
Generating User Interface Code in a Model Based User
Interface Development Environment

Paulo Pinheiro da Silva, Tony Griffiths, Norman W. Paton
Department of Computer Science

University of Manchester
Oxford Road, Manchester, M13 9PL UK

+44 161 2756139
{pinheirp, griffitt, norm}@cs.man.ac.uk

ABSTRACT
Declarative models play an important role in most software design
activities, by allowing designs to be constructed that selectively ab-
stract over complex implementation details. In the user interface
setting, Model-Based User Interface Development Environments
(MB-UIDEs) provide a context within which declarative models can
be constructed and related, as part of the interface design process.
However, such declarative models are not usually directly executa-
ble, and may be difficult to relate to existing software components. It
is therefore important that MB-UIDEs both fit in well with existing
software architectures and standards, and provide an effective route
from declarative interface specification to running user interfaces.
This paper describes how user interface software is generated from
declarative descriptions in the Teallach MB-UIDE. Distinctive fea-
tures of Teallach include its open architecture, which connects di-
rectly to existing applications and widget sets, and the generation of
executable interface applications in Java. This paper focuses on how
Java programs, organized using the model-view-controller pattern
(MVC), are generated from the task, domain and presentation models
of Teallach.

Keywords
Model-based user interface development environments, user interface
development tools, automatic code generation.

1. INTRODUCTION
The use of declarative models in the development of user interfaces
shows promise in providing implementation independent descriptions
of important features of an interface, such as user tasks [13]. Such
declarative descriptions play the same role as declarative models in
other software development activities, such as the use of entity-
relationship models in database design. However, as in other con-
texts, the declarative descriptions, by their very nature, do not always
provide a direct or natural mapping onto mainstream implementation
technologies for execution.

MB-UIDEs seek to provide a setting within which a collection of
complementary declarative models can be used to provide a system-
atic approach to the description of user interface functionality [6]. A
MB-UIDE generally includes task, domain, presentation and dia-

logue models, and an environment in which such models can be con-
structed and manipulated

However, MB-UIDE technology is not yet mature, and is not yet
widely used by interface developers. This paper seeks to address two
issues that we believe are important to the wider acceptance and
uptake of MB-UIDEs, namely the role of such systems within exist-
ing software environments, and the generation of executable pro-
grams from declarative models. These two issues are closely related,
as generated user interface programs must coexist with existing soft-
ware. Indeed, many new user interfaces are interfaces to existing
software systems.

One of Teallach’s fundamental design objectives is to maintain an
open relationship to existing software systems through the APIs sup-
ported by its domain and presentation models. Although most pro-
posals for MB-UIDEs include a domain model, it is common for
domain model constructs to impinge in only a limited way on the
other models in the system. One contention of this paper is that do-
main models should be fully available to and accessible within other
models, and that the abstract domain model description used within a
MB-UIDE should be able to be used as a view of existing software
components. In Teallach, the domain model is the industry standard
ODMG object model, which has been used to provide access both to
existing object databases and to mainstream applications via class
libraries.

As well as existing domain constructs, an increasing range of generic
or application-specific user interface components are becoming
available for mainstream programming environments, from combo-
boxes to molecule viewers. In Teallach, the presentation model is
open, in that mechanisms are provided for importing into the system
interaction components conforming to the Java Beans component
architecture. This means that there is no barrier to designers selecting
and reusing useful interface components.

These characteristics of Teallach's domain and presentation models
provide a framework that allows user interfaces generated from Te-
allach models to run in conjunction with existing software systems
and interface components. The Teallach code generator produces as
output Java programs that are organized using the MVC design pat-
tern. These Java programs in turn make use of software systems ac-
cessed through the domain model – in particular, Teallach is being
used to construct user interfaces to object databases stored using the
Poet Object Database Management System.

In general terms, the principal contribution of this paper is to de-
scribe a role for MB-UIDEs in which they bridge the gap between an
underlying application and its user interface, providing user interface
designers with the ability to declaratively specify the dynamics of the
application-interface dialogue. In particular, Teallach allows a de-
signer to define declaratively how information is passed between the

interface end-user and the underlying application, and how this in-
formation is subsequently processed. In Teallach, the application is
viewed as an object-oriented domain model (as it happens, with its
origin in databases, but with much in common with the CORBA
object model) and the interface is an object-oriented widget set. The
more detailed technical contribution is a description of how MVC
code is generated from declarative models in the Teallach MB-UIDE.

More details on Teallach, other than the code generator, can be found
in [5, 2], which provide an overview of the Teallach models and

present the environment that is used to create and manipulate the
models.

2. BACKGROUND
The role that MB-UIDEs can most effectively play within the user
interface development process is not universally accepted. For exam-
ple, in the task-based system ADEPT [13], the emphasis is princi-
pally on the identification and refinement of user tasks, rather than on
the provision of facilities for interface generation, whereas in MOBI-
D [9] the task modelling process is augmented through the use of a
knowledge base of interface design guidelines to produce detailed
interface specifications which can subsequently be hand coded.
However, most MB-UIDEs provide some mechanism for generating
user interfaces from their declarative models. The generated interface
can be used to validate the models, for use in evaluations, or ulti-
mately as delivered applications.

There are three main approaches to obtaining running interfaces from
declarative models:

1. Interpreters: the declarative models are interpreted directly, as in
ITS [12].

2. UIMS Generators: the declarative models are mapped into alter-
native, generally lower-level, representations of the interface,
which are subsequently interpreted, as in Humanoid [11],
TADEUS [4] and FUSE [8].

3. Source Code Generators: the declarative models are mapped to
programs in an imperative programming language, as in JANUS
[1], and later versions of Mastermind [10] which generate C++
code.

Arguments can be made for and against each of the above ap-
proaches. For example, in interpreted systems the runtime environ-
ment can be tailored directly to the needs of the declarative models,
but performance may be problematical in the presence of a substan-

tial runtime system and interpretation of high level constructs. When
generating code for a UIMS, the UIMS may provide useful facilities,
for example, for changing the interface of an application at runtime,
but may or may not support a clean or efficient mapping of all con-
structs from the declarative models. When generating programming
language source code, generated applications have access to the full
facilities of the programming language (e.g. for access to databases
or remote systems), but the level of direct support for interface func-
tionality is likely to be less than when generating UIMS code.

Although significant effort has been directed at the provision of ef-
fective facilities for producing running interfaces from interface
models, interface generation is not a solved problem for MB-UIDEs.
Published descriptions of approaches are often more indicative than
thorough, and it is common for generated interfaces to have limited
functionality. For example, although Elwert and Schlungbaum [4]
present details of how TADEUS generates a UI description file for
the ISA Dialog Manager, it is not shown that fully functional inter-
faces can be generated from the TADEUS models alone. TADEUS
models contain little on how domain information is processed within
the interface. There are other proposals for systems which exploit an
integrated suite of models, with the ultimate objective of generating
code, e.g., TRIDENT [3], but the means by which such generation
will be realised are not yet described.

In particular, Teallach differs from other MB-UIDEs since its models
support a description of how data flows between the user interface
and the underlying application, and vice-versa. Furthermore, the
Teallach domain model is not only a description of the application
objects, but it is the underlying application itself.

This paper thus seeks to complement the earlier literature on inter-
face generation from MB-UIDEs by providing details of how com-
plete Java applications can be generated from a representative MB-
UIDE. The scope of the generated code is also considered to be sig-
nificant, in that interfaces reuse both existing domain models imple-
mented in a database system and off-the-shelf interface components.

3. TEALLACH DECLARATIVE MODELS
In Teallach, interfaces are described using task, domain and presen-
tation models that are constructed and related using interactive tools
[2]. In contrast to other MB-IDEs, Teallach supports a flexible design
method that allows designers the freedom to construct its models in
any order. Once the models have been developed, the designer can
automatically generate a user interface corresponding to these models

Figure 1. The Teallach Declarative Models for the ConnectUser User Interface.

specifyInfo

SetLogin

setPassword
tryConnection

Connect

Composite tasks:
Ch: Choice temporal order
OI: Order independent temporal
 order
Sq: Sequential temporal order

specifyUserType

specifyUserDetails

setLibrarian

setBorrower

newConnectionData

FreeContainer(“Connect to Library”)

Container

Inputter

Inputter

Diplayer(“Login:”)

Displayer(“Login:”)

Container(“Login As”)

Inputter(“Librarian”)

Container

Inputter(“Borrower”)

Con: ConnectionData

ConnectionData

loginType
loginName
password

Connect()

←Con.loginType

←Con.loginType

←Con.loginType

←Con

←Con

→Con

←Con.loginName

← Con.password

←Con.loginName

← Con.password

Sq

OI

OI

Ch

Domain Model Task Model Presentation Model

by invoking the code generator as described in this paper. The devel-
oper can either choose to accept the generated interface, or can return
to the various models and continue the design process in an iterative
cycle.

3.1 The Declarative Models
The Teallach models are illustrated using a simple library system
case study, and in particular the task of connecting to the system,
where users specify if they are connecting as librarians or borrowers,
and provide a login name and password.

Figure 1 shows a set of Teallach models for the connection activity.
There are three models that describe different aspects of the user
interface. The domain model (DM) describes the data that is obtained
from the user and used in the attempt to connect to the library sys-
tem. The task model (TM) is a hierarchical representation of the tasks
and subtasks undertaken, and the presentation model (PM) describes
the visual aspects of the interface.

The DM represents application concepts as a collection of object
classes described using the standard ODMG data model. This model
can be used to provide access to object databases, or to Java classes
from the application or from generic class libraries.

A TM is composed of a hierarchy of composite (e.g., sequential,
repeatable, etc.) and primitive (action or interaction) tasks. The inter-
action between users and the application is performed by interaction
tasks using PM components. Interaction tasks specify the nature and
origin of the information they are displaying or receiving in terms of
state objects.

In the example in Figure 1, the Connect composite task has three
subtasks, and a state object Con of the DM type ConnectionData. In
a more elaborate example, the Con state object could be the subject
of further manipulation - e.g., to log user activity.

Presentation models are composed of hierarchies of interaction and
grouping objects. Interaction objects can be concrete interaction ob-
jects (CIOs) and abstract interaction objects (AIOs). The CIOs are
the widgets that compose the UI. The AIOs are abstractions of these
widgets that describe if interaction objects are used for data input
(inputter), data output (displayer) or both (editor) in presentation
models. AIOs avoid premature commitment to specific presentations,
and leave open the prospect of alternative visual presentations for
different environments or user groups. Presentation models also use
abstract and concrete grouping objects to aggregate interaction ob-
jects.

The PM in Figure 1 contains just abstract components. FreeContain-
ers and Containers are abstract grouping objects, where FreeCon-
tainers are abstractions of top-level windows, while Containers must
be specified in the context of a FreeContainer. AIOs have fewer
properties and operations than typical CIOs, so a description of an
interface in terms of AIOs is generally much more concise than one
expressed in terms of CIOs. However, running interfaces use only
CIOs, so AIOs are either linked to specific CIOs by the designer, or
assigned default concrete representations by the system.

For example, by default, a FreeContainer AIO is replaced by a
Swing JFrame. The PM can however view more complex widgets
such as JTree and JTable as simpler Displayer, Inputter or Editor
AIOs (or indeed any CIO that has been appropriately registered with
the PM). Designers are however allowed to fix their preferences at
any point in the design process.

3.2 Model Relationships
The TM has a central role in the integration of the Teallach models.
The integration of the models makes extensive use of state objects

declared in composite tasks. Each state object is an instance of a DM
or a PM type. In the Teallach tool the designer can create explicit
links between the models, and can then use a wizard to guide them
through the process of fully specifying the link, including specifying
which underlying domain methods are called and how the data
passed and generated by such methods are utilized in the models.
This process is fully explained in [5].

The links between the DM and the other models are restricted to the
links provided by the state objects. However, additional links are
required between the TM and the PM. For example, each interaction
task requires one AIO, which in turn can be associated with one or
many CIO. Composite tasks can be linked to grouping components in
the PM.

4. RUNTIME CONTEXT
The generated user interface is coded in Java using the Swing widget
set, or other imported interaction objects. The Model-View-
Controller (MVC) pattern is used to organize the user interface com-
ponents. A specialized class library coded in Java and using the
MVC approach is also used by the generated interface.

4.1 Model-View-Controller Architecture
The MVC pattern [7] is a design pattern for the organization of user
interface programs. MVC specifies how user interface software
should be separated into components, each with a specific function.
The model components are responsible for handling the state of ob-
jects used by the user interface. The view components are responsible
for the user interactions that display the states of the model compo-
nents. The controllers are responsible for handling the user interac-
tions that can modify the state of the models. An additional benefit of
the MVC pattern is that it describes the possible relationships be-
tween the component objects. In particular, the MVC pattern pro-
vides a clear distinction between the visual part of the user interface
– the views and controllers – and the state of the user interface – the
models.

4.2 Class Library
The code generator produces as output Java code that exploits the
Swing widget set. In addition to the basic Swing classes, a class li-
brary has been created to reduce the quantity of code produced by the
code generator. The strategy is to locate as much as possible of com-
plexity of the user interfaces code in the class library, thereby
avoiding the generation of complex classes. The class library, which
is illustrated in Figure 2 using UML notation, contains a class hierar-
chy that mirrors the task types of the TM.

This class library complies with the MVC pattern, such that an Inter-
action Component associated with a RuntimeCompositeTask class
will always act as the MVC controller of the RuntimeCompo-
siteTask's children (which in turn act as the RuntimeCompositeTask's
MVC model), and a Grouping Component associated with a Run-
timeCompositeTask class will always act as its MVC view. In addi-
tion, CIOs associated with RuntimeActionTask classes are also al-
ways controllers of RuntimeStateObject classes (the models),
whereas CIOs associated with RuntimeInteractionTask classes can be
MVC controllers or MVC views. In fact, if the AIO associated with
the related interaction task in the declarative models is an inputter
then the CIO is a MVC controller. If the AIO is a displayer then the
CIO is a MVC view. If the AIO is an editor then the CIO is both a
MVC controller and view.

Figure 2. The Task Type Hierarchy.

TM tasks are implemented using subclasses of the class RuntimeAb-
stractTask. More precisely, composite tasks become subclasses of
RuntimeCompositeTask, action tasks become subclasses of Run-
timeActionTask, and interaction tasks become subclasses of Run-
timeInteractionTask. A RuntimeCompositeTask can have many sub-
task classes. RuntimeActionTask provides a thread that is used to
execute the assigned state object operation. Every RuntimeInterac-
tionTask is associated with a CIO, and a RuntimeCompositeTask can
be associated with a CIO.

As subclasses of RuntimeAbstractTask, the task classes implement
the operations activate(), deactivate(), initiate() and terminate(). Ba-
sically, activate() enables the interaction of the user with the part of
the UI responsible for the activated task. In the opposite way, deacti-
vate() disables the interaction. The terminate() operation, usually
associated with the deactivate() operation, notifies the parent task
class that the current task class has finished. The initiate() operation
returns the UI to the state it had when it was first created. The initi-
ate() operation is invoked on the children tasks of a composite task
that has been activated. Specific behaviors for these operations are
provided in task classes of different categories. For instance, com-
posite task classes invoke the setVisible(true) operation for their ag-
gregate Grouping Component, and interaction task classes invoke the
setEnabled(true) operation for their aggregated CIOs, when these
task classes are activated.

Still in Figure 2, RuntimeActionTask classes and RuntimeCompo-
siteTask classes can be associated with CIOs. In this case, the CIOs
are called initiators. Initiators are required to: (1) fire action tasks
that are designed to be started on demand, for example, a CIO that
may be associated with the tryConnection action task; or (2) fire
composite tasks that are subtasks of choice tasks, optional tasks or
order independent tasks. For example, a user action should be recog-
nized by a CIO in the active window in order to activate an optional
task associated with another window. Through facilities provided by
the PM, initiators can be customised to specify the event type (e.g.,
on mouse click, etc.) used to invoke the action task’s associated op-
eration.

In addition to the classes that relate directly to task types, the class
library provides the class RuntimeStateObject for wrapping state
objects. There are two reasons for wrapping a state object. (1) The
user interface code must be able to reference state objects that may
not yet be instantiated. However, state objects as instances of domain
objects or CIOs, can be dynamically instantiated and destroyed dur-
ing the execution of the user interface, so instances of Run-
timeStateObject act as handles on the actual values. (2) There needs
to be some mechanism to identify state transitions in state objects.

The necessity to identify state transitions in state objects is due to the
MVC pattern, such that interaction task classes need to recognise
MVC model modifications and subsequently update their views. The
RuntimeStateObject class therefore provides an addChangeListener()
operation that notifies the registered classes that the state of the Run-
timeStateObject has changed. Interaction task classes that have CIOs
acting as MVC views only need to register their adapter classes with
the RuntimeStateObject classes to access this functionality.

5. CODE GENERATION PROCESS
5.1 The Generated Code
Figure 3 presents a class diagram for the user interface code gener-
ated for the example application in Figure 1. With the exception of
the Container and Adaptor classes, the other classes in Figure 3 are
subclasses of RuntimeAbstractTask from Figure 2. For example, the
action tasks classes implementing action tasks, namely tryConnec-
tionAction and newConnectionDataAction, are subclasses of Run-
timeActionTask. The classes implementing interaction tasks, such as
setBorrowerInteraction and setLoginInteraction are subclasses of
RuntimeInteractionTask. The classes implementing composite tasks
are indirect subclasses of RuntimeCompositeTask – for example,
specifyInfo is a subclass of RuntimeOrderIndependentTask.

Figure 3. The Generated User Interface Classes.

The class LibrarySystem implements the main() method that invokes
the activate() operation of the connect root task. This task activation
invokes the initiate() operation in the root task subclasses, that in turn
invokes the initiate() operation in their subclasses, and so on. As
connect is a RuntimeSequentialTask class, it initially only activates
the specifyInfo class invoking its activate() operation. When the
specifyInfo class finishes normally (without being cancelled), its
deactivate() and terminate() operations are invoked. The deactivate()
operation mainly sets the taskState attribute of the RuntimeAb-
stractTask class (shown in Figure 2) to idle. The terminate() opera-
tion generates a change event that is listened for by the connect class,
so that on detection it can activate its next subtask. In this case, the
tryConnectionAction class is activated. On completion of the tryCon-
nectionAction class, the connect class also terminates since it does
not have more subtasks. Having identified that the connect class has
finished, the LibrarySystem class finally closes the application.

5.2 Components of Code Generator
The code generator consists of four modules, the ApplicationGen-
erator, the StateObjectMapper, the CompositeTaskGenerator and the
PresentationPacker.

The ApplicationGenerator creates a standard class responsible for the
invocation of the root composite task at runtime. In the example, this
is the class LibrarySystem.

The StateObjectMapper identifies the state objects that are accessible
within each composite task. In essence, a state object defined in a
composite task is visible in all descendent tasks. StateObjectMapper
performs a preorder traversal of the TM populating a mapping table
associating each task with the state objects visible in the task. For
example, StateObjectMapper identifies that the Con state object de-
clared in the connect task (Figure 1) must also be accessible by the
specifyInfo task since the Con object is also used by the specifyInfo
subtasks.

The CompositeTaskGenerator performs another preorder traversal of
the TM, during which the CompositeTaskGenerator: (1) generates
the code for the visited composite tasks; (2) invokes the Presenta-
tionGenerator for the composite tasks that are explicitly linked to a
grouping component of the PM; (3) invokes the ActionTaskGenera-
tor for action tasks; and (4) invokes the InteractionGenerator for
interaction tasks. The standard code for a composite task class creates
an array of subtasks that are invoked according to the temporal rela-
tion specified by their parent task. The composite task classes receive
an array of RuntimeStateObjects that are the state object wrappers,
and forward an array of RuntimeStateObjects to each subtask, ac-
cording to the mapping table created during the execution of the
StateObjectMapper.

The PresentationGenerator is invoked for a specific grouping com-
ponent of the PM. During an execution of the PresentationGenera-
tor, it performs a breath-first traversal of the PM identifying the im-
mediate children of the provided grouping component. Code is gen-
erated for the provided grouping component and its children that are
interaction components. The children that are grouping components
are not considered during this execution of the PresentationGenera-
tor, but in a subsequent call of PresentationGenerator by Compo-
siteTaskGenerator. The generated code is composed only of CIOs.
Therefore, wherever the designer has not associated an AIO with a
CIO, the code generator applies the default mapping. For example,
the specifyInfoContainer class does not specify a CIO since its chil-
dren components are also grouping components. In contrast, the
specifyUserDetails container class (shown in Figure 1) has four
CIOs, and is itself associated with a grouping component.

The ActionTaskGenerator utilises the information provided by the
domain operation associated with an action task. If the designer has
specified that an action task is automatic, then the action is automati-
cally fired when activated, otherwise a CIO is used to fire the action.
The ActionTaskGenerator is also responsible for identifying any state
objects necessary to store an operation’s arguments and the result of
the operation.

The InteractionGenerator is responsible for mapping how data is
displayed or input in the generated interface. The CIO associated
with an interaction task acts as a MVC controller or view (or both
depending on the interaction type), whereas a state object acts as the
MVC model. Since DM state objects often are frequently the objects
of an object database, the InteractionGenerator usually relates the
database objects with Swing components so that database data may
be openly interacted with.

5.3 Extended Interaction based on Task Model
Semantics

There are generally widgets in generated interfaces that are not mod-
eled explicitly in the PM of the application. These widgets are used
for controlling composite tasks. The three main control activities are:

1. Confirmation: allows the user to indicate that a task has been com-
pleted; this is normally depicted using an OK button.

2. Cancellation: allows the user to exit a task without completing it;
this is normally depicted using a Cancel button. The semantics of
the Cancel button depends on the category of the parent task of the
composite task class that is been cancelled. If the parent task class
is a choice task class, the parent task class is restarted invoking its
activate() operation. If the parent task class is an optional task
class, the current task class is finished invoking the deactivate()
operation, but not the terminate() operation. If the parent task class
is a concurrent, repeatable or an order independent task class, the
current task class is restarted invoking its activate() operation. Fi-
nally, if the parent task class is a sequential task class, the parent
task class is finished invoking both its deactivate() and terminate()
operations.

3. Change Task: allows the user to swap from one concurrent task to
another; this is normally depicted using a menu or a combo box to
be used as with a cardstack metaphor.

Different task types have different behavior in terms of confirmation
and canceling; in Teallach there are default controls generated for the
different task types, but some of the defaults can be overridden by
the designer.

Figure 4. The UserConnection User Interface.

The interface produced for the models in Figure 1 is given in Figure
4. Here it can be noticed that the code generator has assumed the
default mappings for each AIO to its default CIO.

6. RESULTS OF INITIAL EXPERIMENTS
One of the longer-term goals of the Teallach project is to evaluate
both the Teallach tools and models, the flexible design method, and
the generated interfaces in terms of their functionality and usability.
At the present time we have only limited results on each of these
factors from the experiences of two developers. In terms of the gen-
erated code for the small example illustrating this paper, we have
some initial results which indicate that the design lifecycle for inter-
faces produced using Teallach is shorter than for interfaces produced
using either hand crafted code or using an integrated development
environment, and that subsequent changes to interface functionality
(e.g., changing a sequential task to an order independent task, or
changing the data type of displayed data) are easily supported. The
result of this is that an interface design can be tested with an end user
and amendments to the models can be presented to them in just the
time it takes to re-compile the code.

When presented with this simple case study, an expert developer
implemented the code in 776 lines of code in a few days. Using Te-
allach, the same interface was developed in a couple of hours with no
actual writing of code. Since the generated code utilises the Teallach
runtime library, it consisted of only 353 lines of code. Although it is
not intended that the code generated by Teallach will be used as pro-

duction code, there are indications that the reduction of application-
specific code may well improve the maintainability and testability of
the code.

While we do not yet have any empirical evidence to support our
claims that UI development is made simpler using a MB-UIDE such
as Teallach, initial observations have shown that the time taken to
learn the UI development process using Teallach is much shorter
than the time taken to train a computer scientist how to program us-
ing Java and the ancillary APIs. Moreover, developers were able to
easily improve the produced UI code just by refining the models.

7. CONCLUSIONS
The experience of developing a code generator for Teallach has il-
lustrated that its models contain sufficient information to allow fully
functional interfaces to be generated. In addition, since designers can
either leave most presentational aspects of the generated interface to
system defaults or can make explicit assignment of CIOs to tasks
means that interface generation in Teallach can adapt to the prefer-
ences of different designers. In fact, as described in [2], an important
feature of interface development in Teallach is the flexibility pro-
vided by the development environment – for example, the design
tools allow models to be developed and linked in different orders and
ways, reflecting different design preferences.

An additional distinctive feature of Teallach is the mainstream set-
ting within which it operates. Java code produced by the code gen-
erator interacts with existing object databases and application class
libraries through the DM interface, and makes use of existing Swing
or designer-supplied interaction objects that are accessed through the
PM.

Although interface builders that allow developers to construct appli-
cations by drawing displays using components such as those pro-
vided by Swing are in widespread use, it is still the case that applica-
tions constructed using such environments are often complex to code,
paying no attention to the dynamics of the interface.

MB-UIDEs have received considerable attention from researchers
working on computer-aided design of user interfaces in recent years,
as the use of specialized declarative models can assist developers in
partitioning a substantial design activities into manageable chunks.
However, proposals for MB-UIDEs often fail to provide comprehen-
sive interface generation capabilities, or generate interfaces that are
difficult to link to existing applications or component sets. Further-
more, there are few detailed descriptions of code generation for MB-
UIDEs in the literature.

This paper has described a code generator for the Teallach MB-UIDE
that generates Java applications using the MVC design pattern,
whose interfaces can exploit the Swing widget set. The contention of
the paper is that the provision of effective interface generation facili-
ties in mainstream settings is important to the long-term uptake of
model-based interface development techniques.

8. ACKNOWLEDGMENTS
This work is funded by the UK Engineering and Physical Sciences
Research Council, whose support we are pleased to acknowledge.

The first author is sponsored by Conselho Nacional de Desenvol-
vimento Cientifico e Tecnologico – CNPq (Brazil) – Grant
200153/98-6, whose support the first author is pleased to acknowl-
edge. We also thank our partners on the Teallach project for their
contributions to the development of the overall Teallach system.
They are Peter Barclay, Richard Cooper, Carole Goble, Phil Gray, Jo
McKirdy, Michael Smyth and Adrian West.

9. REFERENCES
[1] Balzert, H., Hofmann, F., Kruschinski V., Niemann, C. The

JANUS application development environment - generating more
than the user interface. In Computer-Aided Design of User In-
terfaces (Namur, Belgium, 1996) Namur University Press, 1996,
183-206.

[2] Barclay, P., Griffiths, T., McKirdy, J., Paton, N., Cooper, R. and
Kennedy J. The Teallach Tool: Using Models for Flexible User
Interface Design. In Proceeding of CADUI’99, Kluwer.

[3] Bodart, F., et al., Towards a Systematic Building of Software
Architecture: the TRIDENT Methodological Guide. In Proc.
DSVIS’95, Vienna, Springer, 1995, pp. 237-25

[4] Elwert, T., Schlungbaum, E. Modelling and generation of
graphical user interfaces in the TADEUS approach. In Proc.
DSVIS’95. Vienna, Springer, 1995, 193-208.

[5] Griffiths, T., Barclay, P., McKirdy, J., Paton, N., Gray, P., Ken-
nedy, J., Cooper, R., Goble, C., West, A., Smyth, M. Teallach:
A model-based user interface development environment for ob-
ject databases. In Proceedings of UIDIS'99. IEEE Press. 86-96.

[6] Griffiths, T., McKirdy, J., Forrester, G., Paton, N., Kennedy, J.,
Barclay, P., Cooper, R., Goble, C., Gray, P. Exploiting model-
based techniques for user interfaces to database. In Proceedings
of VDB-4 (Italy, May 1998). 21-46.

[7] Krasner, G., Pope, S. A cookbook for using the Model-View-
Controller user interface paradigm in Smalltalk-80. Journal of
Object-Oriented Programming. 1 (3), 1988, 26-49.

[8] Lonczewski, F. and Shreifer, S., The FUSE System: an Inte-
grated User Interface Design Environment, In Proc. CADUI’96,
1996, 37-56.

[9] Puerta, A., Maulsby, D. Management of interface design knowl-
edge with MODI-D. In Proceedings of IUI'97 (Orlando, FL,
January 1997). 249-252.

[10] Stirewalt, K. Automatic Generation of Interactive Systems from
Declarative Models. PhD thesis, Georgia Institute of Technol-
ogy, December 1997.

[11] Szekely, P., Luo, P., Neches, R. Facilitating the exploration of
interface design alternatives: The HUMANOID model of inter-
face design. In Proceedings of SIGCHI'92 (May 1992). 507-
515.

[12] Wiecha, C., Bennett, W., Boies, S., Gould, J., Green, S. ITS: A
tool for rapidly developing interactive applications. ACM
Transactions on Information Systems, 8, 3 (July 1990), 204-236.

[13] Wilson, S., Johnson, P. Bridging the generation gap: From work
tasks to user interface designs. In Computer-Aided Design of
User Interfaces. Namur University Press, 1996, 77-94.

