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ABSTRACT

Object database management systems (ODBMS) are now
established as the database management technology of choice
for a range of challenging data intensive applications. Fur-
thermore, the applications associated with object databases
typically have stringent performance requirements, and some
are associated with very large data sets. However, despite
the demands made on object databases by applications, there
has been surprisingly little work on parallel object databases.
This paper presents the architecture and some preliminary
performance results for the Polar ODMG compliant parallel
object database. The architecture described has been im-
plemented in a shared-nothing environment on a network of
PCs. The paper describes how OQL queries are compiled,
parallelized and executed in this environment, and includes
some preliminary performance results for OQL queries using
the 007 benchmark.

1. INTRODUCTION

There are some fields in which ODBMS have been used
for many years, such as Geomatics and various forms of
engineering design where they are preferred for their abil-
ity to manage data with complex structure [20]. As the
volume of data stored increases and the demands of com-
plex analyses grow, the need for scaleable object database
servers seems sure to become ever greater. Additionally,
several interesting new areas are currently emerging. For
example, ODBMS are now being adopted for the storage of
vast amounts of scientific information, such as in the Digital
Sky [23] (astronomical information) and CERN RD45 [24]
(high energy physics) projects which are anticipated to re-
quire the ability to store and manipulate up to Petabytes of
object data, something that is clearly not feasible with cur-
rent, single site ODBMS. In newly developing applications

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CIKM ’2000 Washington DC, USA

Copyright 2000 ACM 0-89791-88-6/97/05 ..$5.00

Sandra de F. Mendes Sampaio
and Norman Paton
Department of Computing Science
University of Manchester
Oxford Road
Manchester, M13 9PL UK

sampaios@cs.man.ac.uk
norm@cs.man.ac.uk

it is hard to anticipate the requirements but the dual nav-
igational and declarative access capability seems intuitively
attractive. Other areas where ODBMS are being seen as
well suited include bioinformatics, e.g. [22]. The use of ob-
ject technology to build Internet applications will also create
demands for the storage and manipulation of huge numbers
of objects. The need to support data mining for extracting
useful information from this data will add to the perfor-
mance requirements.

Surprisingly, while a number of research groups and com-
panies now provide object database servers designed to run
on uniprocessors, there has been very little work done to-
wards the use of parallelism to provide scalable performance
in ODBMS. The growth of an ODBMS industry has how-
ever led to the generation of the ODMG standard [7]. Such
a standard not only allows the Polar project to focus on
research into parallelism, rather than on the ODBMS inter-
faces, but also eases the transition to a parallel ODBMS for
existing users of ODMG compliant databases.

Over the last 15 years, there has been a great deal of effort
expended in designing parallel relational database servers
(RDBMS), and these now have the largest share of the en-
tire commercial parallel systems market. In designing a par-
allel ODBMS we wanted to build on the experience of the
existing parallel RDBMS research where possible. A key les-
son arising from parallel RDBMS development is that the
shared nothing architecture, where neither disk nor mem-
ory is common between processors is highly scalable [10].
Therefore, Polar currently focusses on the shared nothing
environment and on the realisation of a parallel algebra to
fully exploit it. However, this does not prohibit exploita-
tion of shared memory parallelism within each node of the
parallel machine in the future.

Our work has shown that the significant differences be-
tween the object and relational database paradigms lead to
significant differences in the designs of parallel servers to
support these two paradigms. The description of the Polar
system presented in the rest of this paper shows how these
differences impact the design of a parallel ODBMS. Signifi-
cant differences include:

1. An ODBMS automatically allocates each separately
persistent object an OID which allows direct pointer
style accesses as well as the value based accesses fa-
miliar in an RDB. OIDs are fundamental to support-



ing navigation, but they also support path expressions
within queries and so imply a need for new algebra op-
erators. In a parallel setting, traversing a relationship
can imply traversing between processors of the parallel
machine which has implications for performance.

2. An ODBMS differs also from a traditional RDBMS
in supporting collection valued attributes, which are
similar to nested relations in extended relational sys-
tems but may contain references to implement many
to one and many to many relationships. Such collec-
tions also necessitate enhancements in the algebra and
query planning.

3. Relational databases can only be accessed through a
query language, whereas object databases can be ac-
cessed both through a query language, and also by
mapping database objects into applications in support
of navigation. The presence of the two different styles
of access inevitably complicates both concurrency con-
trol and load management.

4. Unlike traditional relational systems, object relational
systems [26] include support for user defined functions,
implemented either as subqueries in the declarative
language or in a procedural language. Calls to such
functions may be included in queries. An ODBMS
has similar functionality in its support for objects hav-
ing methods except that in the case of an ODBMS
a method can navigate arbitrarily through other ob-
jects, as can code executing in a navigational client.
As described above however, traversing a relationship
in a parallel setting can imply the cost of travers-
ing between processors of the parallel machine. The
widespread appeal of OO languages, which operate
in the navigational paradigm, suggests that benefits
are seen in organising complex applications as objects
with navigational methods. However supporting calls
to such methods which navigate in declarative queries
must be expected to increase the difficulty of planning
and executing those queries.

Initial work in Polar focusses on the realisation of parallel
execution of OQL queries without method calls, but using
components that enable enhancement to include other at-
tributes of an ODBMS.

In the rest of this paper we describe the design of the
Polar parallel ODBMS which is novel in supporting ODMG
on a shared nothing architecture with disk based data. We
present performance results for a set of parallel queries mea-
sured on a PC cluster that show reasonable speedups can be
obtained in this low cost environment. Amongst these re-
sults we present measurements that demonstrate the com-
plexity of issues surrounding the processing of relationships;
an important issue in ODBMS. Section 2 describes how our
work relates to that of others. The Polar architecture is then
described in Sections 3 to 5. Section 6 gives the results mea-
sured on the Polar prototype and analysis described above.
Finally in Section 7 we draw conclusions from our work so
far.

2. RELATED WORK

The previous parallel RDBMS projects that have most
influenced our work are EDS and Goldrush. In the 1980s,

the EDS project [30] designed and implemented a complete
parallel system including hardware, operating system and a
database server that was basically relational, but did con-
tain some object extensions. This ran efficiently on up to 32
nodes. The ICL Goldrush project [29] built on these results
and designed a parallel RDBMS product that ran parallel
Oracle and Informix. Issues tackled in these two projects
that are relevant to the parallel ODBMS include concur-
rency control in parallel systems, scalable data storage, and
parallel query processing.

Both of these projects used custom-built parallel hard-
ware. In Polar we are investigating an alternative, which is
the use of lower-cost commodity hardware: a cluster of PCs.

Research in parallel object databases can probably be con-
sidered to belong within two principal areas — the develop-
ment of object database models and query languages specif-
ically for use in a parallel setting, and techniques to support
the implementation of object models and query processors
in a parallel setting. A thorough discussion of the issues of
relevance to the development of a parallel object database
server is given in [28].

An early parallel object database project was Bubba [4],
which had a functional query language FAD. Although the
Bubba model and languages probably influenced the later
ODMG model, FAD provides more programming facilities
than OQL. There has also been a significant body of work
produced at the University of Florida [27, 8], both on lan-
guage design and query processing algorithms. However, the
language on which this is based [27] seems less powerful than
OQL, and the query processing framework is significantly
different; it is not obvious to us that it can be adapted easily
for use with OQL. Another parallel object-based database
system is PRIMA [13], which uses the MAD data model
and a SQL-like query language, MQL. The PRIMA sys-
tem’s architecture differs considerably from Polar’s, as it
is implemented as a multiple-level client-server architecture,
where parallelism is exploited by partitioning the work as-
sociated with a query into a number of service requests that
are propagated through the layers of the architecture in the
form of client and sever processes. However, the mapping
of processes onto processors is accomplished by the operat-
ing system of the assumed shared memory multiprocessor.
Translating the PRIMA approach to the shared nothing en-
vironment assumed in Polar appears difficult.

There has been relatively little work on parallel query pro-
cessing for mainstream object data models. The one other
parallel implementation of an ODMG compliant system we
are aware of is Monet [3]. This shares with Polar the use
of an object algebra for query processing, but operates over
a main-memory storage system based on vertical data frag-
mentation which is very different from the Polar storage
model. As such, Monet really supports the ODMG model
through a front-end to a binary relational storage system.

There has also been work on parallel query processing in
object relational databases [21]. However, object relational
databases essentially operate over extended relational stor-
age managers, so results obtained in the object relational
setting may not transfer easily to an ODMG setting.

3. ARCHITECTURAL OVERVIEW

The Polar architecture involves a number of query com-
piler /optimiser systems running on a subset of the proces-
sors in a parallel machine. These systems share an ob-
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Figure 1: Overview of query processing.

ject store which is distributed over the remaining proces-
sors of the parallel machine. Persistent objects are dis-
tributed across the disks mounted on the the processors
comprising the object store. Within the object store, each
processor runs an object manager. The object manager
provides services to a local copy of the execution engine
which implements the physical algebra operators. The com-
piler /optimiser and object store share a common description
of both system and application level metadata.

Figure 1 shows compilers processing OQL queries input
in the one case via a command line interface and in another
case generated by a program implemented in a bound lan-
guage. In either case, the compiler/optimiser produces a
query plan which specifies the distribution and interconnec-
tion of operators over the available processors. A query plan
is comprised of a number of partitions, one for each proces-
sor which is to participate in the query. The partitions are
communicated to the object store where they are instanti-
ated as threads executing within the query execution engine
on each appropriate processor.

The operators are implemented according to the iterator
model [15] whereby each implements a common interface
comprising the functions open, nezt and close allowing cre-
ation of arbitrary pipelines. As well as performing manip-
ulations of the data propagating up the query tree, opera-
tors themselves call on runtime services to perform various
tasks. These tasks include spawning concurrent threads of
execution, transmitting data to and from other operators
and accessing local application data.

Inter query parallelism may be obtained by running in-
dependent queries concurrently in separate partitions of the
parallel object store. Intra query parallelism is obtained
through the parallel execution of a single query on more
than one processor. In this work the focus is on the ex-
ploitation of intra query parallelism in the execution of a
single OQL query. Intra query parallelism may be classified
further into: inter operator parallelism which is obtained
through parallel execution of separate algebra operators in
a single query tree on multiple processors, and intra operator
parallelism which is obtained through executing a single op-
erator on multiple processors in data parallel fashion. Polar
exploits both forms of parallelism.

Two general approaches for parallelising a database query
execution engine are described in [15], namely the bracket
model and the operator model. In the bracket model, a

generic process template is used by the physical operators
for receiving and sending data. In the operator model, par-
allelism related operators are inserted into a sequential plan,
transforming it into a parallel plan. Polar adopts the oper-
ator model with the intention of achieving a cleaner separa-
tion between data manipulation and control functionality at
the level of the physical operators. The exchange operator,
modelled after that described in the Volcano system [14], is
used to implement a partition between two threads of ex-
ecution, and a configurable data redistribution, the latter
implementing a flow control policy.

4. QUERY OPTIMISATION AND PARAL-
LELISATION

As illustrated in Figure 2, a declarative query is passed
oQL
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Figure 2: Functional components of the parallel op-
timiser.

to the server where, the compiler/optimiser produces a plan
which specifies the distribution and interconnection of oper-
ators over the available processors and passes this plan, as
a set of partitions, to the object store for instantiation and
execution. The compilation of queries is discussed in detail
in the rest of this section. Their execution is described in
the section 5.

The key design decisions that have shaped the parallel
OQL query compiler for OQL are:

1. The parallel optimiser is an extension of an existing
non-parallel optimiser for OQL [11]. It uses a two
phase approach, in which non-parallel aspects of op-
timisation take place before parallel aspects, allowing
reuse of well established techniques for non-parallel op-
timisation.

2. The optimiser is modular, in that components have
been designed with well defined interfaces, so that al-
ternative approaches can be experimented with during
the project. The main internal representation used for
queries is an object algebra, which is refined during the
optimisation process to include increasingly detailed
execution descriptions.

The principal components of the query compilation archi-
tecture are illustrated in Figure 2. The parallel optimiser is
further divided into components that perform partitioning
and processor allocation. The following sections describe
each component of the parallel optimisation system.

4.1 Logical optimiser

During compilation, the input OQL query expression is
translated into a Monoids calculus [12] expression for nor-
malisation. The main advantage of the Monoids calculus is
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Figure 3: An example query: (a) Logical algebra.
(b) Physical algebra. (c) Parallel algebra.

that it allows a uniform treatment for collections and scalar
types, simplifying the design of the logical algebra [16]. The
normalisation of the Monoids calculus includes query unnest-
ing, fusion of multiple selection operations into a single se-
lection operation, normalisation of predicates by applying
DeMorgan’s laws, etc. Subsequently, the normalised calcu-
lus expression is mapped into a logical algebra expression.
A detailed description of the algebra, which is an extension
of that proposed in [16] is provided in [9]. Figure 3(a) shows
a logical plan for the query shown below. This query cor-
responds to Query 5 of the OO7 benchmark (described in
section 6).

select distinct b.id
from b in baseAssemblies, ¢ in b.componentsPriv
where b.buildDate < c.buildDate;

Optimisations over the logical algebra expressions include
reordering of joins and moving of selections as close as possi-
ble to the scan operators. The logical optimiser is heuristic,
rather than cost based, and generates several logical expres-
sions as output for each query, though many fewer than all
possible expressions.

4.2 Physical optimiser

The physical optimiser transforms each logical expression
into a physical plan, by choosing an execution strategy (i.e.
physical operators) for each logical operator. Examples of
physical operators include nested_loop, hash_join and mate-
rialise for logical join, tablescan and index_scan for logical
scan, etc. The physical optimiser selects one or several of the
physical operators available for each logical optimiser, and
generates several plans using cost-based techniques. Note
that the cost model used by the physical optimiser does not
at this stage take into account the effects of parallelism on
the cost of the different plans. Figure 3(b) shows a physical
plan for the logical plan in figure 3(a).

Table 1 indicates the relationship between the logical and
physical operators.

4.3 Parallel optimiser

The parallel optimiser transforms a sequential physical
plan into a parallel plan, by rewriting the plan in a paral-
lel algebra. As mentioned earlier, this is achieved through
the insertion of instances of the exchange operator. Since
this operator is associated with data communication among
different processors of a parallel machine, the insertion of
this operator in a conventional query plan divides the plan

Table 1: Logical and physical algebras.

Logical Operators Physical Operators
get table_scan, index_scan
join nested Ioop, hash_join,

materialise
nest nest, groupby
unnest unnest

sort
reduce reduce
union union
map map

into different sets of operators, i.e. different partitions, or
subplans.

There are many possible ways in which the exchange oper-
ator can be inserted into a query plan, and, therefore, there
are many ways in which to partition a query plan. Moreover,
there are many possible ways of allocating machine resources
for executing each subplan of a parallel plan. Partitioning
and processor allocation are described below.

4.3.1 Partitioning of Plans

A simple criterion for partitioning a query plan into a
number of subplans that can be executed in parallel using
some type of parallelism is by placing two data dependent
operators in different nodes of the parallel machine if data
repartitioning is required for the proper execution of the
consumer operator. [18] distinguishes attribute sensitive op-
erators and attribute insensitive operators. An attribute
sensitive operator, when executed on multiple processors, re-
quires its input data to be partitioned by a distinguished at-
tribute, whereas an attribute insensitive operator does not.
An exchange operator must be placed before an attribute
sensitive operator if any of its child operators use different
partitioning attributes, so that the data is partitioned by
the required attributes.

Grouping operators and valued-based join operators such
as nested_loop are examples of attribute sensitive operators,
as they require partitioning by the joining and grouping at-
tributes, respectively. Table 2 classifies the parallel algebra
operators as attribute sensitive or attribute insensitive.

Table 2: Operators classification.
Operator Characteristic Operator
Attribute Sensitive nested Ioop, hash_join,
nest, groupby, materialise
reduce, sort, unnest, union,
map, exchange

Attribute Insensitive

Figure 3(c) illustrates a possible way of inserting the par-
allelism related operator into the plan shown in figure 3(b).
The operators table_scan and index_scan are usually paral-
lelised based on the partitioning of the data being read.
Thus, even if an attribute sensitive predicate is specified
in any of these scan operations, no exchange operator is re-
quired to do data repartitioning. The operator materialise,
first proposed in [2], is mainly responsible for materialising
path expressions by bringing into scope objects of collec-
tions referred to in a path expression. The operator reduce
is considered as attribute insensitive, as its role is simply to



structure the results of a query. However, an exchange oper-
ator may be necessary to channel data from different nodes
to the node that hosts the reduce operator, so that aggregate
operations are performed and duplicates removed.

The parallel optimiser may choose to insert additional re-
duce operators onto the plan in order to discard data that is
not relevant to the next steps of execution, saving the cost of
distributing unnecessary data over multiple processors of the
machine. For example, a reduce operator is placed between
unnest and exchange in figure 3(c), to discard attributes of
the objects of baseAssemblies that are not relevant to sub-
sequent operators in the query execution.

The partitioning strategy described above is naive in the
sense that exchange operators are placed right before at-
tribute sensitive operators, without any previous analysis
about exactly in what position before an attribute sensitive
operator it is least costly to perform data repartitioning. In
some cases, a less costly repartitioning can be obtained by
moving an exchange operator to a position right above an
operation that discards data, so that fewer data values are
moved during repartitioning. A partitioning strategy that
analyses the best position for performing data repartitioning
in a plan tree is described in [17].

4.3.2 Processor Allocation

Depending on the number of processors in a parallel ma-
chine, there may be many possible ways of assigning a set of
processors to execute each partition of a plan. A compile-
time parallel optimiser does not consider runtime informa-
tion such as current load on processors when assigning pro-
cessors to subqueries. Thus, such optimisers have to rely
on other criteria to make their decisions. The criteria used
for processor allocation in the current version of the parallel
optimiser are:

e Allocate scan operations based on data location and
data distribution, so that only processors with relevant
data are assigned to execute scans.

e Try to partition the other (non-scan) operators over
the processors, in such a way that the processors re-
ceive approximately the same load. At the moment,
the load resulting from other running tasks is not taken
into account.

e Try to use the same set of processors when data repar-
titioning is required, increasing the chance of a num-
ber of tuples (output from the producer operators) not
having to be moved across nodes (to the consumer op-
erators) and, therefore, saving communication costs.

Figure 3(c) shows a possible processor allocation for the
plan in figure 3(b), assuming a parallel machine with five
Processors.

In the example shown, the baseAssemblies extent is par-
titioned over processors 1, 2, 3, 4 and 5. Following the
criteria itemised above, the subplan with a scan operator is
placed with its extent, in this case processors 1, 2, 3, 4 and
5 for table_scan over baseAssemblies. The subplan with the
materialise operator is placed on the union of all processors
allocated for its input subplan (processors 1, 2, 3,4 and 5 in
this case). Finally, reduce can be placed on any of the five
Processors.
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Figure 4: Functional components of the object store.

In the experimental work described in this paper all data
is partitioned over all processors, so the processor allocation
analysis simplifies accordingly.

5. QUERY EVALUATION

The query support services within the object store are
illustrated in figure 4. A partition of the parallel plan may
contain a number of independent trees of operators, which
execute concurrently. A description of each such partition
of the parallel plan is transported to its destination where
it is instantiated using the appropriate physical operators in
the execution engine and its execution initiated.

The services provided by the object manager to the exe-
cution engine include the management of execution threads,
flow-controlled data transmission between operators, and ac-
cess to local application data, which is organised as parti-
tions of the extents defined in the overall schema.

A buffer is defined as the unit of transfer between proces-
sors, and tuples are packed into and unpacked from buffers
within the operator exchange. Buffers have a (configurable)
size limit to ensure a steady flow, but can grow to accom-
modate an arbitrarily large tuple if necessary, though the
query optimiser takes account of the cost of any data redis-
tribution. The current policy is that after the first tuple is
packed into a buffer, that buffer’s size is fixed to the greater
of its current size and the configured limit, and it is this size
which then determines when the buffer is full, and thereby
ready for transmission. The exchange operator is parame-
terised in the query plan with a set of destinations and the
specific destination for a specific tuple decided by an arbi-
trator which is again configured within the query plan, for
instance to distribute tuples round robin, to copy to all des-
tinations or to distribute according to a specified component
of the tuple, such as an object’s home node.

Support for communications builds on the message pass-
ing facilities of MPI [25] to control resource usage in the
flow of data between operators. Space utilisation is con-
trolled by allocating buffers from and returning them to a
pool, whose size is configurable. A manager thread handles
incoming traffic, queueing buffers for the local operators,
and monitors completion of non-blocking output requests so
as to reclaim buffers. This manager implements a flow con-
trol policy in cooperation with communication managers in
other processors.

Each node stores objects locally in an instance of the
Shore object manager [5]. A number of basic access mech-
anisms are defined to support access to an extent partition,
returning for each object an unstructured block of data. To



support the creation of a structured tuple from this record,
an object walker [1] interface is implemented. This defines
a number of wvirtual handler functions and a function to ini-
tiate traversal of a record containing the data of an object.
During the traversal, the function calls appropriate handler
functions to pass control to the application, such as a tuple
factory which is implemented as a class derived from the
object walker class. It is in the child class that the tuple is
actually created in redefined handler functions.

6. PRELIMINARY RESULTS

A well known benchmark for OODBs is 007 [6]. 007
defines a schema which is intended to typify a CAD/ CAE
database, with a hierarchy of design objects. At the largest
grain are modules which comprise a number of assemblies.
Assemblies are either complex assemblies which comprise
other complex assemblies or base assemblies which are com-
posed of composite parts, themselves composed of atomic
parts. The construction of composite parts from atomic
parts is represented by a random collection of interconnec-
tions between the atomic parts. Each composite part has a
document and, in addition, a module has a manual.

OO7 defines various example database configurations, char-
acterised by the number of atomic parts, the depth and
spread of the hierarchy of assemblies, the number of inter-
connections between atomic parts and the size of documents
and manuals. Also defined are a collection of traversals and
queries; the traversals are suited to navigational access while
the queries suggest use of a declarative query language. The
implementation of OO7 used in this work follows that de-
fined in the original paper, using the names of classes, etc,
so the schema is not reproduced in this paper.

The results reported here are measurements of the perfor-
mance of a selection of associative queries closely based on
those in the OO7 benchmark for instantiations of the OO7
database on Polar within a distributed memory parallel envi-
ronment. This environment is a cluster of 233MHz Pentium
IT machines running RedHat Linux version 6.2, each with
64MB main memory and a number of local disks, connected
via a 100Mbps Fast ethernet hub. For each experiment data
is partitioned in “round robin” style over some number of
processors but located on one disk per processor, this being
a MAXTOR MXT-540SL. The OO7 configurations used are
medium and large, in all cases having fan-out 3.

6.1 Selection of Queries from OO7

The simplest query selected for these initial experiments
is Query 7 of the benchmark; a scan over all atomic parts,
which is expressed in OQL as:

select a.id from a in atomicParts;

An example of a join is Query 8 of the benchmark, which
prescribes a search for pairs of atomic parts and documents
where the id of the document matches the documentId at-
tribute of the atomic part. Clearly the number of values
returned will be equal to the total number of atomic parts.
This query may be expressed in OQL as:

select struct(A: a.id, D: d.id)

from d in documents, a in atomicParts

where a.docld = d.id;

Of interest particularly in an OODB is the potential for
direct traversal between objects via relationships, i.e. nav-
igation. Query 5 of the benchmark, introduced already in
section 4.1, suggests such a path traversal. This query corre-
sponds to a single step of the build date comparison tests re-
quired by a make utility, selecting all base assemblies that use
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Figure 5: Performance of query 7 (Sequential Scan)
over medium and large OO7.

a composite part with a buildDate later than the buildDate
of the base assembly. In the absence of duplicate detection,
a slight modification of the query introduced earlier may be
expressed as:
select struct(B: b.id, C: c.id)
from b in baseAssemblies, ¢ in b.componentsPriv
where b.buildDate < c.buildDate;

However, to increase the volume of data accessed, an alter-
native query, referred to as query 5a, is defined:
select distinct c.id
from c¢ in compositeParts, a in c.parts
where c.buildDate < a.buildDate;

The rationale for this modification is that a complete make
operation, represented by query 5 would ultimately require
a check of the build dates of all design objects contained in a
module, implying a need not just for the recursive check as
originally proposed in query 6 but also that the build dates of
atomic objects should be compared against the build dates
of containing composite parts.

6.2 Discussion of Results

Figure 5 shows cold performance times for query 7 on
medium and large OO7 configurations, with respectively
100000 and 1 million atomic parts and fan-out 3. As ex-
pected, the absolute execution execution time does appear
to increase by a factor of 10.

Figure 6 shows cold performance times for query 8 on the
same medium and large OO7 configurations. While Polar
implements a hash_join operator, the local value join oper-
ator used in these experiments is nested_loops. Similarly
while Polar supports both replicate and partition and sym-
metric partition policies for redistribution [15], it is the for-
mer which is used in these initial experiments. The cost
of redistribution is minimised through the use of the reduce
operator to filter out the attributes which are not required.
Thus, the texts of the documents for instance are not repli-
cated. Clearly it is the CPU intensive processing in the
nested loops algorithm itself which dominates performance
here. In the large database, the number of both documents
and atomic parts increases over the medium database by
a factor of 10, so it is then not suprising that the elapsed
times for the large database are 100 times those observed
for the medium database; hence only a few shorter duration
experiments were performed!
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Figure 6: Performance of query 8 (Value join) over
medium and large OOT7.
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Figure 7: Performance of query 5a, based on query
5 (Unnest) over medium and large OO7.

Figure 7 shows cold performance times for query 5a on the
medium and large OO7 configurations. The volume of data
accessed by the query increases by a factor of 10 between
medium and large databases, suggesting a corresponding in-
crease in execution time. One possible explanation for the
greater increase is the reduction in the rate of hits to the
object store disk buffer cache in the materialise operator, in
the presence of random accesses to larger extent partitions.

For comparison, figure 8 shows cold performance times for
two alternative value based join realisations of query 5 on
the medium configuration. The original query 5 is used here
because the join used is again nested_loops so the execution
times tend to be high. The sizes of the two collections joined
in query 5 are 500 and 3x 729 giving a total of about 1 million
comparisons. In the case of query 5a, the corresponding
number is 1000002, i.e. 10000 times greater.

In both cases, the materialise is replaced by a nested_loops
join and second table_scan. The first experiment represented
in the left hand graph uses replicate and partition policy for
redistribution while the second directs elements in the col-
lection arising from unnesting base assemblies by OID each
to their home processor, as suggested in [19]. The speedup
in the latter case is proportional to 1/n? (n being the num-
ber of store processors), since (as one of the collections is not
moved) the number of objects involved in the local join on
a particular processor falls with the number of processors.

(a) g5 by join (a) g5 by join (using location)
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Figure 8: Performance of value join based realisa-
tions of the original query 5 oo medium OOT.

Clearly the direct relationship to the size of the inner collec-
tion disappears if the nested loops algorithm is replaced by
say a hash based alternative, but the saving in redistribution
costs remains.

7. CONCLUSIONS

Focussing on the parallel execution of queries, we have de-
scribed the architecture of the Polar parallel object database
server which claims novelty through supporting ODMG on
a shared nothing architecture with disk based data. The
performance results obtained show that parallel speed-ups
can be achieved for queries defined in the OO7 benchmark,
even when the parallel platform consists of a low-cost cluster
of PCs, rather than a custom parallel system with tightly
coupled nodes. Polar’s modular construction, which links
together a number of established components, is intended
to improve portability as well as allowing experimentation
with alternative components. A port to a massively parallel
processor (MPP), an ICL Goldrush, is nearing completion.

It is clear from our work so far that the differences be-
tween relational and object databases lead to interesting
differences in the design of parallel servers to support the
two paradigms. Initial experiments have uncovered the need
for further experimentation on the efficient evaluation of
queries that explore relationships between objects, and on-
going work is investigating a wider range of parallel pointer
based join strategies over a more diverse collection of queries.
In addition, future work will focus on other other key differ-
ences, including parallelising queries that contain method
calls, and support for mixed workloads that include both
parallel queries and navigational clients that map persistent
objects into client programs. The overall goal is to be able
to support the increasing demands for performance and ca-
pacity being generated by the growing number of large-scale
applications that require access to persistent objects.
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