Incremental Maintenance of Materialized OQL Views

M. Akhtar Al
Dept. of Computer Science
University of Manchester
Manchester M13 9PL, UK

akhtaram@cs.man.ac.uk

ABSTRACT

The importance of materialized views has grown significantly
with the advent of data warehousing and OLAP technology.
This increases the relevance of solutions to the problem of
incrementally maintaining materialized views. So far, most
work on this problem has been confined to relational set-
tings. Proposals that apply to object databases have either
used non-standard models or fallen short of providing a com-
prehensive framework. This paper contributes a solution
to the incremental view maintenance problem for a large
class of views expressed in OQL, the query language of the
ODMG standard for object databases. The solution applies
to immediate update propagation, and works for any up-
date operation on views defined over a substantial subset of
ODMG types. The approach presented has been fully imple-
mented and preliminary performance results are reported.

1. INTRODUCTION

A view definition facility is valuable for many database
applications. It has been known for some time that, in cer-
tain situations, it is more profitable to materialize a view
than to compute its extent every time the view is used. The
problem then arises of propagating to the materialized view
(MV) any changes made to the entities over which the MV
is defined. It can be very costly to re-materialize the entire
MV every time a change has been made that might affect
it. For this reason, it is generally desirable to propagate the
changes incrementally, i.e., to compute the changes needed
in the MV and to effect these only, rather than materializing
the entire view again. Interest in MVs has increased as a
result of a growing awareness of the important role that they
might play in data warehousing contexts. This importance
is even greater if one considers distributed architectures, in
which network bottlenecks are likely to make the efficiency
gains accruing from view materialization even more desir-
able. Finally, view materialization becomes almost unavoid-
able in information integration contexts, in which it may be
infeasible in practice to compute again and again a view

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

DOLAP 2000 Washington, D.C, USA

Copyright 2000 ACM 0-89791-88-6/97/05 ..$5.00

Alvaro A.A. Fernandes
Dept. of Computer Science
University of Manchester
Manchester M13 9PL, UK

alvaro@cs.man.ac.uk

Norman W. Paton
Dept. of Computer Science
University of Manchester
Manchester M13 9PL, UK

norm@cs.man.ac.uk

defined on multiple, often remote, data sources. Our work
is motivated by the need to manage data replication in the
context of a scientific data warehousing project focusing on
genomic data [15] in which case the challenges posed by the
complex structure of the data and the need to model com-
plex behaviour make the object-oriented approach the best
option by far.

The paper is structured as follows. Section 2 provides a
brief introduction to the technical background. Section 3
describes a solution to the IVM problem using an algebraic
approach. Section 4 presents some preliminary performance
results for the implemented solution. Section 5 describes
briefly the research context for the contributions presented
in the paper and contrasts these with work by other re-
searchers. Section 6 concludes and points to future work.

2. TECHNICAL BACKGROUND

This section introduces examples of ODL and OQL ma-
terial used in the paper and briefly describes the query pro-
cessing notions used in the solution, specifically those im-
plemented in OPTGEN |7, 8] and A-DB [9].

The ODMG standard for object databases [5] includes an
object definition language (ODL) and an object query lan-
guage (OQL). Some familiarity with this model is assumed
in the paper. ODL is used to declare a schema which de-
fines the valid application types. Figure 1 is an example
ODL schema.

class person
(extent Persons){
attribute string name;
attribute unsigned short age;
attribute string address;};
class department
(extent Departments){
attribute string name;
attribute string address;
relationship set<employee> employees
inverse employee::dept;};
class employee extends person
(extent Employees) {
attribute unsigned long salary;
attribute set<person> dependents;
relationship department dept
inverse department::employees;
attribute employee manager;};

Figure 1: Example ODL Schema

Figure 2 depicts an example OQL query over Figure 1 and
a view defined using the query. In OQL, a view is defined by
the define/as construct, which assigns a name to an OQL
query and specifies which variables appearing in the latter
provide data values to the view.

select struct(E:e.name, D:d.name)
from e in Employees, d in Departments
where e.dept = d;

define worksFor() as
select struct(E:e.name, D:d.name)
from e in Employees, d in Departments
where e.dept = d;

Figure 2: OQL Query and View

The A-DB system [9] implements a monoid comprehen-
sion calculus [8] and a monoid algebra over the ODMG ob-
ject model (not including arrays and dictionaries). OQL
queries in A-DB are first translated into expressions in the
calculus, normalized and then translated into monoid alge-
braic expressions. These can be optimized before they are
mapped to physical execution plans. An execution plan is
then translated into C++ and compiled. The resulting exe-
cutable, when run, evaluates the original OQL query. A-DB
adopts a query processing approach closely resembling that
used in mainstream DBMSs but acts essentially as transla-
tor into source code that exploits the functionality provided
by the SHORE object DBMS [4]. The solution presented
in this paper manipulates the algebraic expressions that A-
DB generates for OQL queries. For details on the monoid
algebra see [7, 8].

reduce(bag,

join(bag,
get(bag, Employees, e, and()),
get(bag, Departments, d, and()),
and(eq(e.dept, d)),
none),

X1,

struct(bind(E, e.name), bind(D, d.name)),

and())

reduce(bag,
nest(bag,
unnest(bag,
get(bag, Employees, e, and()),

c,
project(e, dependents),
and(),
true),
X2,
project(c, name),
vars(e),

and()),
1

X1,
struct(bind(E, e.name), bind(Dep, X2)),
and())

Figure 3: Algebraic Form of Figs. 2 and 4

For the view in Figure 2, the corresponding algebraic ex-
pression is given at the top of Figure 3, in which the algebraic
operators reduce, join, and get occur. The monoid used by
all of them is bag. The indentation in Figure 3 indicates tree
levels. Thus, the root reduce node has one join node as child,
and this, in turn, has two get nodes as children. As well as
the monoid, a get operator specifies the extent it scans (e.g.,

Employees), a variable ranging over the objects in that ex-
tent (e.g., e), and a retrieval condition (e.g., and(), in this
case a vacuously true one). As well as the monoid, the join
operator specifies its two input arguments (e.g., the values
of get expressions), the join condition (e.g., and(eq(e.dept,
d))), and a specification of the kind of join to be performed
(e.g., a natural join is denoted by the keyword none). Be-
sides the monoid and the retrieval condition (vacuously true
in the example), the reduce operator defines a structure for
the results returned (e.g., struct(bind(E, e.name), bind(D,
d.name))) and an internal variable (e.g., X1) that can be used
to refer to its instances. Such a structure consists of bind
expressions (e.g., bind(E, e.name)) in which a user-defined
attribute name (e.g., E) is bound to the value requested via
a user-defined expression (e.g., e.name).

The algebraic expression at the top in Figure 3 is not very
different from a relational one. In contrast, the bottom one
(corresponding to the OQL query in Figure 4) makes use
of nest and unnest operators. The unnest operator iterates
over a collection of objects and then for each object flattens
a collection projected from the object into its component ele-
ments. The expression ¢ in e.dependents in the subquery
maps to an unnest operator. The nest operator is essentially
the inverse of unnest: it constructs a new collection out of
the elements supplied. For example, for the query in Fig-
ure 4, the nest operator is used in Figure 3 to construct a
collection of type bag<string>, which is then assigned to
the user-defined variable Dep.

select struct(E:e.name, Dep:(
select c.name
from c in e.dependents
)) from e in Employees

Figure 4: Nest and Unnest Query

3. IVM IN ODMG DATABASES

The solution to the incremental view maintenance (IVM)
problem presented here assumes, as do all other solutions,
the availability of the update event, the changes made to
the database (hereafter referred to as the delta), the MV
definition, and the current materialized state of the view.
In order to achieve the goal of incremental maintainability
for all update operations, we also assume the availability of
references to the base objects that contribute data to the
MYV, and of the base extents required for materializing it
(although there is no need to recourse to base objects and
extents for certain kinds of update). Our solution works
for MVs that refer to any ODL-definable type (excluding
array and dictionary collections) and that are definable using
the reduce, join, get, nest and unnest bulk operators of the
monoid algebra proposed in [7, 8] (excluding self joins). It
is valid for any update operation in the ODMG standard
(e.g., new() and delete() on objects, insert_element () on
collections, etc.). In terms of practicality, our solution yields
incremental maintenance plans (IMPs) at the algebraic level
and, to the best of our knowledge, for object-based solutions,
is the first one to do so. This makes it easier to integrate
our solution into the kind of query processing frameworks
that mainstream database management systems (DBMSs)
rely on.

When an MV is defined (and subsequently compiled, eval-

uated and materialized), its definition is traversed to charac-
terize the kinds of update events that might require propaga-
tion of changes to the MV. Such events include derived ones,
that arise in the ODMG context as a result of the database
engine being required to enforce referential integrity con-
straints declared by means of the relationship/inverse
construction. For each kind of event, an algebraic IMP is
constructed that can compute the required changes to the
MYV. The core of our solution is, therefore, the generation of
an IMP that is appropriate for each kind of update event.
In our approach, two kinds of IMP suffice to compute the
changes required in the MV as a result of any update oper-
ation in the ODMG standard. Immediately after an update
event takes place which implies the need to update an MV,
the corresponding delta (comprising the old and the new
state of affected objects) is made available and the associ-
ated IMP (which uses the delta) is evaluated to compute the
changes needed.

The comprehensive nature of our solution with respect to
update operations requires that the OIDs of objects that
contribute data to the MV are also materialized. This is
achieved, at view compilation time, by generating from an
MYV definition v another view definition, which we refer to as
OIDs_for_v, which is itself compiled, evaluated and materi-
alized too. Thus, the OIDs of objects that contribute data
for an instance of v are associated with the OID of that in-
stance in OIDs_for_v. This space overhead (which naturally
induces some time overhead) is present in our solution for
it to be exhaustive over the set of operations in the ODMG
standard.

If v contains the keyword distinct then OIDs for_v re-
moves it. Thus, given an instance o of v, OIDs_for_v con-
tains instances o1, ... ,0, for each of the n distinct deriva-
tions of o. If v contains the keyword order by on an at-
tribute a then so does OIDs for_v. Thus, the extent of
OIDs for v shares the ordering on a with the extent of v.
The top part of Figure 5 shows OIDs_for_worksFor, with
generated strings in italics. In turn, the generation of an
IMP needs to start from an algebraic query tree in which
denotations are available for the OIDs of contributing ob-
jects. Thus, rather than using the algebraic query tree for
v, the algorithms start from the algebraic query tree re-
sulting from the compilation of a second view definition
derived from v, which we refer to as OID_projecting_v.
It is identical to v except that it also includes those at-
tributes in OIDs_for_v that originate from extents occurring
in the from clause of v. If v does not contain the keyword
distinct then OID_projecting_v includes it, thereby im-
posing a set semantics on the latter. The bottom part of
Figure 5 shows OID _projecting_worksFor, again with gen-
erated strings in italics. Note that, in contrast with v and
QOIDs_for_v, OID_projecting_v is never materialized.

After extra information is derived as described, the events
to be monitored are identified and their corresponding IMPs
generated. Different forms of IMPs are generated depending
on the update and the properties of the view, as follows:

1. Planting a delta — For some kinds of updates, the
constructed IMP computes the changes required to v
by evaluating OID projecting_v over the delta to the
affected base extent, rather than over the base extent
itself, while accessing all other base extents referenced
in the MV. For example, consider the effect of insert-
ing a new employee into the Employees extent on the

define OIDs_for_worksFor()
select distinct struct(EO:e, DO:d, VO:v)
from e in Employees, d in Departments,
v in WorksFor
where e.dept = d
and v.E = e.name and v.D = d.name

define OID_projecting worksFor()
select distinct
struct(EO:e, DO:d, E:e.name, D:d.name)
from e in Employees, d in Departments
where e.dept = d

Figure 5: Derived Views for Fig. 2

materialized state of worksFor (in Figure 2). The
delta corresponding to the insertion will simply con-
tain the new employee. The IMP generated by our
solution (shown in algebraic form at the top of Fig-
ure 6) is different from the evaluation plan derived
for OID_projecting_worksFor only in ranging over the
delta to Employees rather than over Employees itself
(but accessing Departments as well). When this IMP
is evaluated, the result is instances of OID _projecting_-
worksFor which are then input to the algorithm that
applies the changes to the MV (and to OIDs_for_-
worksFor if required).

2. Joining a delta with materialized OIDs — For
other kinds of updates, the IMP constructed by the
system joins OIDs_for_v with the delta in order to
identify MV objects that are affected by the update.
The idea is to avoid access to base extents whenever
possible. For example, consider the effect of modifying
the name of an employee. In this case (shown in alge-
braic form at the bottom of Figure 6), the information
in the delta is not enough to identify which object
in the MV might be affected because the delta only
refers to the updated employee: there is no handle in
the delta to the instances in the MV which have data
that was contributed by the affected employee. In this
case, the IMP will need to join OIDs_for_worksFor
with the delta (on the OID of the object in the delta).
When this IMP is evaluated, the result is input to an
algorithm that applies the changes to the MV (and to
OIDs_for worksFor if required).

Some assumptions underpinning the remainder of this sec-
tion are now made explicit. All the algorithms operate
either on algebraic expressions represented as trees or on
OQL expressions that comprise the query part of view def-
initions (e.g., those in Figure 2). The algorithms assume
that, given an expression, a straightforward tokenizer can
identify, for each grammatical category of interest, the set
of all tokens of a given category that occur in that ex-
pression. Using Figure 3 as a source of examples, some of
the categories of interest in the algebraic expression shown
are operator names (e.g., join), extent names (e.g., Depart-
ments), object names (e.g., €), attribute names (e.g., em-
ployee.name, department.name), and internal names (e.g.,
X1). Another category of interest is collection names (e.g.,
dependents in Figure 1). Notice that when a name is not
globally unique we assume that context information is con-
catenated to make it so, and that this concatenation is

reduce(set,
join(set,
get(Set. AonInsert‘, Employees €, and()):
get(set, Departments, d, and()),
and(eq(e.dept, d)),
none),

X1,
struct(bind(EO,e),bind(DO,d),bind(E,e.name),bind(D,d.name)),

and())

reduce(set,

join(set,
get(set, OIDs_for_worksFor, mat_oids, and()),
get(Set, Aonl"lmiifylﬂ;tz‘ employee.name » 6: and()):
and(eq(mat_oids.EOQ, §)),
none),

X1,

struct(bind(mat_obj,mat_oids.VO),bind(E,d.name)),

and())
Figure 6: IMPs for Fig. 2: insert, modify

construed as a token. Functional notation is used to de-
note metadata that might be relevant, e.g., given an at-
tribute name a we denote the type of which a is an at-
tribute as typeW hereDefined(a), and we might go on and
denote the extent name associated with that type by writing
extentNameOf (typeW hereDefined(a)). This is in contrast
with typeOf(e), denoting the domain from which values for
an expression e are drawn. If a is a relationship name, then
we denote the inverse relationship as inverseOf(a). In ad-
dition, given a collection attribute ¢ we denote the type of
the elements in the collection as typeO f ElementIn(c).

Figure 7 shows the processes that take place in the wake
of the definition of an MV. Shaded boxes denote compo-
nents that are assumed to exist and clear boxes denote new
components or extensions to existing ones required for IVM.
This section describes each of the clear boxes in Figure 7.
The oval collects processes that take place at update prop-
agation time.

derive 0IDs_for(v) OID_projecting(v)
extra in OQL in OQL

information \

compile

vin OQL

compile compile

OID_projecting(v)
an algebraic query tree

vas lan algebraic query tree

i OIDs_for(v)

an algebraic query tree

generate
maintenance

evaluate evaluate specify events

i " to monitor
materialize materialize plan

materialized

. . <event spec,
initial materialized v 0IDs_for(v)

maintenance plan>

event monitoring;
change computation;
view update.

base type extents base type extents

DATABASE)

Figure 7: Processes at View Compilation Time

With respect to the extension box labelled materialize, all
that is required is to extend the evaluator with a subcompo-
nent to make persistent the instances returned as the result
of executing a query. We assume that the materialization
process also encompasses the setting up of types for stor-
ing the MV-specific data and metadata required by IVM
processes.

The box labelled derive extra information in Figure 7 is

a simple syntactic mapping to generate, from the defini-
tion of an MV v, the two additional view definitions, viz.,
OIDs for v and OID_projecting_v, whose meaning and pur-
pose was described above. Note that v and OIDs for_v
are materialized (for use when IMPs are evaluated), but
OID _projecting_v is not materialized at all and is only used
in algebraic form for the construction of an appropriate IMP
for each kind of event with which IMPs are paired.

Figure 8 presents the algorithms that define the function-
ality of the box labelled specify events to monitor in Figure 7.
Abbreviations are used as follows: Ins for onInsertTo,
Del for onDeleteTo, Mod for onModifyAttr, InsEl for
onInsertElementIn, DelE] for onDeleteElementIn, and
ModEl for onModifyAttrInElement.

Note that the generation of event specifications is designed
to generalize, and cover, all update operations in the ODMG
standard, including those on collection types other than dic-
tionary and arrays (which are not currently defined in the
monoid algebra of [7, 8]). In Figure 8, by a ‘scan in a view’ is
meant an expression of the form ‘var in V Scope’ or ‘V Scope
as var’. In Figure 8, by a ‘path-expression in a view’ is
meant a period-separated list of names, each of which is ei-
ther a var introduced in a scan or an attribute name intro-
duced in the schema definition. Relationship names and the
names of their corresponding inverse relationships are also
referred to as attribute names in Figure 8 and elsewhere
in the paper. The function attributesProjected(C,Q) is
only informally defined here. It returns the set of attribute
names projected from a type C in a query Q. Figure 9
shows (as arrow targets) the event specifications returned
by specifyEventsToMonitor for the view at the bottom
of Figure 5.

The arrow sources are the syntactic features in the view
definition that induce the event specifications in the target.
To illustrate the execution of the algorithms in Figure 8,
notice that specifyEventsToMonitor comprises the fol-
lowing stages: first, updates to extents scanned in the view
need to be monitored — this is the purpose of the first it-
eration (over scans in the view); and second, updates to at-
tributes (possibly collection ones, and possibly relationships
and their inverses) mentioned in the view need to be moni-
tored — this is the purpose of the second iteration (which,
for each path expression in the view definition, invokes spec-
ifyEventsInPathExpr to traverse the path expression re-
cursively). Basically, scans induce the need to monitor in-
serts and deletes on extents or collections, attribute names
induce the need to monitor modifications and, if their type
is not primitive, updates to instances of the type they are
defined on.

Recall that there are two types of IMP for an MV v in
our approach: one that plants a delta in OID_projecting_v
and the other that joins the delta with OIDs for_v. The
box labelled generate maintenance plan in Figure 7 imple-
ments a function that, depending on the event type and
the MV type, decides whether to use one type of IMP or
the other. Figure 10 defines the condition under which the
MYV type is derived from the algebraic expression represent-
ing the MV. In this table, ‘4/° means that the operator in
that row appears in the algebraic expression where as ‘x’
means that it does not. For example, the MV in Figure 2 is
a ReduceGetJoin view because its algebraic form, shown in
Figure 3, contains the reduce, get and join operators. Where
a view can be classified in more than one type, the rightmost

function specifyEventsToMonitor(MVD: OQLQuery)
— set[eventSpecification] =
E: set[eventSpecification] := 0; arg: string;
foreach scan s in MVD do
if (V Scope(s) is an extent name) then
E := E U {Ins V Scope(s), Del V Scope(s)};
fi ;od ;
foreach path-expr p in MVD do
E := E U specifyEventsInPathExpr(p, MVD); od ;
return E; where
function specifyEventsInPathExpr(p: path-expr, Q: OQLQuery)
— set[eventSpecification] =
E: set[eventSpecification] := 0; Attrs: set[string] := 0; arg: string;
cases of p such that
when (p is empty) return E; /* base case */
when (head(p) is a var) /* done, by iterating over scans */
E := E U specifyEventsInPathExpr(rest(p), Q);
else /* so, head(p) is an attribute name, let’s handle it */
if (typeOf(head(p)) is not a collection type) then
if (typeOf(head(p)) is not primitive) then
/* head(p) names a single-valued relationship */
E := E U { Mod head(p) };
arg := extentNameOf (typeW hereDefined(head(p)));
E := E U { Ins arg, Del arg };
arg := inverseOf (head(p));

.

if (arg is not a collection type) then
E :=E U { Mod arg };
else /* inverse is of a collection type) */
E := E U { InsEl arg, DelEl arg }; i ;
else
E := E U { Mod head(p) }; i ;
else /* typeOf(head(p)) is a collection type */
E := E U {InsEl p, DelEI p};
arg := typeOf ElementIn(head(p));
Attrs := attributesProjected(arg, Q);
/* now, changes to attributes from collection elements */
foreach attribute a in Attrs do
E := E U { ModEl a(p) }; od ;

if (arg is not primitive) then

/* head(p) names a collection-valued relationship */
arg := extentNameOf(arg);
E := E U { Ins arg, Del arg };
arg := inverseOf (head(p));
if (arg is not a collection type) then
E :=E U { Mod arg };
else /* inverse is of a collection type) */
E := E U { InsEl arg, DelEl arg }; i ;
/* head(p) does not name a relationship and has been handled */
else continue fi ;
fi;
E := E U specifyEventsInPathExpr(rest(p), Q);

esac; return E; [

Figure 8: Specifying Events to Monitor

sel ect di stinct struct(EO: e DO: d. E: e.nane, D:d. nanme)

from e in Enployees . d in Departnents onModifyAttr department.name

where e-dept =d onModifyAttr employee.name

onModifyAttr employee.dept oninsertTo Employees oninsertTo Departments
onDelete Employees onDeleteTo Departments

Figure 9: Event Specifications for Fig. 5

(in Figure 10) among these is used.

| | ReduceGet [ReduceGetJoin [Unnest | Nest |

reduce Vi Vv Vv Vv
get v v v v
join X v VA

unnest X X vV V4
nest X X X VA

Figure 10: Classification by Algebraic Operators

Figure 11 defines precisely, for each event type and for
each MV type, what kind of IMP is generated. In Figure 11,
note that ‘CA’ abbreviates the phrase ‘condition attribute’,
by which is meant an attribute occurring in a condition ex-
pression (e.g., in Figure 2, e.dept is a CA whereas e.name
is not). Note, however, that a CA attribute may appear
elsewhere in a query (e.g., in a projection). Also, by Anew
is meant using the data in the delta reflecting the state of
the database after the update. Correspondingly, by Ayyq is
meant using the data in the delta reflecting the state of the
database before the update. For example, for an onInsertTo
event, A,y is used because the new state of the database is
relevant.! In contrast, for an onDeleteTo event, Ayq is used,
as an object once deleted from the database can no longer be
referenced, therefore, the old state is essential. Given an MV
v, by ‘plant Apeq,’ is meant that the IMP is generated by
planting Apey in the algebraic form of OID _projecting_v,
and by ‘OIDsfor_v M Aye,’ is meant that the generated
IMP in algebraic form joins Apey to OIDs for_v. Similar
remarks apply to the use of Agyg. Note also that, in some
cells, two IMPs are generated. This happens whenever a
CA is modified, in which case there is a need to use the
old value of the attribute in one IMP (identical to the one
that would have been generated if the attribute were not a
CA) to reconstruct which objects made it into the MV on
the basis of that value, before using the new value to gener-
ate the second IMP. It will be seen later that the output of
the two IMPs characterize MV objects to delete and insert,
respectively.

An example of (the algebraic form of) an IMP generated
by planting a delta was given at the top of Figure 6, and
of one generated by joining a delta with OIDs_for_v, in the
bottom of Figure 6. Since the example event types were,
respectively, onInsertTo and onModifyAttr (where the at-
tribute in question is not a CA), and the example MV is a
ReduceGetJoin view, the examples correspond, respectively,
to ‘plant Ayey’ and ‘OIDs for v X Ay’ in Figure 6. The
intuition behind entries in Figure 11 is as follows:

1. ReduceGet: No access is required to base data, as it is
sufficient to filter the data provided in the delta (only
one extent is referenced in such views, which is the one
replaced by the delta). The delta becomes available in
the algebraic expression through planting.

2. ReduceGetJoin: Where a new object is created that
may participate in the view (e.g., after an onInsertTo),
the view must be evaluated over the delta to identify
whether or not the new object should contribute to
the view. This is likely to require access to base data.

'In some cases, it is possible to avoid accessing base data
on onInsertTo as discussed in [16]. This is an improvement
that we will explore in future work.

View Type |

[Case | Event Type | CA? | ReduceGet | ReduceGetJoin | UnnestVNest |
1 onInsertTo — plant Anew | plant Ajeq plant Ajew
2 onInsertElementIn — plant Anew | OIDs for v W Ayew | plant Apew
3 onDeleteTo — plant Ay OIDs_for v X A4 plant Ay
4 onDeleteElementIn — plant Ayg OIDs _for v X Agiq plant Agg
5 onModifyAttr no plant Ay | OIDs for v WX Apeyy | plant Apeqy
6 onModifyAttrInElement no plant Ayew | OIDs for v W Ayey | plant Agey
7 onModifyAttr yes | plant Agq OIDs _for v M Agid plant Agg
plant Ayey | plant Agey plant Agew
8 onModifyAttrInElement yes | plant Agg OIDs for v M Agid plant Agg
plant A,ey | plant Ajey plant Ajey

Figure 11: Choosing a Maintenance Plan

Several update operations (in rows 2-6 in Figure 11)
cannot change which objects contribute to the view,
but may affect the data projected in the view. As such,
joining the delta to OIDs_for_v is sufficient to identify
the objects in the view affected by the update. Mod-
ifying an attribute that is included in a condition (in
rows 7-8) may cause an object that is already in the
view to be deleted, or may lead to new objects being
added to the view. The former can be identified by
joining Ayq with OIDs for_v, but the latter requires
access to base data through the planting of Ayeqy.

3. Unnest V Nest: As no information is materialised on
the collections from which unnested members of a view
are derived, incremental plans that relate to such views
in general require access to base data. In the case of
nesting, the materialised data does not in general link
directly to the objects from which a nested collection
has been constructed, so again it is necessary to access
base data in order to compute changes to the view.
As such, incremental changes to both unnest and nest
views are computed by planting the relevant delta.

For reasons of space, we omit an explicit description of the
algorithms denoted by the cells in Figure 11. Comparing the
views in Figures 2 and 5 with the examples in Figure 6 gives
an idea of the transformations effected by the algorithms.

In our framework, the IVM problem is broken down into
processes that take place at view compilation time and pro-
cesses that run whenever an update takes place. The compi-
lation-time processes have been described in the preced-
ing subsection. In what follows we briefly describe what
happens when an update event takes place. Because A-
DB implements the ODMG model by source translation
onto SHORE C++, our system does not monitor update
events in the sense that this is understood, e.g., in the active
databases literature. Instead, we adorn the SHORE C++
code output by the A-DB compiler with calls to the IVM
code. At view-compilation time, as previously described,
MYV definitions are compiled, evaluated and materialized
along with extra information. In addition, event specifi-
cations are identified and the IMPs associated with the lat-
ter are generated. Then, when A-DB compiles application
code, we identify update requests and adorn application up-
dates with calls to the IVM code. For each update request,
whenever there is an MV for which the request is relevant
(because it matches the event specifications derived for that
MV at view compilation time), the inserted IVM code is
such that, when executed, it evaluates the IMP(s) associ-
ated with that update to compute the changes (as described

in the preceding subsection, and in particular in Figure 11)
and then propagates those changes to the MV. The details
of how changes are applied to the MVs are omitted due to
space restrictions.

4. PRELIMINARY RESULTS

A preliminary performance evaluation has been carried
out on the prototype of our solution to the IVM problem,
the results of which are briefly described in this section. The
experiments reported here are carried out on a PC with the
following hardware and software: Intel Pentium Pro proces-
sor, 200 MHz, 256KB cache, 128MB RAM, 4GB SCSI Hard
Disk (where the system software and 128MB of swap space
reside); RedHat Linux 6.0 Kernel 2.2.5-22, SHORE 1.1.1 and
A-DB 0.5. Data was generated at random for the schema in
Figure 1 and cardinalities are indicated in Figure 12. A more
comprehensive evaluation in which more stringent demands
are made on the system is presented in [2].

Performance is evaluated on three aspects: answering que-
ries over materialized and non-materialized views, relating
the cost of performing a query over a non-materialized view
to the cost of propagating incremental updates to the cor-
responding MV, and incremental maintenance against re-
materialization when the view needs updating. Re-materiali-
zation includes deleting the existing materialized extent, re-
computing the view extent, and storing the new extent.

The MV used is the variant of worksFor given in Figure 13
and referred to as olderEmpThatWorksFor.

Figure 12.(a) compares the performance of evaluating eval-
uating queries that retrieve the result of olderEmpThatWorks-
For in materialized (MQ) and virtual (VQ) forms. These
results indicate significant response time gains for querying
the materialized version of the view for different database
sizes. Figure 12.(b) shows the relative cost of answering
VQ and propagating an onInsertTo update event incremen-
tally. The idea is to identify under what circumstances MVs
may be detrimental to performance in update-intensive ap-
plications. For the small database, 31 incremental updates
can be performed for the cost of evaluating VQ once. For
the medium database, this increases to 54, and to 76 for the
large database. This suggests that IVM is more beneficial in
larger databases. Figures 12.(c)-(d) show the performance
of IVM against re-materialization (ReMat) in response to
onInsertTo and onModifyAttr update events, respectively.
In both cases IVM significantly outperforms ReMat. For
example, in the case of onInsertTo, IVM is 55 times faster
than ReMat for the small database, and 132 times faster for
the large one. In other words, 55 incremental updates can

Cost of answering MQ compared to VQ

16000

Departments Employees
14000 - small 50 10000
I medium 150 30000
£ 12000 large 450 90000
£ 10000 -
% 8000
2
2 6000 -
o
4000 -
2000 -
0 P e ———*
small medium large Database Size
— - —-MQ 68.1 167.2 495.4
—8—VQ 1257.2 3922.2 13674.5
(a)
Relative cost of answering VQ v. propagating
onlnsert e To Enployees
100
@
Y
g 80 4
£
w
i=}
s 60
o}
g
5 40 A
k]
-
0 :
small medium large Database size
—&— Relative Cost 31 54 76
(b)
IVM v. Rematerialization
foronlnsert e To Enployees
30000
25000
.
E 20000
[+
£
= 15000
=]
[
2
& 10000 4
w
5000 -
0 - s =
small medium large Database Size
—— ReMat 2256.8 6949.5 23878.7
— & - VM 40.9 73.0 180.4
(<)
IVM v. Rematerialization
for onModi f yAttr enpl oyee. name
30000
25000
.
E 20000
[
£
=
= 15000
Q
2
& 10000
w
5000
0 - —_———— —— — -
small medium large Database Size
—e— ReMat 2250.7 6785.7 23704.5
— = VM 120.2 334.1 989.0
(d)

Figure 12: Preliminary Evaluation of the IVM Code

define olderEmpThatWorksFor() as
select struct(E:e.name, D:d.name)
from e in Employees, d in Departments
where e.dept = d and e.age >= 39;

Figure 13: MV Used for Performance Evaluation

be performed for the cost of one re-materialization event in
the case of the small database and 132 in the case of the
large one. This suggests that the benefit of incrementality
increases with an increase in the database size.

5. RELATED WORK

In this section, we discuss work done on the IVM problem
that is closely related to the work reported in this paper.

The incremental maintenance of materialized views has
been studied in detail for relational DBMSs. Blakeley et
al. [3] provide a differential algorithm for maintaining select-
project-join (SPJ) views [3]. Our approach of generating an
IMP by planting a delta is closely related to this differen-
tial algorithm; however, it is also effective in the richer OO
setting. Ceri and Widom derive production rules to incre-
mentally update a subset of SQL views [6]. Although their
system employs active database technology and key infor-
mation for all tables referenced in view definitions, it does
not avoid access to base tables whereas in our solution views
can be incrementally maintained without accessing base ta-
bles for some events. The algorithms provided by Gupta
et al. [13] incrementally maintain SQL and Datalog views.
However, they require access to all base tables for all up-
date operations, which could be more expensive than our
approach, since we avoid accessing base data for some up-
dates. Zhuge et al. propose an eager compensation algo-
rithm [18] that adapts [3, 13] to data-warehousing environ-
ments. Once again, the possibility of avoiding access to base
tables is not exploited. In this case, this could be even more
expensive because in data-warehousing environments base
tables may well reside remotely. Griffin and Libkin [11] ex-
tend relational algebra to bags and present an algorithm that
derives algebraic expressions to compute changes to views.
Although [11] closely resembles [13] in the expressiveness of
the language and the amount of information they assume
to be available, it provides an algebraic approach to the
IVM problem, as we do. Finally, Gupta and Blakeley [12]
extend [3] with the possibility of using less information in
incrementally maintaining SPJ views. However, they either
materialize an extended form of the MV (besides the MV
itself) to store the values of non-projected base attributes,
or use partial base tables in order to consume less informa-
tion. In contrast, we store only the OIDs of the contributing
objects and avoid accessing base extents whenever possible.

Recently, a few proposals have addressed view mainte-
nance in the context of object DBMSs [1, 10, 14, 17]. These
constitute the work more closely related to ours. Zhou et
al. proposes a system called Squirrel [17] that uses a view
definition language based on OQL. Although OQL syntax is
adopted, the underlying query engine is relational and does
not support views containing nest or unnest operations. As
well as materialized views, the Squirrel mediators store lo-
cally auxiliary information that is generated by intermediate
nodes (e.g. projections, joins) in the algebraic representa-
tion of the query. An incremental update plan maintains
both the view and the auxiliary information. In our system,

we do not store results of intermediate nodes. Squirrel prop-
agates incremental updates to MVs in response to inserts
and deletes only, whereas we support all update operations
defined by the ODMG. Gluche et al. address the IVM prob-
lem for a subset of OQL views at the monoid comprehension
level in the context of their CROQUE system for a vari-
ant of the ODMG object model [10]. The emphasis of this
work is on understanding properties of OQL queries with
aggregation operations so as to determine under what cir-
cumstances views can be materialized incrementally. Thus,
they do not provide a directly implementable solution to
the IVM problem, but rather establish foundational results
that a solution might want to build on. Kuno and Ruden-
steiner provide a system called MultiView [14] that is based
on a non-standard object model and query language, whose
algebraic operators are very close to those of relational alge-
bra. MultiView considers views to be references to base ob-
jects, therefore it does not follow the mainstream approach
of replicating actual data in the view. Such views are less
useful in data warehousing and data integration contexts be-
cause here replication is part of the purpose and the need to
dereference object identities, while greatly simplifying the
IVM task, makes it more difficult to reap certain benefits
expected of data warehouses. MultiView requires access to
all base extents referenced in MVs (not containing joins) in
order to propagate updates incrementally for the supported
update operations, whereas we avoid accessing base extents
for views containing arbitrary number of joins for certain
update operations. Finally, Alhajj et al [1] present algo-
rithms for the incremental maintenance of SP views in the
context of a non-standard object model and query language
whose expressiveness falls short of the needs of the very ap-
plications that have provided justification for the move from
relational to object-based databases. The emphasis in [1] is
on the recording of information that is necessary when per-
forming deferred updates, and the proposal is imprecise with
respect to both the view language and the process of update
propagation.

6. CONCLUSIONS

The solution presented here has the following salient points
in relation to previous work. It is one of few that cover the
IVM problem from event specification, to IMP generation,
to update propagation; it is the first algebraic approach to
the IVM problem in the context of object databases; it works
for a wider class of MVs that the only previous work on the
IVM problem for OQL views (viz., Squirrel [17]); it also has
lower space overheads than Squirrel [17] for the MVs that
both solutions cover; it is fully implemented as an extension
of A-DB [9] whereas many IVM proposals give no evidence
of associated implementations; it is one of few whose perfor-
mance has been evaluated over all the steps comprising the
IVM problem [2].

We plan to build on the contributions above by providing
formal results of the validity of the solution (currently va-
lidity is ensured by the empirical testing of the implemented
system alone) and extending the subset of OQL that can be
used for view definition with self joins as well as aggregation
functions, set operations and quantification.

Acknowledgements M. Akhtar Ali gratefully acknowl-
edges the support of the Commonwealth Scholarship Com-
mission in the United Kingdom (Grant PK0257).

7. REFERENCES

[1] R. Alhajj and F. Polat. Incremental View
Maintenance in Object Databases. Data Base for
Advances in Information Systems, 29(3):52-64, 1998.

[2] M. A. Ali, N. W. Paton, and A. A. A. Fernandes.
Evaluating An Incremental View Maintenance
System. Technical Report (PrePrint Series),
Department of Computer Science, University of
Manchester, August 2000.
http://pevepcl3.cs.man.ac.uk/PrePrints/index.htm.

[3] J. A. Blakeley, P.-A. Larson, and F. Tompa.
Efficiently Updating Materialized Views. In Proc.
SIGMOD, pages 61-71, 1986.

[4] M. J. Carey, D. J. DeWitt, M. J. Franklin, N. E. Hall,
M. L. McAuliffe, J. F. Naughton, D. T. Schuh, M. H.
Solomon, C. K. Tan, O. G. Tsatalos, S. J. White, and
M. J. Zwilling. Shoring up persistent applications. In
Proc. SIGMOD, pages 383-394, 1994.

[6] R. G. G. Cattell, editor. The Object Database
Standard: ODMG 3.0. Morgan Kaufmann, 2000.

[6] S. Ceri and J. Widom. Deriving Production Rules for
Incremental View Maintenance. In Proc. VLDB, pages
577-589, 1991.

[7] L. Fegaras. Query Unnesting in Object-Oriented
Databases. In Proc. SIGMOD, pages 49-60, 1998.

[8] L. Fegaras and D. Maier. Towards an Effective
Calculus for Object Query Languages. In Proc.
SIGMOD, pages 47-58, 1995.

[9] L. Fegaras, C. Srinivasan, A. Rajendran, and
D. Maier. A-DB: An ODMG-Based Object-Oriented
DBMS. In Proc. SIGMOD, page 583, 2000. SIGMOD
Record 29(2), June 2000.

[10] D. Gluche, T. Grust, C. Mainberger, and M. Scholl.
Incremental Updates for Materialized OQL Views. In
Proc. DOOD, pages 52—66, 1997.

[11] T. Griffin and L. Libkin. Incremental Maintenance of
Views with Duplicates. In Proc. SIGMOD, pages
328-339, 1995.

[12] A. Gupta and J. A. Blakeley. Using Partial
Information to Update Materialized Views.
Information Systems, 20(8):641-662, 1995.

[13] A. Gupta, I. Mumick, and V. Subrahmanian.
Maintaining Views Incrementally. In Proc. SIGMOD,
pages 157-166, 1993.

[14] H. Kuno and E. Rudensteiner. Incremental
Maintenance of Materialized Object-Oriented Views in
MultiView: Strategies and Performance Evaluation.
IEEE TKDE, 10(5):768-792, 1998.

[15] N. W. Paton, S. A. Khan, A. Hayes, F. Moussouni,
A. Brass, K. Eilbeck, C. A. Goble, S. J. Hubbard, and
S. G. Oliver. Conceptual Modelling of Genomic
Information. Bioinformatics, 16:548-557, 2000.

[16] I. Stanoi, D. Agrawal, and A. E. Abbadi. View
Derivation Graph with Edge Fitting for Adaptive
Data Warehousing. In Proc. DaWaK, 2000.

[17] G. Zhou, R. Hull, and R. King. Generating Data
Integration Mediators that Use Materialization. JIIS,
6(2/3):199-221, 1996.

[18] Y. Zhuge, H. Garcia-Molina, J. Hammer, and
J. Widom. View Maintenance in a Warehousing
Environment. In Proc. SIGMOD, pages 316-327, 1995.

