Dimensions of Dataspaces

Cornelia Hedeler, Khalid Belhajjame, Alvaro A.A. Fernandes,
Suzanne M. Embury, and Norman W. Paton

School of Computer Science, The University of Manchester
Oxford Road, Manchester M13 9PL, UK
chedeler,khalidb,alvaro,embury,norm@cs.manchester.ac.uk

Abstract. The vision of dataspaces has been articulated as providing
various of the benefits of classical data integration, but with reduced up-
front costs, combined with opportunities for incremental refinement, en-
abling a “pay as you go” approach. However, results that seek to realise
the vision exhibit considerable variety in their contexts, priorities and
techniques, to the extent that the definitional characteristics of datas-
paces are not necessarily becoming clearer over time. With a view to
clarifying the key concepts in the area, encouraging the use of consistent
terminology, and enabling systematic comparison of proposals, this pa-
per defines a collection of dimensions that capture both the components
that a dataspace management system may contain and the lifecycle it
may support, and uses these dimensions to characterise representative
proposals.

1 Introduction

Data integration, in various guises, has been the focus of ongoing research in
the database community for over 20 years. The objective of this activity has
generally been to provide the illusion that a single database is being accessed,
when in fact data may be stored in a range of different locations and managed
using a diverse collection of technologies. Providing this illusion typically involves
the development of a single central schema to which the schemas of individual
resources are related using some form of mapping. Given a query over the central
schema, the mappings, and information about the capabilities of the resources,
a distributed query processor optimizes and evaluates the query.

Data integration software is impressive when it works; declarative access is
provided over heterogeneous resources, in a setting where the infrastructure takes
responsibility for efficient evaluation of potentially complex requests. However, in
a world in which there are ever more networked data resources, data integration
technologies from the database community are far from ubiquitous. This stems
in significant measure from the fact that the development and maintenance of
mappings between schemas has proved to be labour intensive. Furthermore, it
is often difficult to get the mappings right, due to the frequent occurrence of
exceptions and special cases as well as autonomous changes in the sources that
require changes in the mappings. As a result, deployments are often most success-
ful when integrating modest numbers of stable resources in carefully managed

environments. That is, classical data integration technology occupies a position
at the high-cost, high-quality end of the data access spectrum, and is less effective
for numerous or rapidly changing resources, or for on-the-fly data integration.

The vision of dataspaces [1,2] is that various of the benefits provided by
planned, resource-intensive data integration should be able to be realised at much
lower cost, thereby supporting integration on demand but with lower quality of
integration. As a result, dataspaces can be expected to make use of techniques
that infer relationships between resources, that refine these relationships in the
light of user or developer feedback, and that manage the fact that the rela-
tionships are intrinsically uncertain. However, to date, no dominant proposal or
reference architecture has emerged. Indeed, the dataspace vision has given rise
to a wide range of proposals either for specific dataspace components (e.g. [3,
4]), or for complete dataspace management systems (e.g. [5, 6]). These proposals
often seem to have little in common, as technical contributions stem from very
different underlying assumptions — for example, dataspace proposals may tar-
get collections of data resources as diverse as personal file collections, enterprise
data resources or the web. It seems unlikely that similar design decisions will be
reached by dataspace developers working in such diverse contexts. This means
that understanding the relationships and potential synergies between different
early results on dataspaces can be challenging; this paper provides a framework
against which different proposals can be classified and compared, with a view to
clarifying the key concepts in dataspace management systems (DSMS), enabling
systematic comparison of results to date, and identifying significant gaps.

The remainder of the paper is structured as follows. Section 2 describes the
classification framework. For the purpose of instantiating the framework Section
3 presents existing data integration proposals, and Section 4 presents existing
dataspace proposals. Section 5 makes general observations, and Section 6 con-
cludes the paper.

2 The Classification Framework

Low-cost, on-demand, automatic integration of data with the ability to search
and query the integrated data can be of benefit in a variety of situations, be
it the short-term integration of data from several rescue organisations to help
manage a crisis, the medium-term integration of databases from two companies,
one of which acquired the other until a new database containing all the data
is in place, or the long-term integration of personal data that an individual
collects over time, e.g., emails, papers, or music. Different application contexts
result in different dataspace lifetimes, ranging from short-, medium- to long-term
(Lifetime field in Table 1).

Figure 1 shows the conceptual life cycle of a dataspace consisting of phases
that are introduced in the following. Dataspaces in different application contexts
will only need a subset of the conceptual life cycle. The phases addressed are
listed in Life cycle in Table 1 with the initialisation, test/evaluation, deployment,

Y =} Initialise dataspace }4

Make necessary changes #

4{ Test/Evaluate dataspace ‘
L]

React to changes in sources React to feedback
‘ Deploy dataspace ‘

\

¥ L] L

Maintain dataspace: Use dataspace: Improve dataspace:
React to changes in sources || Search/query dataspace | |Gather and react to feedback

[|]

v

‘ Disband dataspace ‘

Fig. 1. Conceptual life cycle of a dataspace.

maintenance, use, and improvement phases denoted as init, test, depl, maint, use,
and impr, respectively.

A dataspace, just like any traditional data integration software, is initialised,
which may include the identification of the data resources to be accessed and
the integration of those resources. Initialisation may be followed by an evalua-
tion and testing phase, before deployment. The deployment phase, which may
not be required, for example, in the case of a personal dataspace residing on
a single desktop computer, could include enabling access to the dataspace for
users or moving the dataspace infrastructure onto a server. As the initialisation
of a DSMS should preferably require limited manual effort, the integration may
be improved over time in a pay-as-you-go manner [6] while it is being used to
search and query the integrated data resources. In ever-changing environments,
a DSMS also needs to respond to changes, e.g., in the underlying data resources,
which may require support for incremental integration. The phases Use, Main-
tain and Improve are depicted as coexisting, because carrying out maintenance
and improvement off-line would not be desirable. For clarity, the figure does not
show any information flow between the different phases, so the arrows denote
transitions between phases.

In the remainder of this section, the initialisation, usage, maintenance and
improvement phases are discussed in more detail with a view to eliciting the
dimensions over which existing dataspace proposals have varied. The dimensions
are partly based on the dataspace vision [1,2] and partly on the characteristics
of dataspace proposals.

2.1 Initialisation Phase

Figure 2 presents a more detailed overview of the steps that may be part of the
initialisation phase. In the following, each of these steps is discussed in more
detail and the dimensions that are used to classify the existing proposals are
introduced. For each step, the dimensions are either concerned with the process
(e.g., identifying matchings) and its input, or with the output of the process

: i . Create
Identify | [Design . : Derive i
data ~ [>|Integration [» :&:?gm e l?/lznv?n &~ Integration > rez:ltt;ng
sources| |schema 9 PPINGS| |schema o)

v

Fig. 2. Initialisation of a dataspace.

(e.g., the matchings identified). As others have proposed (e.g., [7]) we distinguish
between matchings, which we take to be correspondences between elements and
attributes in different schemas, and mappings, which we take to be executable
programs (e.g., view definitions) for translating data between schemas.

Identify data sources. A DSMS can either provide support for the integration
of data sources with any kind of content (Cont field in Table 1) or it can provide
support for a specific application (app_sp), making use of assumptions that apply
for that particular application. General support is denoted by gen in Table 1.
Examples of specific applications include the life sciences, personal information
and enterprise data. Furthermore, the data sources to be integrated can be of
different types (Type field in Table 1). Examples include unstructured (unstr),
semi-structured (with no explicit schema) (s_str) or structured (with explicit
schema) (str). The data sources can also differ in their location: they can be
local (loc) or distributed (distr).

Integration schema and its design/derivation. The process of obtaining
the integration schema can either be manual (man), i.e., it is designed, or it
can be derived semi-automatically (s_aut), e.g., requiring users to select between
alternatives, or automatically (aut) without any manual intervention. A variety
of information can be used as Input for designing or deriving the schema, which
is depicted by the different locations of the Design and Derive steps in Figure
2. The schema can be designed using schema, or instance (inst) information
from the sources. Matchings (match) or mappings (map) can also be used as
input. Even when all the available information is taken into account to derive
the integration schema automatically, there may still be some uncertainty as
to whether the schema models the conceptual world appropriately. This degree
of uncertainty associated with the schema can be represented as a score, which
can be, e.g., probabilities or weights derived from inputs. The resulting schema
can simply be a union schema, in which source-specific concepts are imported
directly into the integration schema, or a schema that merges (e.g. [8]) the source
schemas with the aim of capturing more specific the semantic aspects that relate
them. The different types of resulting schemas are denoted as union and merge
in Table 1, respectively. Integration schemas can also vary in their scope. To be
able to model a wide variety of data from a variety of domains, generic models
(gen), such as resource-object-value triples, can be used. In contrast to those,
domain-specific models (dom_sp) are used in other proposals.

Matchings and their identification. Matchings can vary with respect to
their endpoints: they can either be correspondences between the source schemas
(src-src) or between source schemas and the integration schema (src-int). The
process of identifying the matchings can either be manual (man), semi-automatic
(s_aut) or automatic (aut). When matchings are identified automatically, some
uncertainty is often associated with them. This can be represented by the use of
scores. The identification process may require a variety of different inputs, e.g.,
the schemas to be matched, instances that conform to the schemas (inst), and
training data (train), e.g., when machine learning techniques are applied.

Mappings and their identification. Unlike matchings, we take mappings as
always been expressed between the sources schemas and the integration schema,
not between source schemas. The process to derive the mappings can either be
manual (man), semi-automatic (s_aut) or automatic (aut). Similar to matchings,
the mappings can be associated with a degree of uncertainty about their valid-
ity, which can be represented by scores. The inputs to the derivation process
may include the schemas to be mapped, instances that conform to the schemas
(inst), matchings (match), and training data (train), for example, when machine
learning techniques are used.

Resulting data resource. The resulting data resources over which queries
are expressed can vary with respect to their materialisation (Materialis.): they
can either be virtual (wvirt), partially materialised (p_mat) or fully materialised
(fomat). Uncertainty that is associated with the content can be denoted by scores.
During the creation of the integrated database, duplicates (dupl) and conflicts
(confl) can either be reconciled (Reconciliation) or be allowed to coexist.

2.2 Usage phase: search/query and their evaluation

Searches and queries can be specified (Specification) as a workload in advance
(in_adv) of data integration taking place, or they can be specified after the inte-
gration, at runtime (run). Specifying queries in advance provides the potential for
optimising the integration specifically for a particular workload. Different types
of searches/queries can be supported by the dataspace: exploratory searches,
e.g, browsing (browse), which are useful either if the user is unfamiliar with the
integration schema, or if there is no integration schema. Other types include
keyword search (key), select- (5), project- (P), join- (J), and aggregation (aggr)
queries. An aim for a dataspace is to provide some kind of search at all times
[1]. Query evaluation can either be complete (compl) or partial (part), e.g., using
top-k evaluation approaches or approaches that are able to deal with the un-
availability of data sources [1]. If multiple sources are queried, the results have
to be combined (Combine results), which may be done by forming the union or
merging (merge) the results, which may include the reconciliation of duplicates
and/or conflicts. To indicate the wuncertainty associated with the results of a
query, they may be annotated with scores of some form, or they may be ranked.

Table 1. Properties of the initialisation and usage phase of existing data integration and dataspace
proposals

Dimension |[DB2 II[9] Aladin |[SEMEX|iMeMex|[5], |[PayGo[6] |UDI[3] Roomba |Quarry
H[lO] ‘[11, 12] ‘iTrails[ll}] ‘ [4] [14]
Life time/Life cycle
Lifetime long long long long long long long long
Life cycle init/use/ init/use/|init/use |init/use/ |init/use/ |init impr init/use
maint maint maint/impr|maint/impr
Data sources
Cont gen app-sp |app-sp |app-sp gen gen gen gen
Type s_str/str s_str/str |unstr/ |unstr/ str str s_str
s_str/str|s_str/str
Location distr distr loc/ distr distr loc loc
distr
Integration schema; design/derivation
Type union/merge [[union merge |union union merge union union
Scope dom_sp dom_sp |dom_sp |gen dom_ssp |dom_sp |gen gen
Uncertainty score
Process s_aut/man s_aut man aut aut aut aut aut
Input schema/ |schema/ |schema/
match inst inst
Matchings; identification
Endpoints [src-int src-src [src-int [sre-src Src-src Src-src, |sre-src
src-int
Uncertainty score score score score
Process man aut aut s_aut aut aut aut
Input schema/ |schema/|schema/ schema/ |schema [schema/
inst inst inst inst/train inst
Mappings; identification
Uncertainty score score
Process man aut man aut
Input match |schema/ schema/
inst match
Resulting data resource; creation
Materialis. |virt/p-mat [[mat mat virt virt virt f_mat
Uncertainty score
Reconcil. NA dupl dupl dupl dupl
Search/query; evaluation
Specification [in_adv/run run run run run run in_adv |run
Type SPJ/aggr browse/ |browse/|browse/ key SP(J) key/S browse/
key/SPJ |key SP |key/SPJ SP
Uncertainty ranked ranked score
Evaluation |compl compl compl |partial compl compl partial |compl
Comb. res. union merge merge union

2.3 Maintenance and Improvement Phase

The maintenance phase deals with the fact that the underlying data sources are
autonomous [1], and the improvement phase aims to provide tighter integration
over time [1]. The steps in both phases are comparable to the steps involved in
the initialisation phase, however, additional inputs may need to be considered.
Examples include user feedback, as well as previous matchings and mappings
that may need to be updated after changes in the underlying schemas.

Despite the general awareness that a DSMS needs to be able to cope with
evolving data sources and needs to improve over time, only limited results have
been reported to date, making it hard to consolidate the efforts into coherent
dimensions. In the following we suggest a set of dimensions, that may be used
to characterise future research efforts (see also Table 2).

7

Table 2. Properties of the maintenance and improvement phase of existing data integration and
dataspace proposals

Dimension [DB2 II||Aladin [SEMEX [11,[iMeMex[5], |PayGol[6] UDI[3] [Roomba [Quarry
‘[9} H[lo] 12] ‘iTrails[l?)} ‘ [4] [14]
Maintenance
Changes add/ add/ src_inst|add
src_inst
Reuse match/map/ match/map/
int_sch int_sch
Improvement
Approach alg_match/ exp-user
exp-user
Stage_feedb match
Stage_impr match

Maintenance: For effective maintenance, a DSMS needs to be able to cope with
a number of different changes, including adding (add) and removing (rem) of
resources. A DSMS also needs to be able to cope with changes in the underlying
sources, e.g. changes to the instances (src_inst) or the schemas (src_sch), as well
as changes to the integration schema (int_sch). Ideally, a DSMS should require
little or no manual effort to respond to those changes. It may also be beneficial to
Reuse the results of previous integration tasks, e.g., previous matchings (match),
mappings (map), integration schemas (int_sch), or even user feedback (feedb)
when responding to source changes.

Improvement: Improvement may be achieved in a number of ways (Approach),
including the use of different or additional approaches to those used during ini-
tialisation for deriving matchings (a_match), mappings (a-map), or the integra-
tion schema (a_int). Furthermore, user feedback can be utilised, which could be
implicit (#mp_user) or explicit (ezp_user). In cases where user feedback is consid-
ered, this could be requested about a number of different stages (Stage_feedb).
This includes requesting feedback on the matchings (match), mappings (map),
integration schema(s) (int_sch), reformulated queries (ref-query), query results
(res) or the ranking of the results (res_ran). The feedback obtained may not
only be used to revise the stage about which it was acquired, but it may also be
propagated for improvement at other stages (Stage_impr). The values for this
property are the same as for Stage_feedb.

3 Data integration proposals

For the purpose of comparison, this section uses the framework to characterise
the data integration facilities of DB2 [9], as an example of a classical data inte-
gration approach; values of the dimensions are provided in Tables 1 and 2.
DB2 [9] follows a database federation approach. It provides uniform access
to heterogeneous data sources through a relational database that acts as me-
diation middleware. The integration schema, which could be a wunion schema,
or a merged schema defined by views which need to be written manually. Data
sources are accessed by wrappers, some of which are provided by DB2 and some
of which may have to be written by the user. A wrapper supports full SQL

and translates (sub)queries of relevance to a source so that they are understood
by the external source. Due to the virtual nature of the resulting data resource,
changes in the underlying data sources may be responded to with limited manual
effort. In summary, DB2 relies on largely manual integration, but can provide
tight semantic integration and powerful query facilities in return.

4 Dataspace proposals

This section describes a selection of dataspace proposals. An overview of their
properties can be found in Tables 1 and 2.

ALADIN [10] supports semi-automatic data integration in the life sciences,
with the aim of easing the addition of new data sources. To achieve this, ALADIN
makes use of assumptions that apply to this domain, i.e., that each database
tends to be centered around one primary concept with additional annotation
of that concept, and that databases tend to be heavily cross-referenced using
fairly stable identifiers. ALADIN uses a union integration schema, and predomi-
nantly instance-based domain-specific approaches, e.g., utilising cross-referencing
to discover relationships between attributes in entities. The resulting links are
comparable to matchings. Duplicates are discovered during materialisation of the
data resource. Links and duplicate information are utilised for ezploratory and
keyword searches and may help life scientist to discover previously unknown rela-
tionships. To summarise, ALADIN provides fairly loose integration and mainly
exploratory search facilities that are tailored to the life sciences domain.

SEMEX [11,12] integrates personal information. A domain model, which
essentially can be seen as a merged integration schema, is provided manually
up-front, but may be extended manually if required. Data sources are accessed
using wrappers, some provided, but some may have to be written manually. The
schemas of the data sources are matched and mapped automatically to the domain
model, using a bespoke mapping algorithm that utilises heuristics and reuses ex-
perience from previous matching/mapping tasks. As part of the materialisation
of the resulting data resource, duplicate references are reconciled, making use of
domain knowledge, e.g., exploiting knowledge of the components of email ad-
dresses. SEMEX provides support for adding new data sources and changes in
the underlying data, e.g., people moving jobs and changing their email address
or phone number, which require domain knowledge to be resolved, e.g., to re-
alise that it is still the same person despite the change to the contact details.
SEMEX, therefore, can be seen as a domain-specific dataspace proposal that
relies on domain knowledge to match schemas to the given integration schema
and reconcile references automatically.

iMeMeX [5] is a proposal for a dataspace that manages personal informa-
tion; in essence, data from different sources such as email or documents are
accessed from a graph data model over which path-based queries can be evalu-
ated. iMeMeX provides low-cost data integration by initially providing a union
integration schema over diverse data resources, and supports incremental refine-
ment through the manual provision of path-based queries known as iTrails [13].

These trail definitions may be associated with a score that indicates the uncer-
tainty of the author that the values returned by an iTrail is correct. As such,
iMeMeX can be seen as a light weight dataspace proposal, in which uniform data
representation allows queries over diverse resources, but without automation to
support tasks such as the management of relationships between sources.

PayGo [6] aims to model web resources. The schemas of all sources are inte-
grated to form a union schema. The source schemas are then matched automat-
ically using a schema matching approach that utilises results from the matching
of large numbers of schemas [15]. Given the similarity of the schemas determined
by matching, the schemas are then clustered. Keyword searches are reformulated
into structured queries, which are compared to the schema clusters to identify
the relevant data sources. The sources are ranked based on the similarity of
their schemas, and the results obtained from the sources are ranked accordingly.
PayGo [6] advocates the improvement of the semantic integration over time by
utilising techniques that automatically suggest relationships or incorporate user
feedback; however, no details are provided as to how this is done. In summary,
PayGo can be seen as a large-scale, multi-domain dataspace proposal that offers
limited integration and provides keyword-based search facilities.

UDI [3,16] is a dataspace proposal for integration of a large number of do-
main independent data sources automatically. In contrast to the proposals in-
troduced so far, which either start with a manually defined integration schema
or use the union of all source schemas as integration schema, UDI aims to derive
a merged integration schema automatically, consolidating schema and instance
references. As this is a hard task, various simplifying assumptions are made: the
source schemas are limited to relational schemas with a single relation, and for
the purpose of managing uncertainty, the sources are assumed to be indepen-
dent. Source schemas are matched automatically using existing schema matching
techniques [17]. Using the result of the matching and information on which at-
tributes co-occur in the sources, attributes in the source schemas are clustered.
Depending on the scores from the matching algorithms, matchings are deemed
to be certain or uncertain. Using this information, multiple mediated schemas
are constructed, which are later consolidated into a single merged integration
schema that is presented to the user. Mappings between the source schemas
and the mediated schemas are derived from the matchings and have uncertainty
measures associated with them. Query results are ranked based on the scores
associated with the mappings used. In essence, UDI can be seen as a proposal
for automatic bootstrapping of a dataspace, which takes the uncertainty result-
ing from automation into account, but makes simplifying assumptions that may
limit its applicability.

Even though the majority of proposals acknowledge the necessity to improve
a dataspace over time, Roomba [4] is the first proposal that places a significant
emphasis on the improvement phase. It aims to improve the degree of seman-
tic integration by asking users for feedback on matches and mappings between
schemas and instances. It addresses the problem of choosing which matches
should be confirmed by the user, as it is impossible for a user to confirm all

10

uncertain matches. Matches are chosen based on their utility with respect to a
query workload that is provided in advance. To demonstrate the applicability of
the approach, a generic triple store has been used and instance-based matching
using string similarity is applied to obtain the matches.

Quarry [14] also uses a generic triple store as its resulting data source, into
which the data is materialised. Using a union schema, the data from the data
sources coexists without any semantic integration in the form of matchings
or mappings. So called signature tables, which contain the properties for each
source, are introduced and it is suggested that signature tables with similar prop-
erties could be combined. Quarry provides an API for browsing the integrated
data and for posing select and project queries.

5 Discussion

To make dataspaces valuable, steps that have been proven to be difficult and/or
time consuming and that, to date, have predominantly been carried out manu-
ally or semi-automatically, need to be automated. Such steps include designing
an integration schema, deriving the matchings between schemas, and deriving
mappings between the source and integration schemas, which can then be used
for query evaluation. Automating those steps results in uncertainty associated
with the matchings, the mappings and the integration schema. As a result, tech-
niques need to be developed that either reduce the uncertainty or take it into
account, for example during query evaluation. Further uncertainty may be in-
troduced during reformulation of keyword queries into structured queries, and
vice versa, and during reference reconciliation either at the time the target data
resource is materialised or when the results from subqueries issued to multiple
sources are combined.

Since the dataspace vision has only recently emerged, and since it opens a
broad research space covering multiple areas including, among others, data inte-
gration, information retrieval, and uncertainty management, existing proposals
vary greatly over the dimensions presented in this paper. However, the following
general observations can be made, with reference to Tables 1 and 2:

Union schemas are more common than merged schemas. In most pro-
posals to date, the integration schema used by the user to formulate the query
is obtained by unioning the source schemas. This choice is driven by the fact
that the creation of a merged schema often raises conflicts, the resolution of
which requires human intervention. Although there has been some work describ-
ing [18] and automating the collection [4] of uncertain information in merged
schemas, early dataspace proposals provide limited support for managing the
uncertainty associated with merged schemas, and in most cases steer clear of
the issue altogether. Furthermore, classical work on data integration typically
does not address uncertainty, for the simple reason that this has been dealt with
manually at the bootstrapping phase.

Improvement as a means for dealing with or reducing the impact of
uncertainty. Although incremental improvement was presented in the datas-

11

pace vision as the means for reducing uncertainty, only two of the proposals
described in Section 4 consider this issue. This may be explained by the fact
that early proposals for dataspace are initially addressing challenges at the boot-
strapping phase, rather than looking for means that facilitate the improvement
of an existing dataspace.

Dataspaces with short life times are missing. Several applications may
generate the need for a dataspace with a short life time. A well known example
is that of mashups. The improvement phase of these applications is relatively
small compared with dataspace with longer lifetimes. As such, these applications
may require dealing with uncertainty to a greater level up-front at bootstrapping
time.

6 Conclusions

Dataspaces represent a vision for incremental refinement in data integration, in
which the effort devoted to refining a dataspace can be balanced against the cost
of obtaining higher quality integration. Comprehensive support for pay-as-you-
go data integration might be expected to support different forms of refinement,
where both the type and quantity of feedback sought are matched to the specific
requirements of an application, user community or individual. Early proposals,
however, provide rather limited exploration of the space of possibilities for in-
cremental improvement. A common approach prioritises reduced start-up costs,
typically by supporting a union integration schema; such an approach provides
syntactic consistency, but the extent to which the resulting dataspace can be
said to “integrate” the participating sources is strictly limited.

Although there is a considerable body of work outside dataspaces to support
activities such as schema matching or merging, early dataspace proposals have
made fairly limited use of such techniques. For example, although there has
been work on the automated construction of a global model that accommodates
uncertainty in matchings [3], this work makes strong simplifying assumptions
in terms of the complexity of the models to be integrated. Furthermore, there
are no comparable results on automated refinement. As such, although there is
certainly a role for different flavours of DSMS, this survey suggests that there
is considerable scope for further research into dataspaces, and that proposals to
date fall short in different ways of fulfilling the potential of pay-as-you-go data
integration.

References

1. Franklin, M., Halevy, A., Maier, D.: From databases to dataspaces: a new abstrac-
tion for information management. SIGMOD Record 34(4) (2005) 27-33

2. Halevy, A., Franklin, M., Maier, D.: Principles of dataspace systems. In: PODS’06,
ACM (2006) 1-9

3. Das Sarma, A., Dong, X., Halevy, A.: Bootstrapping pay-as-you-go data integration
systems. In: SIGMOD’08, ACM (2008) 861-874

12

10.

11.

12.

13.

14.

15.

16.

17.

18.

Jeffery, S.R., Franklin, M.J., Halevy, A.Y.: Pay-as-you-go user feedback for datas-
pace systems. In: SIGMOD’08, ACM (2008) 847-860

Dittrich, J.P., Salles, M.A.V.: idm: A unified and versatile data model for personal
dataspace management. In: VLDB’06, ACM (2006) 367-378

Madhavan, J., Cohen, S., Dong, X.L., Halevy, A.Y., Jeffery, S.R., Ko, D., Yu, C.:
Web-scale data integration: You can afford to pay as you go. In: CIDR’07. (2007)
342-350

Miller, R.J., Herndndez, M.A., Haas, L.M., Yan, L., Ho, C.T.H., Fagin, R., Popa,
L.: The clio project: managing heterogeneity. SIGMOD Record 30(1) (2001) 78-83
Pottinger, R., Bernstein, P.A.: Schema merging and mapping creation for relational
sources. In: EDBT’08. (2008) 73-84

Haas, L., Lin, E., Roth, M.: Data integration through database federation. IBM
Systems Journal 41(4) (2002) 578-596

Leser, U., Naumann, F.: (almost) hands-off information integration for the life
sciences. In: CIDR’05. (2005) 131-143

Dong, X., Halevy, A.Y.: A platform for personal information management and
integration. In: CIDR’05. (2005) 119-130

Liu, J., Dong, X., Halevy, A.: Answering structured queries on unstructured data.
In: WebDB’06. (2006) 25-30

Vaz Salles, M.A., Dittrich, J.P., Karakashian, S.K., Girard, O.R., Blunschi, L.:
itrails: Pay-as-you-go information integration in dataspaces. In: VLDB’07, ACM
(2007) 663-674

Howe, B., Maier, D., Rayner, N., Rucker, J.: Quarrying dataspaces: Schemaless
profiling of unfamiliar information sources. In: ICDE Workshops, IEEE Computer
Society (2008) 270-277

Madhavan, J., Bernstein, P.A., Doan, A., Halevy, A.: Corpus-based shema match-
ing. In: ICDE’05. (2005) 5768

Dong, X., Halevy, A.Y., Yu, C.: Data integration with uncertainty. In: VLDB’07.
(2007) 687-698

Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching.
VLDB Journal: Very Large Data Bases 10(4) (2001) 334-350

Magnani, M., Rizopoulos, N., McBrien, P., Montesi, D.: Schema integration based
on uncertain semantic mappings. In: ER’05, Springer (2005) 31-46

