISCOVERY IN MYGRID: FETA APPROACH 121

<servi ceDescri pti ons>
<serviceDescription>
<servi ceType>Soapl ab service</serviceType>
<servi ceNane>seq_anal ysi s: : bl ast 2</ ser vi ceNane>
<l ocat i onURL>
http:// phoebus. cs. man. ac. uk: 8081/ axi s/ servi ces/seq_anal ysis::blast?2
</l ocati onURL>
<interfacelLoc>
http:// phoebus. cs. man. ac. uk: 8081/ axi s/ servi ces/seq_anal ysis::blast?2
2wsdl
</interfacelLoc>
<oper ations>
<servi ceOperati on>
<oper at | onNane>seq_anal ysi s: : bl ast 2</ oper ati onNane>
<oper at i onl nput s>
<par anet er >
<par anmet er Nane>sequencel_dir ect _dat a</ par anet er Nane>
<transport Dat aType>Stri ng</transport Dat aType>
</ par anet er >
<par anet er >
<par amet er Nane>pr ogr anx/ par aret er Name>
<transport Dat aType>Stri ng</transport Dat aType>
</ par anet er >
<par anet er >
<par aret er Nane>dat abase</ par anet er Nane>
<transport Dat aType>Stri ng</transport Dat aType>
</ par anet er >
<par anet er >
<par anet er Nanme>quer yst r ands</ par anet er Nane>
<transport Dat aType>Stri ng</transport Dat aType>
</ par anet er >

</ oper ati onl nput s>
<oper at i onCQut put s>
<par anet er >
<par anet er Nane>r eport </ par anet er Narme>
<transport Dat aType>Stri ng</transport Dat aType>
</ par anet er >
<par anet er >
<par anet er Nane>det ai | ed_st at us</ par anet er Narme>
<t ransport Dat aType>Stri ng</transport Dat aType>
</ par anet er >
<par anet er >
<par aret er Nane>out put </ par anet er Nanme>
<transport Dat aType>Stri ng</transport Dat aType>
</ par anet er >
<par anet er >
<par anet er Nane>segannot </ par aret er Nanme>
<transport Dat aType>Stri ng</transport Dat aType>
</ par anet er >
</ oper ati onCQut put s>
</ servi ceCperati on>
</ oper ati ons>
</ serviceDescription>

Figure 4.6: Skeleton XML Description Generated for Soaplab BLAST Service

CHAPTER 4. SERVICE DISCOVERY IN MYGRID: FETA APPROACH 122

4.5.1.3 Feta Descriptions for Scufl Workflows

Workflows are modelled as single operations. For a particular workflow the im-
porter tool processes the Scufl script and generates a single service entity em-
bodying a single operation entity. The overall inputs and overall outputs of the
workflow are mapped to parameters that are attached to the single operation
representing the workflow.

While Feta currently provides importer facilities for three types of services
the system does not restrict its discovery facility to these three types of services.
Descriptions for seqHound services, bioMoby services and local java objects can

also be subject to discovery as long as their Feta descriptions exist.

4.5.2 Annotation of Feta Descriptions

Once the skeleton descriptions are generated they need to be annotated to bring
in semantics to the description. The skeleton descriptions are annotated via use of
Pedro. The schema that drives the operation of Pedro in our approach is Feta’s
information model expressed in XML Schema. the product of the annotation
process is a Feta description (see XML fragment in Figure 4.8) with ontology

terms (named concepts) embedded in certain parts as field values.

4.5.3 Publishing of Annotated Descriptions

Currently within Feta’s architecture, there is no push-based publishing of an-
notated service descriptions to the Feta Engine. The publishing is a decoupled
process where annotated Feta descriptions (in XML) are made available to a web
accessible location or a local file store, from where they are picked up and loaded

in to the Feta Search Engine.

4.6 Feta Search Engine

Once the descriptions are generated and annotated they become ready to be used
within the Trader to enable discovery. Feta uses RDF(S) and RDQL to
1. To merge the service descriptions with the domain ontology and

2. To enable searching over these descriptions.

CHAPTER 4. SERVICE DISCOVERY IN MYGRID: FETA APPROACH 123

Feta Engine

RO
Annotated Feta % Cweries ggachsts
Descriptions - el sl Feta Guery Feta U
Lﬁ‘;’ = e Interface -
I Resulting
Services
Fy

iy Sric

Domain

Cntology

[ROF(ST

Figure 4.7: A Closer View of The Discovery Engine.

4.6.1 Merging Descriptions and Domain Ontology

Annotated Feta descriptions are merged with the domain ontology by means of
a conversion process. Feta descriptions (in XML format) are converted to RDF.
The reasons for choosing RDF as the internal representation mechanism are :

e RDF, together with its schema RDF(S), allows a unified representation for
both the service descriptions and the ontology that is used to annotate the
descriptions.

e RDF and its associated query languages such as RDQL comes with rela-
tively mature tool support [19] [4] that allows RDF(S) entailment capabil-
ities to be automatically exploited while querying RDF with RDQL.

Figure 4.7 provides a view of the inner working mechanisms of the Feta Engine.

The domain ontology and descriptions are both fed into the loader component
which builds the RDF representation of service descriptions that conform to an
RDF Schema in alignment with the schema of XML descriptions. This RDF

Schema is in fact the service sub-ontology of the ™ Grid ontology.

4.6.2 Converting XML Descriptions to RDF

The conversion process from XML to RDF changes the representations of descrip-
tions retaining the Information Model. Five types of mapping rules that are used
to transform different entities in our XML Schema. The rules can be explained

by following the example given in Figure 4.8:

CHAPTER 4. SERVICE DISCOVERY IN MYGRID: FETA APPROACH 124

<servi ceDescri pti on>
servi ix Vi servi
£ser vi ceName>Af f ymet ri xMapper Ser vi ce</ ser vi ceNanme>
/// _________________
7 -
/I /’/
/// <oper at i ons>
/ . .
S ‘“—~——<servi ceOper ati on>
// 'I \\\
A \ <oper at i onNane>get Sequence</ oper at i onName>
/ ! \
! \
Y; ‘|l \ <oper at i onl nput s>
\
/ 1 \ PR
/ 1 \ .
I,’ \‘ \\ </ oper at i onl nput s>
/ \ \ i
! \ \ <oper at i onQut put s>
\
1 \ \
1 \ \
! \ \ <par anet er >
1 \ \
| \ \ <par anet er Nane>get SequenceRet ur n</ par anet er Namre>
| \ \\ <semant i cType>DNA_sequence</ semanti cType>
i IV \ </ par anet er >
1 (RN i \ N
1 \ S \ \\
1 \ .
! \ %/ oper at i onQut put s> N
‘l \\ “\ \\
\ \ \ <oper at i onTask>retri evi ng</ oper ati onTask>
\ N\,
\ .
‘\‘ </‘oper ati ons>\ .
\ </ servi ceDescri ption® Y b
\ ~,
\ A \ ~ \,
\ 1 \ ~ N
' \ \ So N
\ \ ,,_J\\\ \\
\ \ {5)N~ AN
S——- II \\ \\ N ’,"*\)
~
I’ \I \\\\ \\\‘sz_—’
r/ E \\ \\
! | SN \\
o AN \
/ [\ \\
K ! N \
’ K \ N\
e / \ \
-7 \
rdf : Type — \
mg : retrieving)'
//l
7’ 1
d !
7’ !
,/ /
/’ //’
/// //
. /
/, 4
, .
rdf e e ,
yp //, »

. SiService

mg : DNA_sequenceg

Figure 4.8: Sample XML Description and its Corresponding RDF Representation.
The resources (nodes) and properties (arcs) in the figure with dotted shade come

from the service sub-ontology. The nodes shaded grey come from the biology,
informatics and bioinformatics sub-ontologies.

CHAPTER 4. SERVICE DISCOVERY IN MYGRID: FETA APPROACH 125

1. This transformation is used for converting entities that are not placeholders for
ontology terms. The body text of an element can be mapped to an RDF plain
literal. The literal is connected to the root resource (i.e. resource generated
corresponding to the parent XML node of the current node) via properties of
certain types for certain element names. The body text of the “serviceName”
element is converted to a literal and it has been attached to the root resource

via property “hasServiceNameText”.

2. The body text of an element may be mapped to an RDF resource. The resource
is connected to the root resource via properties of certain types for certain
element names. The body text of “semanticType” element is mapped to a
resource -a resource corresponding to an ontology term in our example - and

it has been attached to the root resource via property “rdf:Type”.

3. An XML element without body text containing sub-elements may be mapped
to an RDF property. The property is used to connect the resource corre-
sponding to the root XML element to other resources that may result from
conversion of child nodes the current element. The “operations” element is

mapped to property named “hasOperation”.

4. An XML element without body text containing sub-elements may be mapped
to a special type of RDF resource (a blank node of a certain specified class/type).
The “ServiceDescription” element has been converted to a blank node resource

of type “Service” of the service ontology.

5. An XML element with body text can be mapped to two RDF resources, one
identified by the body text and the other being a blank node of a certain
type decided by the element name. The resource corresponding to body text
is attached to the other resource as a type descriptor, and the resource cor-
responding to the element name is attached to root resource via a property
of certain type decided by element name. The body text of “operationTask”
element is converted to a resource corresponding to an ontological term ‘“re-
trieving”. A blank node of type “Task” has been generated and linked to the

root resource via property named “performsTask”.

CHAPTER 4. SERVICE DISCOVERY IN MYGRID: FETA APPROACH 126

SELECT
?descLoc, 7servName, 7opName
WHERE
(?s mg:hasServiceDescriptionLocation ?descLoc)
(?s mg:hasServiceNameText ?servName)
(?s mg:hasOperation ?op)
(7op mg:hasOperationNameText 7opName)
(7op mg:outputParameter 7par)
(?par rdf:type mg:DNA_Sequence)
USING
mg for <http://www.mygrid.org.uk/ontology#>

hasDescriptionLocation

° hasServiceNameText
hasOperation @

hasOperationNameTex

DNA_sequence

hasOutputParameter

Table 4.3: A Sample RDQL Query and the Graph Pattern it Specifies

CHAPTER 4. SERVICE DISCOVERY IN MYGRID: FETA APPROACH 127

4.6.3 Querying Feta Descriptions

Once the descriptions are converted to RDF and merged with the domain clas-
sification they become ready to be queried over. Feta makes use of RDQL for
providing service search functionality.

An example RDQL query corresponding to a search request for services that
have an output with semantic type DNA_sequence can be seen in Table 4.3.
The WHERE clause within the query specifies a graph pattern for the RDF
representation of the desired service.

The particular RDF framework used within Feta, namely Jena [19], inherently
takes the RDF(S) entailments into account during evaluation of RDQL queries.
Hence the example query given in Table 4.3 would not only return services whose
output parameters are of type DNA_sequence but also would return those whose
parameters are of a type which is a defined to be a sub-class of DNA _sequence in

the ™ Grid domain classification.

4.6.4 Feta Canned Queries (Feta APT)

In order to be able to build such RDQL queries, the users should be fully aware
of the schema that has been used to build the RDF graph so that they can un-
ambiguously interpret the results. While the ability to generate free-form RDQL
queries provides flexibility to users of a system it may be unappropriate since not
all system users may (or want to) be aware of the data model (i.e. schema) of
the descriptions.

Hence Feta enables the users to make searches along a number axes with the
use of pre-canned queries. By using of RDF(S) entailment Feta can answer the
following service search requests:

e Find an operation that accepts input of semantic type “X” or something

more general.

e Find an operation that produces output of semantic type “Y” or something

more specific.

e Find an operation that performs task (or uses method or uses resource or

is part of Application) “X” or something more specific.

e Find an operation that is of type “WSDL based Web Service Operation”,

“Soaplab Service”, “Scufl Workflow” etc.

e Find an operation whose name/description contains a certain phrase.

CHAPTER 4. SERVICE DISCOVERY IN MYGRID: FETA APPROACH 128

@ TavernaFetaGUI i ol =]
Qery | Resultl
Query criteria Walue
Idescrlptlon cortains ;! lDNA FEQUENCES i I
Iproduces output ﬂ |> = = = DMNA_sequence "i - I
fis function of =] |- Basic_Local_alignment_Search_Tool -1 - |
Iuses resource L‘ I= == SWVWISE-PROT vI = I
Iuses method _VJ |= = word_match_sequence_alignment_algorithm vI = I
Iperforms task ﬂ ask il i = I
= distinguishing s
= aligning ok |
= = global_aligning
= = = pairwise_global_aligning
= = local_aligning
= = = multiple_local_aligning
= = = pairwise_local_aligning
Sery I \ = = gapped_aligning

\

Feta’'s
Canned Queries

Classification Hierarchy
provided to the user based
on the auery tvpe

Figure 4.9: GUI Panel for Building Search Requests.

The above set of canned-queries has been identified by a domain expert to be

the ones that would be most frequently used for discovery.

4.7 Taverna Feta Plug-In

It is essential to provide access to service search facilities from within the same
environment as workflows are built. The overall aim of discovery in ™ Grid is to
support the bioinformatics workflow (i.e. experiment) design process. Therefore
Feta’s service search capabilities are exposed to the user via a graphical user
interface plug-in integrated to the Taverna workflow workbench.

When the user begins designing a new workflow, they launch the service dis-

covery plug-in, which provides query building and results displaying functionality.

4.7.1 Query Building

Figure 4.9 shows the query panel of the Feta plug-in. The query interface enables
the user to build a composite service search request that is made up of the canned
queries that the Feta engine supports. The users can create as many canned
queries as they want. Building a query is achieved by first selecting the canned

query type and then providing the value that the desired service should possess

CHAPTER 4. SERVICE DISCOVERY IN MYGRID: FETA APPROACH 129

#& scufl Workbench il o] 54

Tools and \Waorkflow Invocation

laverna

anrh
ericCri

Vorkb
|0l x|

V"\f’eﬁicai V| [Fit to window

==

=10l

Service name |= :hlastx_nchi
| entrez_guery || repeatmasker | a mucleotide gquery segs
3 0 protein sequences in
h frames. The tran
3 ;
nchiblast k PR | I products are the
| < s against the HNCBI pr
Service description .
| SpECIES || chromnsone“
3 Description File: Location | TestDatathackatonAnnotatedizervices_test.xml
retrieve
Service endpoint location |:'so | icesialignment: hlastx_nchi
Service interface location | = alignement:: blast:_nchi?wesdl
Organisation name | informatics Ihatitute
Service type rvice i“_‘
:J Operation Mame

Figure 4.10: GUI Panel for Displaying Search Results

in its description. Depending on whether the canned query contains placeholders
for ontology terms or not, the user is either allowed to enter free text criteria (i.e.
search requests on service name and description) or is provided with a controlled
vocabulary in the form of a hierarchy of ontology terms that could have been
used during the annotation of the certain field. The service search request is a

conjunctive composite of all individual canned query requests created by the user.

4.7.2 Results Displaying and Results Integration to Work-

flow

The results of the search are displayed in the Feta Results Panel as seen in the
screenshot in Figure 4.10. The results are the list of service entities that may
be used as an operational step within a workflow. In addition to the list of

resulting services the panel also displays additional information for each entity:

CHAPTER 4. SERVICE DISCOVERY IN MYGRID: FETA APPROACH 130

their name, textual descriptions, the location of their Feta description, service
end point location and service type, supplying organization’s name, service end
point location and service’s low level interface description document’s location.
To incorporate the resulting services into the workflow, services can be dragged
and dropped on to the workflow editing panel of Taverna. The workflow editor is
capable of recognizing and processing low-level interface descriptions of different
types of services, therefore the information that is transferred over to the work-
flow editor during drag and drop (DnD) is the URL of the interface description
document for the service that is the WSDL file URL for WSDL based services, a
Scufl file URL for workflows. After the DnD operation is complete the operation
is recognized as an operational step within the worklfow diagram panel as seen

in Figure 4.10.

4.8 System Implementation

Feta has been implemented in Java using Java SDK 1.4.2-04 Build 05. JFC/Swing
GUI classes have been used for development of the workbench GUI plug-in. The
Jena RDF toolkit V.2.1 has been used for storing and querying RDF data. Jena
provides two options for storing RDF models, namely “in memory” and “persis-
tent over RDBMS” options. Currently Feta operates on an “in-memory” model
for better performance. For communicating with Soaplab catalog service classes
within Axis V.1.1 package have been used.

In its current implementation Feta is provided as a plug-in application within
Taverna workbench. Both components operate on the same Java Virtual Machine
hence eliminating any specialized mechanism for interprocess communication.

The source code for Feta is publicly available at http://cvs.mygrid.org.uk/feta/

Future work regarding the Feta implementation is given in Chapter 5.

4.9 Evaluation

In this thesis we are not providing a performance analysis on the query evaluation
of Feta Engine. This is mainly because such an effort would be an evaluation
of the particular underlying back-end technology that we currently use, namely
Jena, and its RDF(S) inferencing mechanism for which a performance analysis

has already been provided [18].

CHAPTER 4. SERVICE DISCOVERY IN MYGRID: FETA APPROACH 131

To date Jena back-end has proved acceptable performance with respect to our
needs. However, in Feta we are aiming at abstracting away from the underlying
technology so that RDF implementation frameworks other than Jena [4] can be
used as a back-end to Feta. Therefore we avoid providing performance evaluation
on a back-end technology, which may be swapped with alternative technologies.

Feta’s GUI plug-in to Taverna workbench has been qualitatively evaluated
by interviewing with its potential users. The users referred to here are scientists
running in silico bioinformatics experiments (i.e. ™ Grid workflows) to char-
acterize a deleted section in a complex region of Chromosome 7 in the human
genetic map [82]. This deletion causes the clinical condition known as Williams-
Beuren Syndrome. Characterization of a deleted region to produce a complete
genetic map requires repeated application of a range of standard bioinformatics
techniques to process genome information.

We have obtained the following feedback on Feta’s GUI search interface:

e Users build a search request by incrementally creating a group of query
criteria. While this brings simplicity to the GUI interface, the users have
expressed their preference to build a search request in a form filling fashion
where all possible criteria types are displayed on the form and only the

criteria values need to be supplied by the user.

e An implicit conjunction operator is applied to the set of query criteria that
has been created. The users have stated that they would also like to be able

to combine query criteria with other logical operators such as disjunction.

e The information model of Feta does not address non-functional properties
of services. However, as we will discuss in the next chapter, more research
and development in this area is planned to be done to enable description and
exploitation of such service aspects during discovery. While not detailing
any exact requirements for non-functional aspects that are of interest to
them, the users have stated that they would like to be able to create query
criteria on such aspects of a service (e.g. reliability rating greater than 0.6)

using the query panel.

e The services resulting from search requests are not ranked. This is be-
cause the Feta Engine performs exact matching of services and there is

no quantitative aspects of services that could be used for ranking. The

CHAPTER 4. SERVICE DISCOVERY IN MYGRID: FETA APPROACH 132

users have stated that they would like to be able to specify ranking criteria
to be applied search results based on quantitative service characteristics.
For example users would like result ranked descending with respect to a

non-functional aspect such as reliability rating.

e The results panel displays information on service name, type, textual de-
scription, service and point, and service low-level description (Scufl script
or WSDL doc) location. The users also expressed need to display detailed
service information such as service annotations, a service’s input/output

parameters and their associated annotations.

4.10 Chapter Summary

In this chapter we have described the user-oriented semantic service discovery
component, Feta, that we have developed within the ™ Grid project.

Similar to previous approaches in ™ Grid, the main objective behind Feta’s
conception is to support users during the design of bioinformatics workflows by
providing discovery of workflow building blocks. As a consequence of this, Feta
operates over ™ Grid’s service schema (see Table 4.4), that reflects a user’s point
of view of services rather than an invocation specific low-level view.

Based on previous experience on poor exploitation of domain knowledge ex-
pressed in Description Logics during discovery, Feta has experimented with the
use of a simplified form of the ™ Grid domain ontology for discovery. The sim-
plified form is a classification hierarchy (in RDF(S)), that is generated from the
ontology (in OWL). Use of a classification instead of a Description Logics based
ontology eliminates the need to use DL reasoning for discovery. This aspect of
Feta is similar to the bottom-up approaches to Semantic Web Services, where sim-
ple sub-class or is-a hierarchy crawling was performed during discovery [59] [91].

To help with the generation of domain-specific descriptions of services Feta
provides utility importer tools that mine usable information from low-level de-
scriptions and generate skeletal Feta descriptions.

The incorporation of classification terms into the Feta descriptions is done
via an annotation process, which is achieved by use of an external tool Pedro by
service annotators.

Annotated descriptions are converted to RDF format for storage and querying

within the Trader in Feta’s architecture. RDF based descriptions are queried via

CHAPTER 4. SERVICE DISCOVERY IN MYGRID: FETA APPROACH 133

Feta Ap-
proach
Back-end Model RDF
Capabilities ™WGrid - Service
Schema V2.
Non-functional As- | —
pects
Binding —

Discovery Mech. Feta APl +
RDF(S) Reason-

ing
Discovery Purpose | Composition
Stakeholders Human Users
Multi Trader Sup- | -

port

Temporary Regis- | -

tration

Table 4.4: Analysis of Feta With Respect to Our Survey Categories

use of RDQL within the Feta trader. While the Trader uses RDQL for its internal
evaluation of service search requests, it exposes an interface that reflects a set of
pre-defined search requests (canned queries) commonly used to search for services
in ™Grid. Furthermore the search functionality of Feta is semantically enhanced
via incorporation of RDF(S) reasoning into query evaluation.

Following its user-orientation objective, the search facilities that Feta provides
are made accessible through the use of a GUI plug-in to the Taverna workbench.

Feta is built as a search facility rather than a registry of services therefore it
does not support federations or temporary soft-state registration.

Further discussion on Feta, regarding its relation to ™ Grid service discovery
requirements, its intended use and its future extensions are given in the following

chapter.

Chapter 5
Conclusions and Future Work

Throughout this thesis we have stated that the motivations that have led to
development of Feta were: (1) to support a user-oriented model of services and
(2) to provide a medium-scale semantics for discovery. Having described all three
approaches to service discovery in ™ Grid we can position each in Figure 5.2:

o Frpressivity of descriptions. In Feta service descriptions are represented in
RDF(S) which provides less expressivity than a description logic but more
expressivity than a controlled vocabulary. As depicted graphically in Fig-
ure 5.1: With a DL ontology, as used in the Semantic-Rich approach, we
have the expressive power to generate a common vocabulary for concepts,
a set of relations among concepts, and more importantly the flexibility to
generate new concepts from existing ones using relationships. Such flexibil-
ity is especially useful for building a service classification that defines sub-
sumption relationships between conceptual descriptions of services. With
an RDF(S) classification we only have the expressive power to use hierar-
chically organized named concepts, which are related to certain parts of
a service description in Feta. With a common vocabulary (CV), terms of
which correspond to named concepts of a classification, we have the mini-
mal expressive power to provide descriptive information about a service. In
case of the use of a CV, as done in the View-Only approach, the semantic
description for a service is just a group of terms attached to different parts
of a description.

e The timing and type of reasoning. Unlike the Semantic-Rich approach and
many other Semantic Web Service discovery systems surveyed in Chapter

2, Feta employs DL reasoning only at the time of ontology development,

134

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 135

Semantic-Rich Feta View-Only

RDF(S)
Classification

2

Controlled
Vocabulary

DL Ontology

[
‘—vé g

has Input

has Input @
—>

2 Description 8

Description (has output o RDF 0
te L Zhas Outputg

-~ RDF > .
Descrlpnon performs<Lask °
O

Figure 5.1: A Summary of Three Service Discovery Approaches in ™ Grid.

re o

oy

and RDF(S) reasoning at the time of discovery (see Figure 5.2).

o Complexity of Deployment. There is a benefit in giving up on DLs and DL
reasoning at the time of discovery, which is low complexity in deployment
which can be observed in Feta and View-only approaches. When DLs and
reasoning are used for discovery the scalability of the system reduces due to
computational complexities of DL reasoners. Use of DLs and Reasoning has
caused the Semantic-Rich approach to have high complexity in deployment,
where users have been faced with the execution of a DL reasoner at discovery
time. The scalability issues can be coped with if the DL expressivity is
essential in a system. However in ™ Grid the capability to describe and
discover services through flexible conceptual descriptions in which all DL
concept constructors are used is not essential. DLs bring about complexity

in two respects, these are:

— The performance complexity of reasoning done during answering search
requests. As we have surveyed in Chapter 2, hybrid Traders that em-
ploy DL reasoning together with certain performance enhancing In-
formation Retrieval techniques are beginning to be deployed in real
world settings. While not using DLs for the time being by basing our
back-end model on RDF we leave the door open for extensions for DL
reasoning since most RDF frameworks including Jena have support for
it.

— The complexity involved in formulating search requests using rich DL

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 136

concept constructors. Even when the performance aspects of DL rea-
soners are overcomed by certain auxiliary techniques and restrictions
it is still not feasible to expect bioinformatics workflow designers to
build logical formulas (even with use of UI based guidance tools [52]).
There is recent promising research on frameworks that provide nat-
ural language based representation of knowledge representation for-
malisms [88]. Such frameworks can be used in the ™Grid semantic
discovery setting to ease the process of generating DL based service
descriptions and discovery requests as and when a requirement for DL

expressivity becomes essential.

e Reflecting the user-oriented view of different types of entities that can be
operational steps in a workflow. The only approach that fails to achieve this
goal is the View-only approach, due to its strict ties to WSDL. Feta has
followed the path set by the Semantic-Rich approach and adopted a user-
oriented view of services in its information model. This high-level model
of services has similarities with capability descriptions of different semantic
web service frameworks [67] [86] [55]. These frameworks are quite generic
and are targeted to be used in (extended by) different domains. These
frameworks described other aspects to services such as their pre-conditions
and effects, which are characteristics to be used during automated service
composition and were not needed in ™ Grid. We believe that there exists
no single appropriate data model for all domains. The data model we have

in Feta is tailored towards our needs for bioinformatics services.

5.1 Contributors to Discovery Process

During the development of Feta we have come to realize that there are different
types of users involved in the process of service publishing and discovery. These
multiple stakeholders need to have different views over descriptions of services
and domain knowledge. For the particular case of bioinformatics, there exist ser-
vice providers who are responsible for publishing organizational information for a
service, a textual description of its functionality, and a low-level interface specifi-
cation. Additionally there are annotators who are users responsible for creating
domain specific descriptions of services capabilities with respect to a commonly

agreed capability model using simplified representation of the domain knowledge

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 137

Type of
Reasuning
Description Logic RDF(S) No Reasoning
Time of
Reasoning
Ontology Feta
Development Yiew-COnly w x
Semantic-Rich
P Feta
Publishing S G S View-Only
bl L Semantic-Rich Fata Yiew-0nly

Figure 5.2: The Lifecycle of Reasoning Employed During Discovery.

modelled in domain ontologies. Ontologists are the users who are responsible for
creating detailed and formalized representations of the domain knowledge using
ontology editors and DL reasoners. These components require their users to have
a high level of know-how and expertise in knowledge-representation techniques.
And finally there are workflow builders who are equipped with practical /usable
tools that provide a simplified view of descriptions and classifications to aid dis-
covery. We believe that taking these multiple stakeholders into account is im-
portant during the design and development of discovery frameworks. Previous
discovery solutions in ™ Grid have also made such identifications among users,
however no distinctions have been made among annotators and workflow design-
ers. As stated in Chapter 1, service annotation and discovery can essentially be
performed by the same user in ™ Grid. However we anticipate that the num-
ber of users performing discovery will be much larger than those who provide
annotated descriptions for services. Furthermore these large number of service
discoverers are more likely to be unfamiliar with ™ Grid’s schema of services and
would prefer even simpler user interfaces than Pedro. Based on this expectation
we have provided separate interfaces for description generation and querying in
Feta rather than using a single one for both activities (as done in previous ap-

proaches). Discoverers are provided with a simple interface that exposes a set of

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 138

pre-defined search requests over parts of the service schema that is expected to
be most frequently searched over.

We were unable to observe any identification of multiple stakeholders in dis-
covery in the most recent semantic service discovery research efforts. However we
acknowledge that the identification of stake holders is a highly domain specific

process.

5.2 ™ Grid Discovery Requirements and Feta

Table 5.1 displays our list of requirements and indicates the ones that are met
by Feta. Feta meets requirement 1 and 2 by its user-oriented, operation-centric
information model. What makes Feta’s model user-oriented is its capture of the
user’s view of capabilities of workflow building blocks rather than the technology
specific low-level invocation interface specifications. Requirement 4 is met by
incorporation of domain classifications into descriptions and exploitation of the
classification hierarchy during service search. The two forms of discovery sup-
ported by Feta (i.e. keyword based, and query based) meet requirements 5.a and
5.c. Feta also meets requirements 6.a and 6.c by providing a single interface to
its search facilities from within Taverna.

Our objective was not to meet all requirements of service discovery in ™ Grid.
(See items 2, 3.b, 3.c, 5.b, 6.b). Feta has been rather been developed to be
complementary to other components in ™ Grid so that more of the requirements
are satisfied. Within the following sections we will first speculate on how Feta can
be augmented with existing ™ Grid components. We will then describe planned

extensions to Feta in light of the unmet requirements.

5.3 Future work

5.3.1 Intended Use of Feta in ™ Grid

Feta has been demonstrated alongside the Taverna workbench at the 2004 In-
telligent Systems in Molecular Biology (ISMB) conference. The ideas behind its
design have obtained positive feedback from the bioinformatics community which
currently has an increasing demand for a public bioinformatics registry. How-

ever, Feta itself is not intended to act as a registry, it is rather a semantic search

CHAPTER 5. CONCLUSIONS AND FUTURE WORK

Req. Description Feta

No.

1 User-oriented, workflow centric discovery of | Met
different types of services (i.e. operations)

2.a | Dynamic discovery of shim services Not met

2.b | Dynamic and Proactive discovery of candi- | Partially
date successor services in a workflow context | met

3.a | Information Model - Service Capabilities | Met
(Domain Specific description)

3.b | Information Model - Non-functional Aspects | Not Met

3.c | Information Model - Non-restricted 3rd party | Not Met

Assertions

4 Exploiting domain knowledge Met

5.a | Discovery by keyword based over name/text | Met
description

5.b | Discovery by browsing a service classification | Not Met
hierarchy

5.c | Discovery by sending search requests based | Met
on the information model

6.a | Deployment - Unified interface for search fa- | Met
cilities

6.b | Management of service provider, and third- | Not Met
party descriptions by their owners

6.c | Accessibility from the workflow design con- | Met
text

Table 5.1: The Addressing of Discovery Requirements by Feta.

139

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 140

facility that can be augmented with a service registry. We believe that service
registries (e.g. UDDI), with their design towards domain independent and ro-
bust publishing/querying facilities and their extensibility features (e.g. tModels
of UDDI Information model) provide an ideal complement to domain dependent
search facilities like Feta. As an immediate future work we are planning to deploy
Feta’s search facility as a web service that operates over descriptions advertised
in a public catalogue of bioinformatics services.

Currently Feta is not delivered as a service, which makes it only accessible
by human users using its GUI plug-in to Taverna. Feta’s accessibility from other
systems will be increased by its deployment as a web service.

There are several candidates to act as the service catalogue, such as the public
UDDI registries or the ™ Grid View component for storing Feta descriptions of
services. Among the candidate catalogues the ™ Grid View stands out as the one
that will meet more of ™ Grid discovery requirements (3.c, 6.b) with its support
for 3rd party metadata publishing without imposing a model/schema for the
structure of metadata. Furthermore the View component is a UDDI-compatible
registry. Integrating Feta with the View eliminates any further effort to integrate
Feta with standard UDDI registries.

5.3.2 Information Model Extensions
5.3.2.1 Service Non-Functional Properties

In its current form Feta’s information model only addresses the capability related
aspects of a service. Workflow designers also want to be able to search for services
based on their non-functional aspects such as performance, reliability, temporal
and geographic availability.

Even though integrated use of Feta with the View would allow 3rd party an-
notations to be made on services which may as well be on non-functional aspects
we think it would be more useful to the users if the non-functional aspects were
explicitly addressed by Feta’s information model.

Currently the detailed expectations from a model of non-functional aspects
are not clearly identified. We believe that these requirements will be articulated:
(1) As soon as a public bioinformatics service registry augmented with Feta is

deployed. Deployment of such a registry will proliferate semantic discovery

of services and hence draw the communities attention to different aspects of

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 141

service description and discovery including non-functional aspects.

(2) Once an analysis of provenance logs for services is done. Provenance logs
of in silico experiments contain information that can contribute to a non-
functional characterization of services in a workflow. Information in prove-
nance logs can be aggregated and used in updating non-functional service
descriptions. Hence an investigation of the structure and content of prove-
nance logs would be useful for sketching the main elements of a non-functional

service description model.

5.3.3 Supporting Different Forms of Discovery
5.3.3.1 Knowledge Driven Workflow Design

Currently the search facility of Feta is invoked upon explicit requests coming from
users (i.e. workflow designers). As future work on Feta we would like to extend its
Taverna client components so that they become the initiating parties of discovery
instead of the human users. Such a dynamic discovery architecture is needed
to meet the requirement on proactive discovery and the suggestion of potential
successor services in a workflow (Requirement 2.c). Similar proactive discovery

systems have been developed in other e-Science projects such as Geodise [24].

5.3.3.2 Discovery by Browsing

Another form of discovery required by workflow designers is Discovery by Brows-
ing a classification of services (Requirement 5.b). The domain classification used
within Feta contains different classifications of domain concepts that are ued in
characterization of service parameters, tasks, methods and so forth. As part of
our future work on Feta we will provide users with these multiple hierarchies of
domain concepts (a task hierarchy, a method hierarchy) and the services that are

described by use of those concepts.

5.3.4 GUI Extensions

In its current status Feta’s GUI plug-in to Taverna workbench is a prototype.
The usability of our components is of great importance to us. Therefore we are
planning to enhance the GUI interface of our system to make it more user-friendly

based on user-feedback given in the evaluation section of Chapter 4. Additionally

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 142

any extensions or changes to the data model that is of interest to the workflow

designers will be reflected to the Query Panel of the GUI plug-in.

5.3.5 Building a Custom Annotator

The annotator component Pedro commonly used in all discovery frameworks
has so far met expectations, by reflecting ™ Grid’s schema of services as a user-
interface and by allowing domain specific descriptions to be generated with re-
spect to this schema. In the systems developed, Pedro has been subject to ex-
tensions to be able to generate descriptions in forms other than its default form
XML. As part of the future work on discovery we plan to develop our custom

annotator component that would generate RDF descriptions of services.

5.3.6 Managing Changes to the Domain Ontology

The domain classification used in Feta is generated by exporting of the OWL
based "™ Grid domain ontology as a classification. This classification is later fed
into Feta’s architecture as a static file. Such a solution makes Feta vulnerable to
changes to the ontology. Possible changes can be: (1) changes in the DL based
ontology can cause the classification hierarchy to change while the numbers of
concepts or their names stay the same; (2) Changes in the DL ontology can
cause additions and removals of classes. Feta’s search engine should be able
to cope with multiple versions of the ™ Grid domain classification that can be
used in annotations of service descriptions and should adapt its search facilities
accordingly so that descriptions are queried over by use of the correct version
of the ontology used in their annotation. Such a solution necessitates use of an

ontology server, with versioning capabilities, within Feta.

5.3.7 Use of Feta Outside the Scope of ™ Grid

Feta is designed to be deployed in ™ Grid’s bioinformatics setting. Therefore it
is tightly integrated to its information model of services. Feta can be re-used in
other possible e-Science domains as long as its information model is applicable.
An example use of Feta is currently underway in a sister bioinformatics project
named MOBY [59]. In this project services used in plant genome analysis are

to be discovered by bioinformaticians. Hence the information model of Feta has

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 143

been found suitable and Feta will be used as a semantic search facility with just
re-configuring the domain ontology used within its architecture.

If Feta’s information model is to be amended, any change would have the
potential to invalidate the canned queries and GUI-query interface of Feta. Simi-
larly new mapping rules from XML to RDF descriptions would be necessary. We
might have designed the mapping rules to be configurable to provide for genericity
and reuse of our discovery framework in other domains. However we did not find
much value in making configurable mappings between XML to RDF when this
configurable generic approach could not be propagated to the schema-dependent

canned queries and the GUI interface that presents them and their results.

5.3.8 Enhanced Discovery in ™ Grid: Going Beyond Feta

Considering the current status of Feta together with its planned integration with
the View and its future extensions, some of the requirements are still left unmet.
These are the ones related to dynamic discovery, and planning of shim services
and discovery of workflows based not only on their internal sub-components but
also based on their data and control flow. Both of these areas of discovery require
extensive and long-term research which is expected to incorporate Al planning
and inexact graph matching techniques into ™ Grid service discovery environment
respectively. Research in these areas has started to be undertaken in ™ Grid. Any
outcomes of these efforts that has effects on Feta will be analyzed and incorpo-
rated as needed.

The time-frame spent during development of Feta has witnessed a fast growth
in the number of bioinformatics services from a dozen to nearly a thousand.
The growth is continuing as more service providers make their resources and
tools available as services. In such a setting, discovery is becoming increasingly
important for users who are faced with the challenge of selecting appropriate
services to be used in workflows. It is our belief that, upon its deployment, Feta
will be used by a large user base and become an vital part of the Bioinformatics
in silico experiment lifecycle, without which workflow design would be very time

consuming and tedious.

Bibliography

[1] Distributed Management Task Force — Common Information Model (CIM).
http://www.dmtf.org/standards/cim/.

2] Globus Monitoring and Discovery System-3 MDS-3. http://www.globus.
org/mds/mds30.html.

[3] North American Industry Classification System (NAICS). http://wuw.

naics.com/.
[4] Sesame Open Source RDF Database. http://www.openrdf .org/.
[5] The Dublin Core Metadata Initiative. http://dublincore.org/.

(6] The United Nations Standard Products and Services Code (UNSPSC).
http://www.unspsc.org/.

(7] Universal Description Discovery and Integration (UDDI) Technical Whitepa-

per.

[8] Importing the Semantic Web in UDDI. In C. Bussler, R. Hull, S. Mcllraith,
M. E. Orlowska, B. Pernici, and J. Yang, editors, Proceedings of Web Ser-
vices, E-Business, and the Semantic Web: Caise 2002 International Work-
shop, WES, volume 2512 of Lecture Notes in Computer Science, 2002.

9] A.S. Ali, O. F. Rana, R. Al-Ali, and D. W. Walker. UDDIe: An Extended
Registry for Web Services. In Proceedings of Workshop on Service Oriented
Computing: Models, Architectures and Applications. IEEE Computer Society
Press, 2003.

[10] S. Andreozzi, M. Sgaravatto, and C. Vistoli. Sharing a conceptual model

of grid resources and services. In Proceedings of Computing in High Energy

144

BIBLIOGRAPHY 145

[11]

[13]

[14]

[15]

[16]

[17]

[18]

and Nuclear Physics (CHEP)2003 Conference, June 2003. Provided by the
NASA Astrophysics Data System.

A. Ankolekar, M. Burstein, J. R. Hobbs, O. Lassila, D. McDermott, D. Mar-
tin, S. A. Mcllraith, S. Narayanan, M. Paolucci, T. Payne, and K. Sycara.
DAML-S: Web Service Description for the Semantic Web. In I. Horrocks
and J. A. Hendler, editors, First International Semantic Web Conference,

volume 2342 of Lecture Notes in Computer Science. Springer, June 2002.

A. Barros, K. Duddy, M. Lawley, Z. Milosevic, K. Raymond, and A. Wood.
Processes, Roles, and Events: UML Concepts for Enterprise Architecture.
In The Unified Modeling Language, Advancing the Standard, Third Interna-

tional Conference, volume 1939 of Lecture Notes in Computer Science, pages
62-77, York, UK, Oct. 2000. Springer.

S. Bechhofer, I. Horrocks, C. Goble, and R. Stevens. OilEd: a Reason-able
Ontology Editor for the Semantic Web. In Proceedings of KI2001, Joint

German/Austrian conference on Artificial Intelligence, volume 2174, pages

396-408. Springer-Verlag, LNAI, 2001.

T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific
American, 284(5):35-43, 2001.

D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. F.
Nielsen, S. Thatte, and D. Winer. Simple Object Access Protocol (SOAP).
W3c recommendation, World Wide Web Consortium, May 8th, 2000 2000.

D. Brickley, R. Guha, and B. McBride. RDF Vocabulary Description Lan-
guage 1.0: RDF Schema. Working draft, World Wide Web Consortium,
January 2003.

C. Bussler, D. Fensel, and A. Maedche. The Web Services Modeling Frame-
work WSMF. Electronic Commerce Research and Applications, 1(2):113-137,
Summer 2002.

J. J. Carroll, I. Dickinson, C. Dollin, D. Reynolds, A. Seaborne, and

K. Wilkinson. Inference Support in Jena. On-line documentation.

BIBLIOGRAPHY 146

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

J. J. Carroll, I. Dickinson, C. Dollin, D. Reynolds, A. Seaborne, and
K. Wilkinson. Jena: Implementing the Semantic Web Recommendations.
Technical report, HP Labs, December 2003.

E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Services
Description Language (WSDL) 1.1.

M. Clark. UDDI - The Weather Report. Article, Web Services Architect,
2001.

Condor. http://www.cs.wisc.edu/condor/.

A. Cooke, W. Nutt, J. Magowan, P. Taylor, J. Leake, R. Byrom, L. Field,
S. Hicks, M. Soni, A. Wilson, R. Cordenonsi, L. Cornwall, A. Djaoui,
S. Fisher, N. Podhorszki, B. Coghlan, S. Kenny, D. OCallaghan, and J. Ryan.
Relational Grid Monitoring Architecture (R-GMA). In Proceedings of the UK
e-Science All Hands Meeting. EPSRC, September 2003.

S. Cox, L. Chen, S. Campobasso, M. Duta, M. Eres, M. Giles, C. Goble,
7. Jiao, A. Keane, G. Pound, A. Roberts, N. Shadbolt, F. Tao, J. Wason,
and F. Xu. Grid Enabled Optimisation and Design Search (GEODISE). In
UK e-Science All Hands Meeting 2002, Sheffield, UK, September 2002.

F. Curbera, D. Ehnebuske, and D. Rogers. Using WSDL in a UDDI Registry,
Version 1.07. Best practice document, May 2002.

K. Czajkowski, D. F. Ferguson, I. Foster, J. Frey, S. Graham, I. Sedukhin,
D. Snelling, S. Tuecke, and W. Vambenepe. Web Services Resource Frame-
work WSRF. Technical report, Globus Alliance and IBM, March 5th, 2004
2005.

K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman. Grid Information
Services for Distributed Resource Sharing. In Proceedings of, 10th Inter-
national Symposium on High Performance Distributed Computing, HPDC,
pages 181-194, San Francisco, CA, USA, August 2001. IEEE Press.

K. Decker, K. Sycara, and M. Williamson. Middle-agents for the internet.
In In Proceedings of the 15th International Joint Conference on Artificial
Intelligence (IJCAI-97), pages 578-583. Morgan Kaufmann Publishers, 1997.

BIBLIOGRAPHY 147

[29]

[30]

[31]

[33]

[35]

[36]

[37]

[38]

[39]

S. Decker, J. Jannink, S. Melnik, P. Mitra, S. Staab, R. Studer, and
G. Wiederhold. An Information Food Chain for Advanced Applications on
the WWW. In Proceedings of the 4th European Conference on Research and

Advanced Technology for Digital Libraries, pages 490-493. Springer-Verlag,
2000.

The e-Science Core Programme. http://www.escience-grid.org.uk/.

D. Fensel, V. R. Benjamins, E. Motta, and B. J. Wielinga. UPML: A frame-
work for knowledge system reuse. In IJCAI pages 16-23, 1999.

D. Fensel, F. van Harmelen, I. Horrocks, D. McGuinness, and P. F. Patel-
Schneider. OIL: An ontology infrastructure for the semantic web. [FEE
Intelligent Systems, 16(2):38-45, 2001.

R. T. Fielding and R. N. Taylor. Principled Design of the Modern Web
Architecture. ACM Transactions on Internet Technology (TOIT), 2(2):115—
150, 2002.

I. Foster and C. Kesselman. Globus: A Metacomputing Infrastructure
Toolkit. The International Journal of Supercomputer Applications and High
Performance Computing, 11(2):115-128, Summer 1997.

I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke. Grid Services for Dis-
tributed System Integration. IEEE Computer Magazine, 35(6):37-46, June
2002.

I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the Grid: En-
abling Scalable Virtual Organizations. The International Journal of High
Performance Computing Applications, 15(3):200-222, Fall 2001.

K. L. Garwood, C. Taylor, K. Runte, A. Brass, S. Oliver, and N. W. Paton.
Pedro: A Configurable Data Entry Tool for XML. Bioinformatics, 2004. To

appear.

D. Gisolfi. Is Web services the reincarnation of CORBA? IBM Developer-
works On-line library, July 2001.

C. A. Goble, S. Pettifer, R. Stevens, and C. Greenhalgh. Enhancing Ser-
vices and Applications with Knowledge and Semantics (Chapter23) The Grid:

BIBLIOGRAPHY 148

[40]

[45]

[47]

[48]

Blueprint for a New Computing Infrastructure. Morgan Kaufman, 2nd edi-
tion, 2003.

C. A. Goble, S. Pettifer, R. Stevens, and C. Greenhalgh. Knowledge Inte-
gration: In silico Fxperiments in Bioinformatics in The Grid: Blueprint for

a New Computing Infrastructure. Morgan Kaufman, 2nd edition, 2003.

T. Gruber. A translation approach to portable ontology specifications.
Knowledge Acquisition, 5(2):199-220, 1993.

V. Haarslev and R. Mller. High performance reasoning with very large knowl-
edge bases. In International Workshop in Description Logics 2000 (DL2000),
2000.

I. Horrocks. Optimising Tableaux Decision Procedures for Description Logics.
PhD thesis, University of Manchester, 1997.

I. Horrocks. DAML+OIL: a description logic for the semantic web. Bull.
of the IEEE Computer Society Technical Committee on Data Engineering,
25(1):4-9, Mar. 2002.

I. Horrocks, L. Li, D. Turi, and S. Bechhofer. The Instance Store: DL Rea-
soning with Large Numbers of Individuals. In Proc. of the 2004 Description
Logic Workshop (DL 2004), pages 31-40, 2004.

I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen. From SHIQ and
RDF to OWL: The Making of a Web Ontology Language. Journal of Web
Semantics, 1(1):7-26, 2003.

D. Hull, R. Stevens, P. Lord, and C. Goble. Integrating bioinformatics
resources using shims. Intelligent Systems for Molecular Biology (ISMB):
Poster, 2004.

T. Kawamura, J.-A. D. Blasio, T. Hasegawa, M. Paolucci, and K. Sycara.
Public Deployment of Semantic Service Matchmaker with UDDI Business
Registry. In S. A. Mcllraith, D. Plexousakis, and F. van Harmelen, editors,
Proc. of the 2004 International Semantic Web Conference (ISWC 2004),
number 3298 in Lecture Notes in Computer Science, pages 471-485. Springer,
2004.

BIBLIOGRAPHY 149

[49]

[50]

[54]

[56]

T. Kawamura, J. D. Blasio, T. Hasegawa, M. Paolucci, and K. Sycara. Pre-
liminary Report of Public Experiment of Semantic Service Matchmaker with
UDDI Business Registry. In M. Orlwoska, S. Weerawarana, and M. Papa-
zoglu, editors, Proceedings of First International Conference on Service Ori-
ented Computing (ICSOC 2003), number 2910 in Lecture Notes in Computer
Science, pages 208-224. Springer, 2003.

M. Kifer and G. Lausen. F-logic: a Higher-Order Language for Reasoning
about Objects, Inheritance, and Scheme. In Proceedings of ACM SIGMOD
Conference, pages 13446, June 1989.

M. Kifer, G. Lausen, and J. Wu. Logical foundations of object-oriented and
frame-based languages. Journal of ACM, 42:741-843, July 1995.

H. Knublauch. An Al tool for the real world - knowledge modeling with
protege. Java World, June 2003.
Walkthrough of Protege.

L. Krauter, R. Buyya, and M. Maheswaran. A taxonomy and survey of grid
resource management systems for distributed computing. Software - Practice
and Ezperience, 32(2):135-164, 2002.

R. Lara. Semantics for Web Service Discovery and Composition. Presen-
tation as part of KnowledgeWeb Project Meeting, 2004. Computer Science

Department University of Manchester.

R. Lara, H. Lausen, S. Arroyo, J. de Bruijn, and D. Fensel. Semantic Web
Services: description requirements and current technologies. In Proceedings

of the International Workshop on Electronic Commerce, Agents, and Seman-

tic Web Services. (ICEC 2003), 2003.

L. Li and I. Horrocks. A Software Framework for Matchmaking Based on
Semantic Web Technology. In Proceedings of the Twelfth International World
Wide Web Conference WWW, pages 331-339. ACM, 2003.

P. Lord, S. Bechhofer, M. D. Wilkinson, G. Schiltz, D. Gessler, D. Hull,
C. Goble, and L. Stein. Applying Semantic Web Services to bioinformatics:
Experiences gained, lessons learnt. In International Semantic Web Confer-
ence, 2004. Accepted For Publication.

BIBLIOGRAPHY 150

[58]

[59]

[60]

[64]

[68]

F. Manola, E. Miller, and B. McBride. RDF Primer. Working draft, World
Wide Web Consortium, January 2003.

Mark D. Wilkinson and Matthew Links. BioMOBY: An open source bi-
ological web services proposal. Briefings in Bioinformatics, 3(4):331-341,
2002.

D. L. McGuinness, R. Fikes, L. A. Stein, and J. Hendler. DAML-ONT:
An Ontology Language for the Semantic Web. Spinning the Semantic Web:
Bringing the World Wide Web to Its Full Potential., 2002.

D. L. McGuinness and F. van Harmelen. OWL Web Ontology Language:
Overview. Working draft, World Wide Web Consortium, March 2003.

S. A. Mcllraith, T. C. Son, and H. Zeng. Semantic Web Services. [FEE
Intelligent Systems, 16(2):46-53, 2001.

K. Michalickova, G. D. Bader, M. Dumontier, H. Lien, D. B. R. Isserlin, and
C. W. Hogue. SeqHound: biological sequence and structure database as a
platform for bioinformatics research. BMC' Bioinformatics, 3(32), 2002.

S. Miles, J. Papay, T. Payne, K. Decker, and L.. Moreau. Towards a Protocol
for the Attachment of Semantic Descriptions to Grid Services. page 10, Jan.
2004.

L. Moreau, S. Miles, J. Papay, K. Decker, and T. Payne. Publishing Semantic
Descriptions of Services. GGF9, 2003.

E. Motta. An Overview of the OCML Modelling Language. In Proceedings of
8 th Workshop on Knowledge Engineering: Methods and Languages KEML,
1998.

E. Motta, J. Domingue, L. Cabral, and M. Gaspari. IRS-II: A Framework
and Infrastructure for Semantic Web Services. In D. Fensel, K. Sycara,
and J. Mylopoulos, editors, In Proceedings of the 2nd International Seman-
tic Web Conference 2003 (ISWC 2003), number 2870 in Lecture Notes in
Computer Science. Springer, 2003.

Object Management Group. The Common Object Request Brocker: Archi-
tecture and Specification, revision 2.1 edition, July 1997.

BIBLIOGRAPHY 151

[69]

[70]

[71]

[76]

[77]

Object Management Group. CORBA Naming Service Specification, May
2000.

Object Management Group(OMG). Trading Object Service Specification,
May 2000.

T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M. Greenwood,
T. Carver, K. Glover, M. R. Pocock, A. Wipat, and P. Li. Taverna: A
tool for the composition and enactment of bioinformatics workflows. Bioin-
formatics, 2004.

J. OSullivan, D. Edmond, and A. t. Hofstede. Whats in a service?: Towards
accurate description of non-functional service properties. Distributed and
Parallel Databases Journal Special issue on E-Services, 12(2-3):1117-133,
2002.

M. Paolucci, T. Kawamura, T. R. Payne, and K. P. Sycara. Semantic Match-
ing of Web Services Capabilities. In I. Horrocks and J. A. Hendler, editors,
First International Semantic Web Conference, volume 2342 of Lecture Notes

in Computer Science. Springer, JUNE 2002.

E. Prud’hommeaux and B. Grosof. RDF Query Survey. Technical report,
W3C, April 2004.

R. Raman, M. Livny, and M. H. Solomon. Matchmaking: Distributed Re-
source Management for High Throughput Computing. In In Proc. 7th IEEE

Symposium on High Performance Distributed Computing, pages 140-149,
1998.

S. Ran. A model for web services discovery with QoS. SIGecom FEzxch.,
4(1):1-10, 2003.

P. Rice, I. Longden, and A. Bleasby. EMBOSS: The European Molecular
Biology Open Software Suite. Trends in Genetics, 16(6):276-277, 2000.

M. Sabou. Learning Web Service Ontologies from the ™ Grid Service Col-
lection. Given at Information Management Group Seminar Series, October

2004. Computer Science Department University of Manchester.

BIBLIOGRAPHY 152

[79]

[80]

[81]

[82]

[84]

[36]

[87]

M. Senger, P. Rice, and T. Oinn. Soaplab — a unified Sesame door to analysis
tools. In Proceedings of the UK e-Science programme All Hands Conference,
September 2003.

S. Shukla and A. Deshpande. Tutorial: Ldap directory services - just another
database application? In W. Chen, J. F. Naughton, and P. A. Bernstein,
editors, Proceedings of the 2000 ACM SIGMOD International Conference on
Management of Data, volume 29, page 580. ACM, 2000.

R. Stevens, C. Goble, and S. Bechhofer. Ontology-based Knowledge Rep-
resentation for Bioinformatics. Briefings in Bioinformatics, 1(4):398-416,
November 2000.

R. Stevens, H. Tipney, C. Wroe, T. Oinn, M. Senger, P. Lord, C. Goble,
A. Brass, and M. Tassabehji. Exploring Williams Beuren Syndrome Using
WGrid. In Bioinformatics, volume 20, pages i303-310, 2004. Intelligent
Systems for Molecular Biology (ISMB) 2004.

R. D. Stevens, A. J. Robinson, and C. A. Goble. ™ Grid: Personalised
bioinformatics on the information grid . Bioinformatics, 17 Suppl. 1:302—
302, 2003. ISMB 2003.

K. Sycara, S. Widoff, M. Klusch, and J. Lu. LARKS: Dynamic Matchmak-
ing Among Heterogeneous Software Agents in Cyberspace. In Autonomous
Agents and Multi-Agent Systems, 5:173-203, 2002.

H. Tangmunarunkit, S. Decker, and C. Kesselman. Ontology-based Resource
Matching in the Grid—The Grid meets the Semantic Web. In D. Fensel,
K. Sycara, and J. Mylopoulos, editors, Proceedings of the 2003 International

Semantic Web Conference ISWC, number 2870 in Lecture Notes in Com-
puter Science. Springer, 2003.

The OWL-S Services Coalition. OWL-S Semantic Markup for Web Services.

A. Tsalgatidou and T. Pilioura. An Overview of Standards and Related
Technology in Web Services. Journal of Distributed and Parallel Databases,
12:135-162, 2002.

BIBLIOGRAPHY 153

[33]

[89]

[90]

[96]

University of Brighton, Information Technology Research Institute . What
you see is what you meant. http://www.itri.brighton.ac.uk/projects/
WYSIWYM/.

M. Uschold, M. King, S. Moralee, and Y. Zorgios. The Enterprise Ontology.
The Knowledge Engineering Review, 13(1):31-89, 1998.

J. Veizades, E. Guttman, C. Perkins, and S. Kaplan. Service Location Pro-
tocol (SLP). Official Internet Protocol Standard, Internet Engineering Task
Force, Network Working Group, 1997.

K. Verma, K. Sivashanmugam, A. Sheth, A. Patil, S. Oundhakar, and
J. Miller. METEOR-S WSDI: A Scalable Infrastructure of Registries for
Semantic Publication and Discovery of Web Services. Journal of Informa-

tion Technology and Management, 2004.

W. Vogels. Web services are not distributed objects. IEEE Internet Com-
puting, 7(6):59-66, 2003.

World Wide Web Consortium (W3C). Web Services Architecture, February
2004.

C. Wroe, C. Goble, M. Greenwood, P. Lord, S. Miles, J. Papay, T. Payne,
and L. Moreau. Automating Experiments Using Semantic Data on a Bioin-
formatics Grid. IEEE Intelligent Systems, 19(1):48-55, 2004.

C. Wroe, R. Stevens, C. Goble, A. Roberts, and M. Greenwood. A Suite of
DAML+OIL Ontologies to Describe Bioinformatics Web Services and Data.

the International Journal of Cooperative Information Systems, 12(2):597—
624, 2003.

S. Zanikolas and R. Sakellariou. A taxonomy of grid monitoring systems.

Journal of Future Generation Computer Systems, 2004. To appear.

Appendix A

MYGrid Service Schema v.2 as
XSD

<?xml version="1.0" encoding="UTF-8"7>

<xs:schema targetNamespace="pd"

xmlns="pd" xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:uddi="urn:uddi-org:api_v2"
elementFormDefault="qualified"

attributeFormDefault="unqualified">

<xs:element name="serviceDescriptions">
<xs:complexType>
<xs:sequence>
<xs:element ref="serviceDescription"
minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="serviceDescription">
<xs:complexType>
<xs:sequence>
<xs:element name="serviceName"
type="xs:string" minOccurs="0"/>

<xs:element ref="organisation"

154

APPENDIX A. MYGRID SERVICE SCHEMA V.2 AS XSD 155

minOccurs="0"/>

<xs:element name="author"

type="xs:string" minOccurs="0"/>

<xs:element name="locationURL"

type="xs:anyURI" minOccurs="0"/>

<xs:element name="interfaceWSDL"

type="xs:anyURI" minOccurs="0"/>

<xs:element name="serviceDescriptionText"

type="xs:string" minOccurs="0"/>

<xs:element ref="operations"

minOccurs="0"/>

<xs:element name="serviceType"

min0ccurs="0">

<xs:simpleType>

<xs:restriction base="xs:string">
<xs:enumeration value="Soaplab service"/>
<xs:enumeration value="WSDL service"/>
<xs:enumeration value="Workflow service"/>
</xs:restriction>
</xs:simpleType>

</xs:element>

</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="serviceOperation">
<xs:complexType>
<xs:sequence>
<xs:element name="operationName" type="xs:string"
minOccurs="0"/>
<xs:element name="portName" type="xs:string"
minOccurs="0"/>
<xs:element name="operationDescriptionText"
type="xs:string" minOccurs="0"/>

<xs:element ref="operationInputs"

APPENDIX A. MYGRID SERVICE SCHEMA V.2 AS XSD 156

minOccurs="0"/>
<xs:element ref="operationOutputs"
minOccurs="0"/>
<xs:element name="operationTask"
type="xs:string" minOccurs="0"/>
<xs:element name="operationResource"
type="xs:string" minOccurs="0"/>
<xs:element name="operationMethod"
type="xs:string" minOccurs="0"/>
<xs:element name="operationApplication"
type="xs:string" minOccurs="0"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="parameter">
<xs:complexType>
<xs:sequence>

<xs:element name="parameterName"
type="xs:string" minOccurs="0"/>
<xs:element name="messageName"
type="xs:string" minOccurs="0"/>
<xs:element name="parameterDescription"
type="xs:string" minOccurs="0"/>
<xs:element name="defaultValue"
type="xs:string" minOccurs="0"/>
<xs:element name="isConfigurationParameter"
type="xs:boolean" minOccurs="0"/>
<xs:element name="semanticType"
type="xs:string" minOccurs="0"/>
<xs:element name="XMLSchemaTypeName"
type="xs:string" minOccurs="0"/>
<xs:element name="XMLSchemaURI"
type="xs:anyURI" minOccurs="0"/>
<xs:element ref="formats" minOccurs="0"/>

<xs:element name="transportDataType"

APPENDIX A. MYGRID SERVICE SCHEMA V.2 AS XSD

type="xs:string" minOccurs="0"/>
<xs:element name="collectionSemanticType"
type="xs:string" minOccurs="0"/>
<xs:element name="collectionFormat"
type="xs:string" minOccurs="0"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="operations'">
<xs:complexType>
<xs:sequence>
<xs:element ref="serviceOperation"
minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="operationInputs">
<xs:complexType>
<xs:sequence>
<xs:element ref="parameter"
minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="operationOutputs">
<xs:complexType>
<xs:sequence>
<xs:element ref="parameter"
minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="formats">
<xs:complexType>

<Xs:sequence>

157

APPENDIX A. MYGRID SERVICE SCHEMA V.2 AS XSD 158

<xs:element name="formatIdentifier" type="xs:string"
minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="contacts">
<xs:complexType>
<Xs:sequence>
<xs:element ref="contact"
minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="contact">
<xs:complexType>
<xs:sequence>
<xs:element name="contactType"
type="xs:string" minOccurs="0"/>
<xs:element name="personName"
type="xs:string" minOccurs="0"/>
<xs:element name="description"
type="xs:string" minOccurs="0"/>
<xs:element name="phone" type="xs:string"
minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="email" type="xs:string"
minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="address" type="xs:string"
minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="organisation'">
<xs:complexType>
<xs:sequence>

<xs:element name="authorizedName"

APPENDIX A. MYGRID SERVICE SCHEMA V.2 AS XSD 159

type="xs:string" minOccurs="0"/>
<xs:element name="organisationName"
type="xs:string" minOccurs="0"/>
<xs:element name="organisationDescriptionText"
type="xs:string"/>
<xs:element name="organisationKey"
type="xs:string" minOccurs="0"/>
<xs:element name="contacts"
minOccurs="0"/>
</xs:sequence>
</xs:complexType>
</xs:element>

</xs:schema>

Appendix B

Extract of ™Y Grid Domain

Classification

<?7xml version=’1.0’ encoding=’I1S50-8859-1’7>
<!DOCTYPE rdf:RDF [

<!ENTITY rdf ’http://www.w3.org/1999/02/22-rdf-syntax-ns#’>

<!ENTITY a ’http://www.w3.o0rg/2000/01/rdf-schema#’>
1>
<rdf:RDF xmlns:rdf="&rdf;"

xmlns:a="&a;">

<a:Class rdf:about="http://www.mygrid.org.uk/ontology#
bioinformatics_application">

<a:subClassOf

rdf :resource="http://www.mygrid.org.uk/ontology#

bioinformatics_concept"/>

</a:Class>

<a:Class rdf:about="http://www.mygrid.org.uk/ontology#
bioinformatics_algorithm">

<a:subClassOf

rdf :resource="http://www.mygrid.org.uk/ontology#

bioinformatics_concept"/>

</a:Class>

<a:Class rdf:about="http://www.mygrid.org.uk/ontology#

bioinformatics_concept"/>

160

APPENDIX B. EXTRACT OF MYGRID DOMAIN CLASSIFICATION

<a:Class rdf:about="http://www.mygrid.org.uk/ontology#
bioinformatics_data">

<a:subClassOf

rdf:resource="http://www.mygrid.org.uk/ontology#

bioinformatics_concept"/>

</a:Class>

<a:Class rdf:about="http://www.mygrid.org.uk/ontology#
bioinformatics_database'">

<a:subClass0Of

rdf:resource="http://www.mygrid.org.uk/ontology#

bioinformatics_concept"/>

</a:Class>

<a:Class rdf:about="http://www.mygrid.org.uk/ontology#
Basic_Local_Alignment_Search_Tool">

<a:subClassOf

rdf:resource="http://www.mygrid.org.uk/ontology#

bioinformatics_application"/>

</a:Class>

<a:Class rdf:about="http://www.mygrid.org.uk/ontology#
DDBJ">

<a:subClassOf

rdf:resource="http://www.mygrid.org.uk/ontology#

bioinformatics_database"/>

</a:Class>

<a:Class rdf:about="http://www.mygrid.org.uk/ontology#
EMBOSS">

<a:subClassOf

rdf :resource="http://www.mygrid.org.uk/ontology#

bioinformatics_application"/>

</a:Class>

<a:Class rdf:about="http://www.mygrid.org.uk/ontology#
FSSP">

<a:subClassOf

rdf :resource="http://www.mygrid.org.uk/ontology#

161

APPENDIX B. EXTRACT OF MYGRID DOMAIN CLASSIFICATION

bioinformatics_database"/>

</a:Class>

<a:Class rdf:about="http://www.mygrid.org.uk/ontology#
SWISS-PROT">

<a:subClassOf

rdf:resource="http://www.mygrid.org.uk/ontology#

protein_sequence_database"/>

</a:Class>

<a:Class rdf:about="http://www.mygrid.org.uk/ontology#
sequence'>

<a:subClassOf

rdf:resource="http://www.mygrid.org.uk/ontology#

bioinformatics_data"/>

</a:Class>

<a:Class rdf:about="http://www.mygrid.org.uk/ontology#
biological_sequence">

<a:subClassOf

rdf:resource="http://www.mygrid.org.uk/ontology#

sequence"/>

</a:Class>

<a:Class rdf:about="http://www.mygrid.org.uk/ontology#
nucleotide_sequence">

<a:subClassOf

rdf :resource="http://www.mygrid.org.uk/ontology#

biological_sequence"/>

</a:Class>

<a:Class rdf:about="http://www.mygrid.org.uk/ontology#
genome_nucleotide_sequence">

<a:subClassOf

rdf :resource="http://www.mygrid.org.uk/ontology#

nucleotide_sequence"/>

</a:Class>

162

APPENDIX B. EXTRACT OF MYGRID DOMAIN CLASSIFICATION

<a:Class rdf:about="http://www.mygrid.org.uk/ontology#
DNA_sequence">

<a:subClassOf

rdf:resource="http://www.mygrid.org.uk/ontology#

nucleotide_sequence"/>

<a:subClassOf

rdf:resource="http://www.mygrid.org.uk/ontology#

sequence"/>

</a:Class>

<a:Class rdf:about="http://www.mygrid.org.uk/ontology#
primer_sequence">

<a:subClassOf

rdf:resource="http://www.mygrid.org.uk/ontology#

nucleotide_sequence"/>

</a:Class>

<a:Class rdf:about="http://www.mygrid.org.uk/ontology#
protein_sequence">

<a:subClassOf

rdf:resource="http://www.mygrid.org.uk/ontology#

biological_sequence"/>

</a:Class>

<a:Class rdf:about="http://www.mygrid.org.uk/ontology#
reverse_primer_sequence">

<a:subClassOf

rdf :resource="http://www.mygrid.org.uk/ontology#

primer_sequence"/>

</a:Class>

<a:Class rdf:about="http://www.mygrid.org.uk/ontology#
sequence_alignment_algorithm">

<a:subClassOf

rdf:resource="http://www.mygrid.org.uk/ontology#

bioinformatics_algorithm"/>

163

APPENDIX B. EXTRACT OF MYGRID DOMAIN CLASSIFICATION 164

</a:Class>

<a:Class rdf:about="http://www.mygrid.org.uk/ontology#
Needleman_and_Wunsch_global_sequence_alignment_algorithm">

<a:subClassOf

rdf :resource="http://www.mygrid.org.uk/ontology#

sequence_alignment_algorithm"/>

</a:Class>

<a:Class rdf:about="http://www.mygrid.org.uk/ontology#
Smith-Waterman_sequence_alignment_algorithm">

<a:subClassOf

rdf:resource="http://www.mygrid.org.uk/ontology#

sequence_alignment_algorithm"/>

</a:Class>

<a:Class rdf:about="http://www.mygrid.org.uk/ontology#
word_match_sequence_alignment_algorithm">

<a:subClassOf

rdf:resource="http://www.mygrid.org.uk/ontology#

sequence_alignment_algorithm"/>

</a:Class>

</rdf :RDF>

