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Abstract. The interchange of ontologies across the World Wide Web (WWW) 
and the cooperation among heterogeneous agents placed on it is the main reason 
for the development of a new set of ontology specification languages, based on 
new web standards such as XML or RDF. These languages (SHOE, XOL, RDF, 
OIL, etc) aim to represent the knowledge contained in an ontology in a simple 
and human-readable way, as well as allow for the interchange of ontologies 
across the web. In this paper, we establish a common framework to compare the 
expressiveness and reasoning capabilities of  “traditional” ontology languages 
(Ontolingua, OKBC, OCML, FLogic, LOOM) and “web-based” ontology 
languages, and conclude with the results of applying this framework to the 
selected languages. 

1 Introduction 

In the past years, a set of languages have been used for implementing ontologies. 
Ontolingua [6] is perhaps the most representative of all of them. Other languages have 
also been used for specifying ontologies: LOOM [16], OCML [17], FLogic [12], etc. 
Protocols such as OKBC[4] have been also developed to access KR systems. KR 
paradigms underlying these languages and protocols are diverse: frame-based, 
description logic, first (and second) order predicate calculus and object-oriented. 

In the recent years, new languages for the web have been created -XML [2], RDF 
[13] and RDF Schema [3]- and are still in a development phase. Other languages for 
the specification of ontologies, based on the previous ones, have also emerged: SHOE 
[15], XOL [11] and OIL [10]. Preliminary studies exist on the use of web-based 
languages for representing ontologies. In [9], an analysis is shown on the role of 
HTML, XML and RDF when providing semantics for documents on the Web. 

The purpose of this  paper is to analyse the tradeoff between expressiveness (what 
can be said) and inference (what can be obtained from the information represented) 
in traditional and web-based ontology languages. In Section 2, we will present a 
framework for evaluating the expressiveness and inference mechanisms of ontology 
specification languages. Section 3 will describe both the so-called traditional ontology 
languages and the web-based ontology languages. As a conclusion, section 4 presents 
a discussion on the results of the study. 
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2 Evaluation Framework 

The goal of this section is to set up a framework for comparing the expressiveness and 
inference mechanisms of potential ontology languages. We use in our analysis the 
CommonKADS framework [18], which distinguishes between domain knowledge and 
inference knowledge. Figure 1 summarises the relationship between the KR 
components and the reasoning mechanisms of languages. 

2.1 Domain Knowledge 

The domain knowledge describes the main static information and knowledge objects 
in an application domain [18]. We identify the main kind of components used to 
describe domain knowledge in ontologies. Accordingly to Gruber [8], knowledge in 
ontologies can be specified using five kind of components: concepts, relations, 
functions, axioms and instances. Concepts in the ontology are usually organised in 
taxonomies. Sometimes the notion of ontology is somewhat diluted, in the sense that 
taxonomies are considered to be full ontologies [19]. Other components like 
procedures and rules are also identified in some ontology languages (i.e., OCML). For 
each one of the components outlined before (except for procedures, as it is very 
difficult to find common characteristics for them in all languages) we will select a set 
of features that we consider relevant. 

Concepts [18], also known as classes, are used in a broad sense. They can be abstract 
or concrete, elementary or composite, real or fictious. In short, a concept can be 
anything about which something is said, and, therefore, could also be the description 
of a task, function, action, strategy, reasoning process, etc. The following questions 
identify the expressiveness of a language when defining classes: 
• Is it possible to define metaclasses (classes as instances of other ones)? They are 

important in case that a KR ontology exis ts for the language. 
• Is it possible to define partitions (sets of disjoint classes)?  
• Does the language provide mechanisms to define slots/attributes? For example: 

• Local attributes. Attributes which belong to a specific concept. For instance, 
attribute age belongs to concept Person. 

• Instance attributes (template slots). Attributes whose value may be different 
for each instance of the concept. 

• Class attributes (own slots). Attributes whose value must be the same for all 
instances of the concept. 

• Polymorph attributes. Attributes (slots) with the same name and different 
behaviour for different concepts. For instance, the attribute author for concept 
Thesis is different from the attribute author for concept Book . Its type for Thesis 
is Student, and its type for Book  is Person. 

• Does the language provide the following predefined facets for attributes? 
• Default slot value, which will be used to assign a value to the attribute in case 

there is no explicit value defined for it. 
• Type, which will be used to constrain the type of the attribute. 
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• Cardinality constraints, which will be used to constrain the minimum and 
maximum number of values of the attribute.  

• Documentation, which could include a natural language definition for it. 
• Operational definition, which could include the definition or selection of a 

formula, a rule, etc to be used, for instance, when obtaining a value for that 
attribute. 

• May new facets be created for attributes?  

Taxonomies. They are widely used to organise ontological knowledge in the domain 
using generalisation/specialisation relationships through which simple/multiple 
inheritance could be applied. Since there exists some confusion regarding the 
primitives used to build taxo nomies, we propose to analyse whether or not the 
following primitives (which are based on the definitions provided by the frame 
ontology at Ontolingua) are predefined in the languages. 
• Subclass of specialises general concepts in more specific concepts. 
• Disjoint decompositions define a partition as subclass of a class. The 

classification does not necessarily have to be complete (there may be instances of 
the parent class that are not included in any of the subclasses of the partition). 

• Exhaustive subclass decompositions define a partition as subclass of a class. The 
parent class is the union of all the classes that make up the partition. 

• Not subclass of may be used to state that a class is not a specialisation of another 
class. This kind of knowledge is usually represented using the denial of the 
subclass of primitive. 
Some languages have a formal semantics for those primitives, and others must 

define their semantics by using axioms or rules.  

Fig. 1. Evaluation Framework 
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Relations [8] represent a type of interaction between concepts of the domain. They 
are formally defined as any subset of a product of n sets. First, we consider the 
relationship between relations and other components in the ontology. We will ask if 
concepts and attributes are considered, respectively, as unary and binary relations. 
Functions [8] are considered as a special kind of relations where the value of the last 
argument is unique for a list of values of the n-1 preceding arguments. 

Second, we focus on the arguments (both in relations and functions):  
• Is it possible to define arbitrary n-ary relations/functions? If this is not possible, 

which is the maximum number of arguments? 
• May the type of arguments be constrained? 
• Is it possible to define integrity constraints  in order to check the correctness of 

the arguments' value? 
• Is it possible to define operational definitions to infer values of arguments with 

procedures, formulas and rules, or to define its semantic using axioms or rules? 

Axioms [8] model sentences that are always true. They are included in an ontology 
for several purposes, such as constraining its information, verifying its correctness or 
deducting new information. We will focus on the next characteristics: 
• Does the language support building axioms in first order logic? 
• And second order logic axioms? 
• Are axioms defined as independent elements in the ontology (named axioms ) or 

must they be included inside the definition of other elements, such as relations, 
concepts, etc? This feature improves readability and maintenance of ontologies. 

Instances/Individuals/Facts/Claims. All these terms are used to represent elements 
in the domain. Instances [8] represent elements of a given concept. Facts [17] 
represent a relation which holds between elements. Individuals [6] refer to any 
element in the domain which is not a class (both instances and facts). Claims  [15] 
represent assertions of a fact by an instance. It is important to highlight the inclusion 
of claims, since people on internet can make whatever claims they want. Hence, 
agents shouldn’t interpret them as facts of knowledge, but as claims being made by a 
particular instance about itself or about other instances or data, which may prove to be 
inconsistent with others [15]. The following questions will be asked in this section: 
• Is it possible to define instances of concepts? 
• Is it possible to define instances of relations (facts)? 
• Does the language provide special mechanisms to define claims ? 

Production rules. Production rules [16], which follow the structure If ... Then ..., are 
used to express sets of actions and heuristics which can be represented independently 
from the way they will be used. A set of questions will be asked about them:  
• Is it possible to define disjunctive and conjunctive premises? 
• May the chaining mechanism be defined declaratively? 
• Is it possible to define truth values or certainty values attached to the rule? 
• May procedures be included in the consequent? They are commonly used to 

change the values of attributes of a concept, add information to the KB, etc. 
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• Does the language support updates of the KB, performed by adding or removing 
facts or claims? 

2.2 Inference Mechanisms  

This dimension describes how the static structures represented in the domain 
knowledge can be used to carry out a reasoning process [18]. There is a strong 
relationship between both dimensions, as the structures used for representing 
knowledge are the basis for the reasoning process, as seen in Figure 1. We analyse 
whether the language supports the following features or not: 
• Does the language provide an inference engine that reasons with the knowledge 

represented using the language? Is it sound? And complete? 
• Does the inference engine perform automatic classifications? 
• Does the inference engine deal with exceptions? Exceptions are considered when 

attribute Attribute1 is defined for concept C1 and concept C2, being C1 subclass of 
C2 and we analyse whether the definition of Attribute1 in concept C1 overrides the 
definition of Attribute1 in concept C2 or not.  

• Is it possible to use monotonic, non-monotonic, simple and/or multiple 
inheritance? 

• Are procedures executable? 
• Do axioms perform any kind of constraint checking? 
• When reasoning with rules, does the language allow forward and backward 

chaining? 

3 Ontology Specification Languages 

In this section, we show an analysis of ontology specification languages which have 
been and are widely used by the ontology community (Ontolingua, OKBC, OCML, 
FLogic and LOOM), other languages created in the context of Internet, which are 
recommendations of the W3C (XML, RDF and RDFS) and, finally, other new 
languages for the specification of ontologies (XOL, SHOE and OIL).  

3.1 Traditional Ontology Specification Languages 

Ontolingua [6] is a language based on KIF [7] and on the Frame Ontology (FO) [6], 
and it is the ontology-building language used by the Ontolingua Server [6].  
KIF (Knowledge Interchange Format) was developed to solve the problem of 
heterogeneity of languages for knowledge representation. It provides for the definition 
of objects, functions and relations. KIF has declarative semantics and it is based on 
first-order predicate calculus, with a prefix notation. It also provides for the 
representation of meta-knowledge and non-monotonic reasoning rules.  
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As KIF is an interchange format, it is tedious to use for specification of ontologies 
per se. The FO, built on top of KIF, is a knowledge representation ontology that 
allows an ontology to be specified following the paradigm of frames, providing terms 
such as class, instance, subclass-of, instance-of, etc. The FO does not allow to express 
axioms; therefore, Ontolingua allows to include KIF expressions inside of definitions 
based on the FO. Summarizing, Ontolingua allows to build ontologies in any of the 
following three manners: (1) using exclusively the FO vocabulary (axioms cannot be 
represented); (2) using KIF expressions; (3) using both languages simultaneously.  

Currently, an inference engine is being developed for Ontolingua. The OKBC API 
must be used in case we want to develop a customized one. 

OKBC Protocol [4] is an acronym for Open Knowledge Base Connectivity, 
previously known as Generic Frame Protocol. It specifies a protocol (not a language). 
The protocol makes assumptions about the underlying KR system (frames), and it is 
complementary to language specifications developed to support knowledge sharing. 

The GFP Knowledge Model, which is the implicit representation formalism 
underlying OKBC, supports an object-centered representation of knowledge and 
provides a set of representational constructs commonly found in frame representation 
systems: constants, frames, slots, facets, classes, individuals and knowledge bases. 

It also defines a complete tell&ask  interface for knowledge bases accessed using 
OKBC protocol, and procedures (with a Lisp-like syntax) in order to describe 
complex operations to perform in a knowledge base when accessing it over a network. 

Eventually it has been developed the OKBC-Ontology for Ontolingua, which is 
fully compatible with the OKBC protocol. 

In this study, when referring to OKBC we will mean the API, together with the 
maximum expressiveness permitted. 

OCML [17] stands for Operational Conceptual Modeling Language, and was 
originally developed in the context of the VITAL project. 

OCML is a frame-based language that provides mechanisms for expressing items 
such as relations, functions, rules (with backward and forward chaining), classes and 
instances. In order to make the execution of the language more efficient, it also adds 
some extra logical mechanisms for efficient reasoning, such as procedural 
attachments. A general tell&ask interface is also implemented, as a mechanism to 
assert facts and/or examine the contents of an OCML model. 

Several pragmatic considerations were taken into account in the development of 
OCML. One of them is the compatibility with standards, such as Ontolingua, so that 
OCML can be considered as a kind of “operational Ontolingua”, providing theorem 
proving and function evaluation facilities for its constructs. 
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FLogic [12] is an acronym for Frame Logic. FLogic integrates frame-based 
languages and first-order predicate calculus. It accounts in a clean and declarative 
fashion for most of the structural aspects of object-oriented and frame-based 
languages, such as object identity, complex objects, inheritance, polymorphic types, 
query methods, encapsulation, and others. In a sense, FLogic stands in the same 
relationship to the object-oriented paradigm as classical predicate calculus stands to 
relational programming. 

FLogic has a model-theoretic semantics and a sound and complete resolution-based 
proof theory. 

Applications of FLogic go from object-oriented and deductive databases to 
ontologies, and it can be combined with other specialized logics (HiLog, Transaction 
Logic), to improve the reasoning with information in the ontologies. 

LOOM [16] is a high-level programming language and environment intended for use 
in constructing expert systems and other intelligent application programs. It is a 
descendent of the KL-ONE family and it is based in description logic, achieving a 
tight integration between rule-based and frame-based paradigms. 

LOOM supports a "description" language for modeling objects and relationships, 
and an “assertion” language for specifying constraints on concepts and relations, and 
to assert facts about individuals. Procedural programming is supported through 
pattern-directed methods, while production-based and classification-based inference 
capabilities support a powerful deductive reasoning (in the form of an inference 
engine: the classifier). 

It is important to focus on the description logic approach to ontology modeling, 
which differs from the frame-based approach of the previously described languages. 
Definitions written using this approach try to exploit the existence of a powerful 
classifier in the language, specifying concepts by using a set of restrictions on them.  

3.2 Web Standards and Recommendations 

XML [2] stands for eXtended Markup Language deriving from SGML (Standard 
General Markup Language). It is being developed by the XML Working Group of the 
World Wide Web Consortium (W3C), and it is next to become a standard. 
As a language for the World Wide Web, its main advantages are: it is easy to parse, 
its syntax is well defined and it is human readable. There are also many software tools 
for parsing and manipulating XML. It allows users to define their own tags and 
attributes, define data structures (nesting them), extract data from documents and 
develop applications which test the structural validity of a XML document. 

When using XML as the basis for an ontology specification language, its main 
advantages are: 
• The definition of a common syntactic specification by means of a DTD (Document 

Type Definition). 
• Information coded in XML is easily readable for humans. 
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• It can be used to represent distributed knowledge across several web-pages, as it 
can be embedded in them. 
XML also presents some disadvantages which influence on ontology specification: 

• It is defined in order to allow the lack of structure of information inside XML tags. 
This makes it difficult to find the components of an ontology inside the document. 

• Standard tools are available for parsing and manipulating XML documents, but not 
for making inferences. These tools must be created in order to allow inferences 
with languages which are based on XML. 
XML itself has no special features for the specification of ontologies, as it just 

offers a simple but powerful way to specify a syntax for an ontology specification 
language (this is the reason why XML is not included in the comparison of section 5). 
Besides, it can be used for covering ontology exchange needs, exploiting the 
communication facilities of the WWW. 

RDF [13] stands for Resource Description Framework . It is being developed by the 
W3C for the creation of metadata describing Web resources. Examples of the use of 
RDF in ontological engineering may be analyzed in [1] and [20]. 
A strong relationship stands between RDF and XML. In fact, they are defined as 
complementary: one of the goals of RDF is to make it possible to specify semantics 
for data based on XML in a standardized, interoperable manner. The goal of RDF is 
to define a mechanism for describing resources that makes no assumptions about a 
particular application domain nor the structure of a document containing information. 

The data model of RDF (which is based in semantic networks) consists of three 
types: resources  (subjects), entities that can be referred to by an address at the 
WWW; properties (predicates), which define specific aspects, characteristics, 
attributes or relations used to describe a resource; and statements (objects), which 
assign a value for a property in a specific resource. 

RDF Schema [3] (RDFS) is a declarative language used for the definition of RDF 
schemas. The RDFS data model (which is based on frames) provides mechanisms for 
defining the relationships between properties (attributes) and resources. Core classes 
are class, resource and property; hierarchies and type constraints can be defined (core 
properties are type, subclassOf, subPropertyOf, seeAlso  and isDefinedBy). Some core 
constraints are also defined. 

3.3 Web-Based Ontology Specification Languages 

XOL. [11] stands for XML-Based Ontology Exchange Language. It was designed to 
provide a format for exchanging ontology definitions among a set of interested 
parties. Therefore, it is not intended to be used for the development of ontologies, but 
as an intermediate language for transferring ontologies among different database 
systems, ontology-development tools or application programs. 
XOL allows to define in a XML syntax a subset of OKBC, called OKBC-Lite. As 
OKBC defines a protocol for accessing frame-based representation systems, XOL 
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may be suitable for exchanging information between different systems, via the 
WWW. The main handicap is that frames (defined in OKBC) are excluded from this 
language, and only classes (and their hierarchies), slots and facets can be defined. 

Many XML editing tools are available which allow to generate XOL documents. 

SHOE [15] stands for Simple HTML Ontology Extension. It was developed first as an 
extension of HTML, with the aim of incorporating machine-readable semantic 
knowledge in HTML or other WWW documents. Recently, it has been adapted in 
order to be XML compliant. The intent of this language is to make it possible for 
agents to gather meaningful information about web pages and documents, improving 
search mechanisms and knowledge-gathering. The two-phase process to achieve it 
consists of: (1) defining an ontology describing valid classifications of objects and 
valid relationship between them; (2) annotating HTML pages to describe themselves, 
other pages, etc. 

In SHOE, an ontology is an ISA hierarchy of classes (called categories), plus a set 
of atomic relations between them, and inferential rules in the form of simplified horn 
clauses. Therefore, classes, relations and inferential rules can be defined. An 
important feature included in SHOE is the ability to make claims about information, 
as discussed in section 2. 

OIL [10], Ontology Interchange Language, is a proposal for a joint standard for 
describing and exchanging ontologies. It is still in an early development phase, and 
has been designed to provide most of the modelling primitives commonly used in 
frame-based and description logic ontologies (it is based on existing proposals, such 
as OKBC , XOL and RDF), with a simple, clean and well defined semantics, and an 
automated reasoning support. 
In OIL, an ontology is a structure made up of several components, organized in three 
layers: the object level (which deals with instances), the first meta level or ontology 
definition (which contains the ontology definitions) and the second meta level or 
ontology container (which contains information about features of the ontology, such 
as its author). Concepts, relations and functions and axioms can be defined in OIL. 
The syntax of instances, rules and axioms has not yet been defined. 

4 Results and Comparison of Languages 

The results of applying the evaluation framework described in section 2 are presented 
in this section. It is worth mentioning that a common evaluation framework has been 
used for different knowledge representation languages (and different knowledge 
representation paradigms, such as frame-based, description logic and object-centered), 
and that the results have been achieved taking into account the experience of coding, 
in all the selected languages, an ontology for electronic commerce, which is not 
shown here due to the lack of space.  

The trade-off between the degree of expressiveness and the inference engine of a 
language (the more expressive, the less inference capabilities) makes it difficult to 
establish a scoring of languages. Moreover, we claim that different needs in KR exist 
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nowadays for applications, and some languages are more suitable than others for the 
specific needs of a given application. 

When developing domain ontologies for an application, it is not only necessary to 
study the KR and reasoning needs for the application, but also the KR and reasoning 
capabilities provided by the languages. This framework will avoid the developer of 
ontologies taking blind decisions on the selection of the ontology language(s) to use. 

Information in tables of the next sections will be filled using ‘+’ to indicate that it 
is a supported feature in the language, ‘-‘ for non supported features, ‘+/-’ for non 
supported features, but could manage to support it by doing something, ‘?’ when no 
information is available and ‘N.D.’ for features which are not restricted, but could be 
implemented in order to support them. The contents of tables represent the present 
situation of languages 1 and may change because of the evolution of them. 

4.1 Domain Knowledge 

Table 1 shows at first glance the main components of the ontology specification 
languages selected for this study. 

Concepts, n-ary relations and instances can be defined easily in almost all 
languages. In OKBC and FLogic, which are frame-based languages, relations can be 
represented by using frames, but not as special elements provided by the language. In 
OKBC, axioms are only supported in the tell&ask part of the API, although neither 
deductive nor storage guarantees are made for all OKBC implementations. 

Table 1. Definition of the main components of domain knowledge 

 Onto OKBC OCML LOOM FLogic XOL SHOE RDF(S) OIL 
Concepts + + + + + + + + + 
n-ary relations + +/- + + +/- - + + + 
Functions + +/- + + +/- - - - + 
Procedures + + + + - - - - - 
Instances + + + + + + + + ND 
Axioms + +/- + + + - - - ND 
Production 
Rules 

- - + + - - - - ND 

Formal 
semantics  

+ + + + + + - - - 

Functions, procedures and axioms cannot be defined using web-based languages, 
except for some restricted forms of axioms, such as deductive rules, which are 
definable in SHOE. 

It is worth mentioning that procedures are only definable in Lisp-based languages, 
and production rules are just definable in OCML and LOOM. 

An additional row has been added to the table, analysing the presence of a formal 
semantics: some web-based languages, such as SHOE, RDF(S) and OIL lack of it, 
whereas traditional languages and XOL provide it. 

                                                                 
1 'Onto' will be used to refer to Ontolingua. RDF(S) is the acronym used to refer to the 

combination of RDF and RDFS. 
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Concepts. Table 2 summarizes the most important features to be analyzed when 
describing concepts in an ontology. It is divided in 4 sections: metaclasses, partitions, 
definition of attributes and definitions of properties of attributes (facets). 

Table 2. Definition of concepts 

CONCEPTS  Onto OKBC OCML LOOM FLogic XOL SHOE RDF(S) OIL 
Metaclasses + + + + + + - + - 
Partitions + - - + - - - - - 
ATTRIBUTES           
Template (instance 
attrs) 

+ + + + + + + + + 

Own (class attrs.) + + + + + + - + +/- 
Polymorphic + + + + + - - - + 
Local scope  + + + + + + + + + 
FACETS           
Default slot value - + + + + + - - - 
Type constraint + + + + + + + + + 
Cardinality 
constraints 

+ + + + +/- + - - + 

Documentation + + + + - + + - + 
Procedural 
knowledge  

- - + + - - - - - 

Adding new 
facets 

+ + - + - - - - - 

 
Only SHOE and OIL do not allow to define metaclasses, and partitions can only be 

defined in Ontolingua and LOOM. 
Instance attributes and type constraints for attributes can be defined using any of 

the chosen languages. The results of the rest of the values depend on the languages, 
although a glance at the table shows us that traditional ontology languages allow us, 
again, to define more features than web-based languages. 

Procedural knowledge inside the definition of attributes is only supported by 
OCML and LOOM, due to their operational behavior. It must be included in the 
definition of the OCML´s attributes by means of special keywords, such as :prove-by 
or :lisp-fun, not as simple facets, or in the definition of the LOOM’s attributes by 
means of keywords such as :sufficient, :is, :is -primitive or :implies. 

FLogic just allows to define the maximum cardinality for slots as 1 or N, while the 
minimum cardinality is always set to 0. 

Table 3. Definition of taxonomies 

TAXONOMIES  Onto OKBC OCML LOOM FLogic XOL SHOE RDF(S) OIL 
Subclass of + + + + + + + + + 
Exhaustive subclass 
partitions 

+ - +/- + +/- - - - - 

Disjoint 
Decompositions 

+ - +/- + +/- - - - +/- 

Not subclass of +/- - - +/- - - - - + 
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Taxonomies. When defining taxonomies, there is just one primitive predefined in all 
languages and correctly handled by them: subclass of. Ontolingua and LOOM are the 
only languages which have the rest of primitives (except for not subclass of, which 
must be declared using the denial of primitve subclass-of). These primitives can be 
defined as relations in the rest of languages, but as a consequence, there is no special 
treatment for them. In FLogic, axioms must be defined in order to provide the 
semantics for them. OIL allows to define the primitive not subclass-of; hence it is also 
possible to define disjoint decompositions. 

Relations and Functions. Relations are very important components in an ontology 
(hence they are supported by almost all the ontology languages), but not every 
desirable characteristic of relations is implemented in all languages. Functions are not 
included in some languages. 

Table 4. Definition of relations and functions 

RELATIONS 
FUNCTIONS 

Onto OKBC OCML LOOM FLogic XOL SHOE RDF(S) OIL 

Functions as 
relations 

+ + - + + - - - + 

Concepts: unary 
rels. 

+ + + + - - + - + 

Slots: binary rels. + + + + - + + + + 
n-ary rels./functs. + +/- + + +/- - + + +/- 
Type constraints + + + + + - + + + 
Integrity 
constraints 

+ + + + + - - - - 

Operational defs. - - + + + - - - - 
 
Many languages represent concepts as unary relations. Attributes are usually 
considered as binary relations, except for FLogic, where they are considered as 
ternary ones. 

Great semantic differences are found when analysing the role that functions play in 
different languages. Some languages, such as KIF (and consequently, Ontolingua), 
consider functions as a special case of relations in which the nth element of the 
relation is unique for the n-1 preceding elements. LOOM consider functions as 
relations where the result can be calculated given the domain arguments. In OCML, 
functions are considered as modelling elements which play a role which is completely 
different to the one of relations. In FLogic, functions are considered as methods which 
are defined inside a concept. Their value is calculated by using a deductive rule 
associated to the method previously declared. 

FLogic, OKBC, RDF(S) and OIL cannot define n-ary relations directly. They must 
define them as associative classes or by means of several binary relations. 

All languages allow the definition of type constraints for arguments, and the main 
differences among traditional and web-based ontology languages lay on the definition 
of integrity constraints (the last ones don’t allow to define them). 

The last comments are on operational definitions for relations: just OCML, LOOM 
and FLogic allow to define operations inside relations, although there is a difference 
between them: while LOOM provides operational definitions just for an inferential 
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purpose, OCML also provides non-operational definitions which can be used for 
representational purposes [17]. In FLogic, this kind of operations must be defined by 
using axioms, which are defined apart. Ontolingua does not support user-defined Lisp 
lambda bodies for relations, but it has certain relations that have procedural 
attachments which are activated by the tell&ask interface (for instance, asking (+ 3 2 
?x) will reply with a single binding of 5 for ?x). 

Instances. Instances of concepts and of relations (facts) are supported by all the 
languages. Claims, however, are just allowed in some of the web-based ontology 
languages. This is due to the fact that the management of information which comes 
from different sources is an intrinsic characteristic of the web environment and so 
these languages have specialised ways to treat this information.  

Table 5. Definition of instances 

INSTANCES  Onto OKBC OCML LOOM FLogic XOL SHOE RDF(S) OIL 
Instances of 
concepts 

+ + + + + + + + ND 

Facts + + + + + + + + ND 
Claims - - - - - - + + ND 

Axioms. This is a good measure of expressiveness. The richest the axioms defined, 
the more expressive the language is. Ontolingua allows the definition of first-order 
and second-order logic axioms. OCML and FLogic also allow to define first-order 
logic axioms independently of the rest of components of the ontology. 
LOOM just allows to define first-order logic axioms inside the definitions of 
relations, concepts and functions. 

The rest of languages, except for XOL, only allow restricted types of axioms. So, 
OKBC just supports a subset of the axioms which can be represented with KIF (and 
they must be included as a frame or by using the tell&ask interface), and SHOE just 
allows to define deductive rules. In OIL, the syntax of axioms has not yet been 
defined, while in RDF(S) several studies are currently trying to specify the syntax and 
semantics for the most commonly used axioms. 

Table 6. Definition of axioms 

AXIOMS Onto OKBC OCML LOOM FLogic XOL SHOE RDF(S) OIL 
1st-order logic + +/- + + + - +/- +/- ND 
2nd order logic + +/- - - - - - - - 
Named axioms + + + - - - - - - 

Production rules. Production rules are components of an ontology in OCML and 
LOOM. LOOM distinguishes between purely deductive rules and side-effecting, 
procedural rules (production rules). OCML makes the same distinction, defining 
“backward” and “forward” ones. Therefore, OCML and LOOM allow to define the 
chaining when performing the reasoning with knowledge defined in the ontology. 

As far as OIL is concerned, rules are just a weak form of general inclusion axioms. 
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Finally, SHOE does not allow to define production rules, but inference rules, as 
stated in the previous section. 

Table 7. Definition of rules 

PRODUCTION 
RULES  

Onto OKBC OCML LOOM FLogic XOL SHOE RDF(S) OIL 

PREMISES           
Conjunctive  - - + + - - - - ND 
Disjunctive  - - + + - - - - ND 
CONSEQUENT          
Truth values - - - - - - - - ND 
Execution of 
procedures 

- - +/- + - - - - ND 

Updating the KB - - + + - - - - ND 

4.2 Reasoning 

A clear distinction between KR and reasoning exists for all languages, except for 
OCML. For instance, Ontolingua is maybe the most expressive of all the languages 
chosen for this study, but there is no inference engine implemented for it. OCML 
allows to define some features concerning reasoning inside representational elements 
(for instance, rules can be defined as backward rules or forward ones, so that the 
chaining is explicitly defined). 

Just FLogic and OIL inference engines are sound and complete, which is a 
desirable feature, although it can make representation in the language more difficult. 

Automatic classifications are performed by description logic-based languages 
(LOOM and OIL).  

The exception handling mechanism is not addressed, in general, by language 
developers (FLogic is the only one handling exceptions). Works have been carried out 
in other languages, such as LOOM, to support them. 

Single and multiple inheritance is also supported by most of the languages (except 
for XOL), but conflicts in multiple inheritance are not resolved. All languages are 
basically monotonic, although they usually include some non-monotonic capabilities. 
For instance, the only non-monotonic capabilities present in both Ontolingua and 
OCML are related to default values for slots and facets. In XOL and RDF 
specifications there is no explicit definition of the behaviour of inherited values. 

All the languages which allow to define procedures, allow to execute them. 
Constraint checking is performed in all the traditional ontology languages. 

Information about constraint checking in XOL is not available. In OKBC, constraint 
checking is guaranteed to be included in all implementations of it. However, it can be 
parameterised and even switched off. Constraint checking in SHOE is not performed 
because conflicts are thought to be frequent in the Web, and resolving them will be 
problematic. However, type constraint checking is performed when necessary. 

Chaining used in SHOE is not defined in the language: freedom exists so that each 
implementation may choose between any of them. OCML allows to define the 
chaining of rules when defining them, although default chaining used is the backward 
one. LOOM performs both kinds of chaining, and FLogic’s one is in between. 
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Table 8. Reasoning mechanisms of the language 

REASONING Onto OKBC OCML LOOM FLogic XOL SHOE RDF(S) OIL 
INFERENCE ENG.          
Sound - - + + + - - - + 
Complete  - - - - + - - - + 
CLASSIFICATION          
Automatic classif. - - - + - - - - + 
EXCEPTIONS          
Exception handling - - - - + - - - - 
INHERITANCE          
Monotonic + + + + + ND + ND + 
Non-monotonic +/- + +/- + + ND - ND - 
Single Inheritance  + + + + + ND + + + 
Multiple inheritance + + + + + ND + + + 
PROCEDURES           
Execution of 
procedures 

+ + + + - - - - - 

CONSTRAINTS           
Constraint checking + + + + + - - - - 
CHAINING          
Forward - - + + + - ND - - 
Backward - - + + + - ND - - 

5 Future works 

Future works in this area will try to identify factors to choose among a set of 
languages when building a domain ontology for an application. Different needs in KR 
and reasoning exist, and some languages are more suitable than others. We 
recommend: 
• Web based languages for the interchange of ontologies on the web. 
• Traditional languages for the representation – modeling – of ontologies with high 

expressiveness needs. However, if ontologies are considered just as taxonomies, 
the use of web-based languages is not a problem. 

• For performing reasoning inside agents, XML-based languages do not provide 
inference engines. However, some of the traditional ontology languages not only 
provide them but also translators to other computable languages. 
Besides, an analysis of the existing tools for editing, managing, integrating and 

translating ontologies (which would extend the one described in [5]) will be useful for 
determining the most suitable language for our needs, and studies on the treatment of 
namespaces in different languages will be also interesting to analyse the easiness of 
integrating and scaling up ontologies. 

Finally, the analysis on how components are codified in each language will also 
help to face up to the translation problem. 
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