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Abstract. Parallel relational databases have been successful in providing scal-
able performance for data intensive applications, and much work has been carried
out on query processing techniques in such systems. However, although many
applications associated with object databases also have stringent performance re-
quirements, there has been much less work investigating parallel object database
systems. An important feature for the performance of object databases is the
speed at which relationships can be explored. In queries, this depends upon the
effectiveness of different join algorithms into which queries that follow relation-
ships can be compiled. This paper presents the results of empirical evaluations of
four parallel join algorithms, two value based and two pointer based. The experi-
ments have been run on Polar, a parallel ODMG object database system.

1 Introduction

Applications associated with object databases are demanding in terms of their complex-
ity and performance requirements. However, there has been relatively little work on
parallel object databases, and few complete systems have been constructed. There has
been still less work on systematic assessment of the performance of query processing
in parallel object databases. This paper presents the results of a performance evaluation
of different algorithms for exploring relationships in the parallel object database system
Polar [9].

The focus in this paper is on the performance of OQL queries over ODMG databases,
which are compiled in Polar into a parallel algebra for evaluation. The execution of the
algebra on a network of PCs, supports both inter and intra operator parallelism. The
evaluation focuses on the performance of three parallel join algorithms, one of which
is value based (hash join) and two of which are pointer based (materialize and hash
loops). Figures are presented for queries running over the medium OO7 database [2].

The experiments and the resulting performance figures can be seen to serve two
purposes: (i) they provide insights on algorithm selection for implementers of paral-
lel object databases; (ii) they provide empirical results against which cost models for
parallel query processing can be validated (e.g., [8]).



There is a considerable body of work on pointer based join algorithms. For example,
six uni-processor join algorithms are compared in [8], including algorithms based on
nested loop, sort merge and hybrid hash. A more recent study [1] both proposes a new
pointer based join algorithm and provides a comprehensive comparison with several
other approaches. Although [1] contains a few empirical results, the evaluations are
based principally on analytical models, and parallelism is not considered.

There have been a few investigations into query evaluation in parallel object database
systems. Four hash-based parallel pointer based join algorithms, including hash-loops,
are compared in [3]. The comparison, which uses an analytical model, focuses on issues
such as the need for extents for both classes participating in a join. Another model-based
evaluation is provided by [10], in which their multiwavefront algorithm is compared
with a more conventional pointer-based algorithm. There are few empirical evaluations
of parallel pointer-based joins, although [4] describes how ParSets can be used to sup-
port parallel traversals over object databases for application development rather than
query processing.

We see this paper as adding to the results mentioned above by providing compre-
hensive experimental evaluations over a parallel object database system. The paper is
organized as follows: The architecture of the Polar parallel object database is outlined
in Section 2. The parallel join algorithms evaluated are described in Section 3. Section
4 describes the experiments in detail, reviewing the OO7 database, and presenting the
queries used in the experiments. Section 5 presents results of the experiments and their
interpretation. Finally, Section 6 concludes.

2 ThePolar System

Polar is a shared-nothing ODMG compliant object database server. For the experiments
reported in this paper, it was running on 8 PCs, interconnected by Fast Ethernet. One
of these processors serves as a coordinator, running the compiler/optimizer, while the
remaining seven serve as object stores, running an object manager and execution engine.

In Polar, OQL queries are compiled into parallel query execution plans (PQEPS)
expressed in an object algebra based on that of [5]. All the algebraic operators are im-
plemented as iterators [7]. As such, the operators support three main functions, open,
next and close, which define the main interface through which they interact with one
another. The implementation of the algebra is essentially sequential, and most of the
functionality that relates to parallelism, such as flow control, inter-process communi-
cation and data distribution, is encapsulated in the exchange operator, following the
operator model of parallelization [6].

Figure 1 illustrates two possible PQEPs for query Q1 in figure 2. The query is over
the OO7 benchmark schema. The query retrieves the id attributes of AtomicParts and
the CompositeParts of which they are part, where the ids satisfy certain conditions. The
plan on the left in figure 1 executes the example query using the value-based hash-join,
while the plan on the right executes the same query using the pointer-based hash-loops.

In both plans the CompositePart objects are obtained from the stores through a
seq-scan operator. Subsequently, the tuples containing the CompositePart objects have
their multiple valued reference attribute parts “unnested”, i.e., the unnest operator



transforms each input tuple into a number of tuples which corresponds to the num-
ber of values in the attribute. The tuples generated by the unnest contain an additional
attribute that represents one of the references in the multiple-valued relationship. The
apply operators are responsible for performing projections on the input tuples, discard-
ing attributes that are not relevant to the subsequent steps of the execution, and saving
communication costs, as smaller tuples are distributed through the network. The ex-
change operators are responsible for sending tuples from a producer processor to its
consumer(s) and for receiving the tuples on the consumer processors using the network.
Thus exchange defines a partitioning of PQEPs into sub-plans, as indicated in the fig-
ure. The exchange in the boundary between sub-plans 1 and 2 redistributes the input
tuples for the join operator according to the join attribute, i.e., the attribute added by
unnest. The policy used for tuple distribution is chosen at query compile time, e.g. se-
lect_by_oid or round_robin. The exchange in the boundary between sub-plans 2 and 3
is responsible for directing the intermediate results to a single processor (the coordina-
tor) for building the final result and sending it to the user.

Object identifiers in Polar contain a volume identifier, and a logical identifier within
the volume. Tables are maintained that allow the node of a volume to be identified
from the volume id, and to allow the page of an object to be identified from its logical
identifier.
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Fig. 1. On the left hand side: Possible PQEP, based on hash-join, for example query Q1. On the
right hand side: Possible PQEP, for hash-loops, for example query Q2.

3 Algorithms
This section describes the design of the three join algorithms evaluated in Polar.

Hash-join: The Polar version of hash-join is a one-pass implementation of the relational
hash-join implemented as an iterator. This algorithm hashes the tuples of the smallest



input on their join attribute(s), and places each tuple into a main memory hash table.
Subsequently, it uses the tuples of the largest input to probe the hash table using the
same hash function, and tests whether the tuple and the tuples that have the same result
for the hash function satisfy the join condition.

Materialize: The materialize operator is the simplest pointer-based join, which per-
forms naive pointer chasing. It iterates over its input tuples, and for each tuple reads
an object, the OID of which is an attribute of the tuple. Dereferencing the OID has the
effect of following the relationship represented by the OID-valued attribute. Unlike the
hash-join described previously, materialize does not retain (potentially large) interme-
diate data structures in memory, since the only input to materialize does not need to be
held onto by the operator after the related object has been retrieved from the store. The
pages of the related objects retrieved from the store may be cached for some time, but
the overall space overhead of materialize is small.

Hash-loops: The hash-loops operator is an adaptation for the iterator model of the
pointer-based hash-loops join proposed in [3]. The main idea behind hash-loops is to
minimize the number of repeated accesses to disk pages without retaining large amounts
of data in memory. The first of these conflicting goals is addressed by collecting together
repeated references to the same disk pages, so that all such references can be satisfied
by a single access. The second goal is addressed by allowing the algorithm to consume
its input in chunks, rather than all at once. Thus, hash-loops may fill and empty a main
memory hash table multiple times to avoid keeping all of the input tuples in memory at
the same time. Once the hash-table is filled with window_size tuples, each bucket in the
hash table is scanned in turn, and its contents matched with objects retrieved from the
store. Since the tuples in the hash table are hashed on the page number of the objects
specified in the inter-object relationship, each disk page is retrieved from the store only
once within each window. Once all the tuples that reference objects on a particular page
have been processed, the corresponding bucket is removed from the hash table, and the
next page, which corresponds to the next bucket to be probed, is retrieved from the store.
Thus, hash-loops seeks to improve on materialize by coordinating accesses to persistent
objects, which are likely to suffer from poor locality of reference in materialize.

4 The Experiments

007 Database The OO7 Benchmark [2] provides three different sizes for its database:
small, medium and large. The differences in size are reflected in the cardinalities of
extents and inter-object relationships. The following table shows the cardinalities of the
extents and relationships used in the experiments for the medium OO7 database, which
is used here.

Extent Cardinality Cardinality of Relationships
AtomicParts 100,000 partOf: 1

CompositeParts 500 parts: 200, documentation 1
Documents 500

BaseAssemblies 729 componentsPriv: 3




To give an indication of the sizes of the persistent representations of the objects
involved in 007, the following are the sizes of individual objects obtained by measuring
the collections stored for the medium database: AtomicPart — 190 bytes; CompositePart
— 2,761 bytes; BaseAssembly — 190 bytes; Document — 24,776 bytes.

Experiment Queries The benchmark queries, Q1 to Q4, are given in Figure 2. Q1 and
Q2 explore single-valued relationships, whereas Q3 and Q4 explore multiple-valued
relationships. The predicate in the wher e clauses in Q1 and Q3 are used to vary the
selectivity of the queries over the objects of the input extents, which may affect the join
operators in different ways. The selectivities are varied to retain 100%, 10%, 1%, and
0.1% of the input extents.

QL: Q:
select struct(A a.id, sel ect struct(Aa.id,B:a.docld,
B:a.partO.id) C a.partOf . docunentation.id)

froma in Atom cParts froma in Atom cParts
where a.id <= vl where a.docld ! =

and a.partOf.id <= v2; a. part O . docunentation.id;
&B: 4
select struct(Ac.id, B a.id) select struct(A b.id,B:c.id)
fromc in Conpos- fromb in BaseAssem
iteParts, blies,

ainc.parts a in b.conponentsPriv,
where c.id <= vl cin a.parts

and a.id <= v2; where b. bui |l dDat e<c. bui | dDat e;

Fig. 2. OQL expressions for the experiment queries.

4.1 Experiment Context

The environment used in the experiments is a cluster of 233MHz Pentium Il PCs run-
ning RedHat Linux version 6.2, each with 64MB main memory and a number of local
disks, connected via a 100Mbps Fast ethernet hub. For each experiment, data is par-
titioned in “round robin” style over some number of disks, of which there is one at
each node, each being a MAXTOR MXT-540SL. All timings are based on cold runs of
the queries, with the server shut down and the operating system cache flushed between
runs. In each case, the experiments were run three times, and the fastest time obtained
is reported.

Several of the algorithms have tuning parameters that can have a significant impact
on the way they perform (e.g., the hash table sizes for hash-join and hash-loops). In all
cases, we have tried to select values for these parameters that will allow the algorithms
to perform at their best. In hash-join, the hash table size is set differently for each join,
to the value of the first prime number after the number of buckets to be stored in the
hash table by the join. This means that there should be few clashes during hash table



T T T T T T
materialize —+— materialize —+— materialize —+—

100 X hasfrjoin - hasfrjoin -4 200 % hasfrjoin -
0 hash-loops - | ¢ hash-loops ¥l hash-loops -~
13 8 ﬁ 160
g m . ’ 81w
n n
60 3 ~ 1120
: HE :
g 80 ;’.} £
T T
) ] g 8
a X a
g flw
0 ) L]
10 R SV 0
0 . . . . . A 1 . . . . . 0 . . . . A A
0 1 2 3 4 5 6 71 2 3 4 5 6 70 1 2 3 4 5 6 7
Number of store processors Number of store processors Number of store processors

Fig.3. Elapsed time for  Fig.4. Speedup graph  Fig.5. Elapsed time for

QL. for Q1. Q2.
7 T T T T T 80 T T T T T 400 ¥ T T T T T
materialize —— materialize —+— materialize —+—
hash-oin - 0 f hash-join - Eo) hash-join -
6 hasfr-loops %> hash-loops % hash-loops %
) x§ 60 § 30 N
5 § g
8 % § 5 § )
§ 4 ¢l ¢l
g £ £
)
FIES 3150
3 2 2
in {10
2
10 A . s 50
1 . . . . . 0 . . . . . . 0
1 2 3 4 5 6 70 1 2 3 4 5 6 70
Number of store processors Number of store processors Number of store processors

Fig.6. Speedup graph  Fig.7. Elapsed time for  Fig.8. Elapsed time for
for Q2. Q3. Q4.

construction, but that the hash table does not occupy excessive amounts of memory. In
hash-loops, the hash table size is also set differently for each join, to the value of the first
prime number after the number of pages occupied by the extent that is being navigated
to. This means that there should be few clashes during hash table construction, but that
the hash table does not occupy an excessive amount of memory. The other parameter
for hash-loops is the window size, which is set to the size of the input collection, except
where otherwise stated. This decision minimizes the number of page accesses carried
out by hash-loops, at the expense of some additional hash table size. None of the exper-
iments use indexes, although the use of explicit relationships with stored OIDs can be
seen as analogous to indexes on join attributes in relational databases.

5 Results

5.1 Following Path Expressions

Path expressions, whereby one or several single-valued relationships are followed in
turn, are common in OQL queries. Test queries Q1 and Q2 contain path expressions,



of lengths one and two, respectively'. Response times and speedup results for these
queries using 100% selectivity are given in figures 3 to 6.

The graphs illustrate that all three algorithms show near linear speedup, but that
hash-join is significantly quicker throughout. The difference in response times between
hash-join and the pointer based joins is explained with reference to Q1. There are three
possible explanations for the better performance of hash-join:

1. Hash join retrieves the instances of the two extents (AtomicParts and Compos-
iteParts) by scanning. By contrast, the pointer based joins scan the AtomicParts
extent, and then retrieve the related instances of CompositePartsas a result of deref-
erencing the partOf attribute on each of the AtomicParts. This leads to essentially
random reads from the extent of CompositePart (until such time as the entire extent
is stored in the cache), and thus to potentially greater 10 costs for the pointer based
joins. However, based on the published seek times for the disks on the machine (an
average of around 8.5ms and a maximum of 20ms), the additional time spent on
seeks into the CompositePart extent should not be significantly more than 1s on a
single processor.

2. The navigational joins all perform mappings from a logical OID to the physical
disk page where an object is stored. If this logical to physical mapping is slow, that
would further increase the cost of obtaining access to a specific object within an
extent, a feature that is not required by the value-based joins.

3. When an object has been read in from disk, it undergoes a mapping from its disk
based format into the nested tuple structure used for intermediate data by the evalu-
ator. Because each CompositePart is associated with many AtomicParts, the pointer
based joins perform the CompositePart — tuple mapping once for every Atomic-
Part (i.e., 100,000 times), whereas this mapping is carried out only once for each
CompositePart when the extent is scanned for the hash-join (i.e., 500 times).

An additional experiment was carried out to identify the cost of the CompositePart
— tuple mapping, which shows that around 50% of the time taken to evaluate Q1 for
materialize (and thus also hash-loops) on one processor is spent on the mapping. A
further test showed that the essentially random fetching of the pages from the Compos-
iteParts extent occupied around 20% of the time taken to evaluate Q1 for materialize.
We will seek to improve the implementation of the mapping function in future versions
of Polar. We note that if reducing the mapping cost significantly proves difficult, it will
be easier to modify hash-loops than materialize to reduce the numbers of mappings
performed, as hash-loops performs more coordinated access to objects within pages.

We note the very similar performance of materialize and hash-loops. Hash-loops
seeks to improve on materialize by reducing the number of page reads, through coordi-
nating accesses to related pages. However, this shows no benefit in the example queries,
because the complete CompositeParts and Documents extents can be cached, and thus
the potential costs associated with uncoordinated accessing of the disk by materialize
have been mitigated.

1 We define the length of a path expression to be the number of joins required to evaluate it.



5.2 Following Multiple-Valued Relationships

Multiple valued relationships are expressed in OQL by iterating over collections that
represent relationships in the from clause. Polar uses the same join algorithms for eval-
uating such relationships as for following path expressions. Test queries Q3 and Q4
follow one and two multiple valued relationships respectively. Response times for these
queries using 100% selectivity are given in figures 7 and 8.

A striking feature of the figures for both Q3 and Q4 is the superlinear speedup for
both hash-join and hash-loops, especially in moving from 1 to 2 processors. Both hash-
join and hash-loops have significant space overheads associated with their hash tables,
which causes swapping during evaluation of these algorithms in the configurations with
smaller numbers of nodes. Monitoring swapping on the different nodes shows that by
the time the hash tables are split over 3 nodes they fit in memory, and thus the effect of
swapping on performance is removed for the larger configurations.

Another noteworthy feature is the fact that the relative performance of materialize
and hash loops compared with hash join is better in Q3 and Q4 than in Q1 and Q2. This
can be explained with reference to Q3. In Q3, the total number of CompositePart —
tuple and AtomicPart — tuple mappings is the same for all the join algorithms (in con-
trast with the situation in Q1 and Q2). Thus the overhead that resulted from repeatedly
mapping the same object does not affect materialize or hash loops in Q3.

As mentioned in Section 3, it is possible to reduce the space overhead associated
with the hash table in hash loops by constructing several smaller hash tables over parts
of the input extent, rather than one hash table over the whole extent. To test the effect of
this on the performance of hash loops, figures 9 and 10 show results for different values
of the window size parameter of hash-loops, for Q2 and Q4. Note from figure 9 that for
Q2 the variation in the window size did not affect the performance. However, for Q4
(figure 10) there is a reduction in the elapsed times for smaller numbers of processors,
as a consequence of the reduction of the swapping activity in those configurations.

5.3 Varying Selectivity

The selectivity experiments involve applying predicates to the inputs of Q1 and Q3, each
of which carries out a single join. Response times for these queries over the medium
0OO7 database running on 6 nodes, varying the values for v1 and v2 in the queries, are
given in figures 11 and 12, and figures 13 and 14, respectively. Note that what is being
varied here is the selectivities of the scans of the collections being joined, not the join
selectivity itself, which is ratio of the number of tuples returned by a join to the size of
the cartesian product.

The experiments measure the effect of varying the selectivity of the scans on the
inputs to the join thus:

1. Varying the selectivity of the outer collection (v1): The outer collection is used to
probe the hash table in the hash-join, and is navigated from in the pointer-based
joins. The effects of reducing selectivities are as follows:
hash-join: The number of times the hash table is probed and the amount of network
traffic is reduced, although the number of objects read from disk and the size of the
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hash table remain constant. In Q1, the times reduce to some extent with drops in
selectivity, but not all that much, so we can conclude that neither network delays
nor hash table probing make substantial contributions to the time taken to evaluate
the hash-join version of Q1. As the reduction in network traffic and in hash table
probes is similar for Q1 and Q3, it seems unlikely that these factors can explain the
somewhat more substantial change in the performance of Q3. The only significant
feature of Q3 that does not have a counterpart in Q1 is the unnesting of the parts
attribute of CompositeParts. The unnest operator creates a large number of new
intermediate tuples in Q3 (100,000 in the case of 100% selectivity), so we postulate
that much of the benefit observed from reduced selectivity in Q3 results from the
smaller number of collections to be unnested.

pointer-based joins: The number of objects from which navigation takes place re-
duces in line with the selectivity, so reducing the selectivity of the outer collection
significantly reduces the amount of work being done. As a result, changing the se-



lectivity of the scan on the outer collection has a substantial impact on the response
times for the pointer-based joins in the experiments. As many real queries will have
low selectivities, there should be many cases in which pointer based joins will give
better performance than value based joins in which full extents are scanned.

2. Varying the selectivity of the inner collection (v2): The inner collection is used to
populate the hash table in hash-join and to filter the results obtained after navigation
in the pointer-based joins. The effects of reducing selectivities are as follows:
hash-join: The number of entries inserted into the hash table reduces, as does the
size of the hash table, although the number of objects read from disk and the number
of times the hash table is probed remains the same. In Q1 there are at most 500
entries in the hash table (one for each CompositePart), which is reduced to 100 for
the lowest selectivity. However, in Q3 the corresponding figures are 100,000 (one
for each AtomicPart) and 20,000, so the reductions in hash table inserts and in hash
table size are much more substantial for Q3 than for Q1, which could explain the
pattern observed in figures 13 and 14.
pointer-based joins: The amount of work done by the navigational joins is unaf-
fected by the addition of the filter on the result of the join. As a result, changing the
selectivity of the scan on the inner collection has a modest impact on the response
times for the pointer-based joins in the experiments.

6 Conclusions

The paper has presented results on the evaluation of queries over a parallel object
database server. To the best of our knowledge, the results reported are the most com-
prehensive to date on the experimental evaluation of navigational joins, and on the per-
formance of parallel object databases in a shared-nothing environment.

To draw very general conclusions from specific experiments would be injudicious,
but the results reported certainly demonstrate that the join algorithm of choice depends
on many factors, including the sizes of the collections participating in the join, the
cardinalities of the relationships explored, the selectivities and locations of predicates
on inputs to nodes, and the amount of memory available.

What use are these experiments to others? We hope that the results could be par-
ticularly useful to three groups of people: developers of object database systems, who
must select appropriate algorithms for inclusion in their systems; researchers working
on analytical models of database performance, who stand to benefit from the availabil-
ity of experimental results against which models can be validated; and the developers
of query optimizers, who have to design cost models or heuristics that select physical
operators based on evidence of how such operators perform in practice.
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