Spatio-Temporal Evolution:
Querying Patterns of Change in Databases

Nassima Djafri, Alvaro A.A. Fernandes, Norman W. Paton, Tony Griffiths
Department of Computer Science, University of Manchester, Manchester M13 9PL, UK

{ndjafrijalvaronormgriffitt} @cs.man.ac.uk

ABSTRACT

This paper contributes a general approach to characterizing
patterns of change in a spatio-temporal database. While
there is a particular interest in modelling and querying how
spatio-temporal entities evolve, the approach contributed by
the paper is distinctive in being applicable without modifi-
cation to aspatial entities as well. The paper uses the Tripod
spatio-temporal model to describe and instantiate in detail
the contributed approach. After briefly describing a typical
application and providing basic knowledge about Tripod,
the paper characterizes and classifies evolution queries and
describes in detail how they are evaluated.

Categories and Subject Descriptors

H.2.3 [Information Systems]: Database Management—
Query Languages

General Terms
Algorithms

Keywords
Spatio-Temporal Databases, Spatio-Temporal Query

1. INTRODUCTION

Spatio-temporal databases have been an active area of
research since, at least, the early 1990s. This surge in inter-
est has resulted in such recent advances as the modelling of
moving objects (e.g., [11]), the development of constraint-
based formalisms (e.g., [10]) and of spatio-temporal data
models (e.g., [8, 15]). These advances suggest that database
technologies could come to play as central a role in the de-
velopment and deployment of spatio-temporal applications
as they have done, in the aspatial, non-temporal case for at
least thirty years. However, this is unlikely to come about
without advanced query capabilities. In particular, spatio-
temporal databases will need to support querying of change
patterns, i.e., to the evolution of the entities modelled.

While the wealth of proposals in areas such as access
methods and indexing strategies as well as (at the other

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

GIS 2002, November 8-9, 2002, McLean, Virginia, USA.

Copyright 2002 ACM 1-58113-XXX-X/02/0011 ...$5.00.

end of the abstraction spectrum) in user-level query syntax
is, of course, to be welcomed, more work is needed on how
to model advanced spatio-temporal queries at intermediate
levels of abstraction. This paper aims to make one such
contribution. It describes a general approach to character-
izing evolution queries, i.e., queries that identify patterns of
change in the histories of entities, spatial or not. The ap-
proach is distinctive in being applicable not only to spatial
but, without modification, aspatial entities as well.

The remainder of the paper is structured as follows. Sec-
tion 2 provides motivation through a representative applica-
tion and some examples of the classes of queries that form
the focus of the paper’s contributions. Section 3 provides a
very brief introduction to the Tripod system [7, 8, 9] as a
backdrop for the technical development. Section 4 classifies
evolution queries and describes in detail a general approach
to evaluating them both in the spatial and in the aspatial
case. Section 5 discusses related work. Finally, some con-
clusions are drawn in Section 6.

2. MOTIVATION

The Longitudinal Study (LS) by the UK Office for Na-
tional Statistics [13] links census and vital event data (e.g.,
births, deaths, cancer registrations) for a one percent sample
of the population of England and Wales (about 500,000 in-
dividuals) entered in the 1971, 1981 and 1991 censuses, plus
information on other individuals living in the same house-
hold at each census. A range of prospective analyses can be
carried out with the LS data. Analyses can be census-based
(e.g., changes in housing tenure, car ownership, migration
behaviour, or occupational mobility between 1971, 1981 and
1991), event-based (e.g., fertility patterns), or both (e.g.,
how socio-demographic differences in mortality, or fertility,
have evolved since 1971). A schema (from [8]), in Tripod’s
object definition language (ODL), showing a subset of the
classes of interest in the LS is presented in Figure 1.

The LS is of particular interest in the context of this paper
because the patterns of change that spatial and aspatial en-
tities undergo are a fundamental aspect of what the study
was designed to support. The contributions of this paper
can, therefore, be seen as instrumental in allowing the data
captured in the LS to elicit more information more effec-
tively and efficiently than would otherwise be possible. The
following are illustrative examples of queries over change
patterns that are suggested by the data in the LS. Note
that in order to make concrete examples more informative,
this paper assumes the existence of data for more points in
time than [13] actually contains.

e Q1: In which years, between 1989 and 2002, did the
salary of LS member P grow?

historical(TimeIntervals, DAY) class LS_member

(extent LS_members)

{ attribute TimeInstant
attribute TimelIntervals
historical(TimeIntervals, DAY)
attribute enum {S,M,D,W}
historical(TimeIntervals, YEAR)

date_of birth;
periods_of _work;

marital_status;

attribute int salary;
historical(Instants, YEAR)
attribute Points location;

historical(TimeIntervals, DAY)

relationship Enumeration district resides_in

inverse Enumeration_district has_LS_members;
historical(TimeIntervals, DAY) class Enumeration district
(extent Enumeration.districts)

{ attribute string name;
historical(TimeIntervals, YEAR)
attribute Regions boundary;

historical(TimeIntervals, DAY)
relationship set<LS.member>
inverse LS_member

has_LS_members
resides_in;

Figure 1: A Tripod Schema for the LS

e Q2: In which years, between 1989 and 1991, did the
location of LS member P move closer to the boundary
of enumeration district £?

e Q3: When did the location of LS member P enter
enumeration district E7?

Q1 requires the query processor to scrutinize consecutive
snapshots in a single history. In this paper, this kind of
query is referred to as intra-history cross-timestamp (IHC).
Given two consecutive snapshots v and v in the history H
of the salary of LS member P, the goal in evaluating Q1 is
to ascertain that v < v’ and to record the outcome for every
interval of interest. Note, from Q1, that, in this paper,
change patterns are not necessarily spatially referenced.

Q2 requires the query processor to scrutinize consecutive
snapshots in a pair of (aligned) histories. In this paper, this
kind of query is referred to as cross-history cross-timestamp
(CHC). Given the history H of the location in space of P
and the history H' of the boundary of enumeration district
E, the goal in evaluating Q2 is to record when the distance
between the location of P and the boundary of E in one
snapshot was greater than in the consecutive one.

Finally, Q3 requires the query processor to scrutinize each
snapshot in a pair of (aligned) histories to ascertain whether,
at each timestamp, a particular relationship holds or not. In
this paper, this kind of query is referred to as cross-history
intra-timestamp (CHI). Given the history H of the location
of P and the history H' of the boundary of E, the goal
in evaluating Q3 is to record when the location of P was
outside the boundary of E in one snapshot and then inside
it, in the consecutive snapshot.

Note that IHI (i.e., intra-history intra-timestamp) queries
are not evolution queries: they do not compare states of
affairs, neither across histories nor across snapshots.

3. BACKGROUND: THE TRIPOD SYSTEM

The Tripod project [7, 8, 9] is developing a complete
spatio-historical database system by extending the ODMG
database standard for object databases [2] with two new
kinds of primitive type, viz., spatial types and timestamp

types and a new collection type, called history. The spa-
tial types are based on the ROSE (RObust Spatial Exten-
sions) algebraic types described in [12], viz., Points, Lines
and Regions. The timestamp types, viz., Instants and
TimeIntervals, are one-dimensional versions of the ROSE-
algebraic types Points and Lines respectively. For each
spatial and timestamp type, there exist operations, referred
to as assemble and a disassemble that map from a set of
singular values (e.g., of type Point) to the corresponding
collection value (i.e, Points, in the example)

A history is a quadruple H = (V,0,~,%), where V de-
notes the domain of values whose changes H records, 0* €
©* and O is the set of all Tripod timestamp types, 7 is the
granularity of 8, and ¥ is a set of pairs, called states, of the
form (7, 0), where 7 is a timestamp and o is a snapshot. X
is referred to as the state set of H.

Notational conventions regarding histories are as follows.
Let T denote the set of all timestamps; V, the set of all snap-
shots; S, the set of all states; and H, the set of all histories. A
TimeIntervals value is written as [t] : t7,..., ¢, : t5], where
each element is a half-open (at the end) interval. An element
in a state set is written as exemplified by ([01/01/1983 :
03/05/1987,12/04/1992 : 19/12/2000], v), where v denotes,
e.g., a snapshot value from the domain of boundary. Dot
notation is used to denote the individual elements of a par-
ticular state. For example, the timestamp of a particular
state s is denoted by s.timestamp, and the corresponding
snapshot by s.snapshot. The state set of a history H is
denoted by H.state. Each Tripod type that extends the
ODMG standard has a rich set of operations (see [7, 9]).

Tripod extends the monoid comprehension approach [6]
to provide a semantics for Tripod queries. A monoid is a
triple (T, ®, Zg) consisting of a set T together with a bi-
nary associative operation @ : 7' x T — T, called the merge
function for the monoid, and an identity element Zg, called
the zero element of the monoid. In database contexts, T
is taken to be a database type. Examples of monoids are
(int,+,0) and (Bool, A,true). A comprehension over the
monoid @ is an expression of the form ®{e|7 }, where the
expression e is called the head of the comprehension and
T =71,...,m, n > 0, is a sequence of qualifiers each one
of which is either a generator of the form v < €’ or a filter
in the form of a predicate p over the terms in the compre-
hension. Collection monoids can be defined over H. For
example, one where the zero element is the empty history,
denoted by {()}, the unit function is Az.{(z)} for any = € S,
and the merge function is W. This history monoid allows
monoid comprehensions to be defined over H in which the
lexicon for filters stems from the set of Boolean-valued op-
erations over histories, and the set of domain generators is
extended by history-denoting expressions (including monoid
comprehensions other than (U, {()})).

For reasons of space, some definitions and examples are
omitted here. Readers are referred to [7, 8, 9] for full details.

4. EVOLUTION QUERIES

In this paper, a change pattern is a chronologically ordered
sequence of observations describing how, within a history,
the relationship of one state to its predecessor has evolved,
or how a relationship between two entities has evolved across
their joint (i.e., aligned) histories.

An example of the first kind might be Q1 in Section 2,
i.e., an ITHC (for intra-history cross-timestamp) query on
the evolution of a person’s salary to establish that it has
never reduced. Another example might be to query whether

or when the boundary of a district has grown (or shrunk).
An example of the second kind might be Q2 in Section 2,
i.e., a CHC (for cross-history cross-timestamp) query as to
when a person’s location moved closer to the boundary of a
district. Another example might be Q3 in Section 2, i.e., a
CHI (for cross-history intra-timestamp) query as to when a
point entered a region.

Such queries on change patterns are referred to in this
paper as evolution queries. In the aspatial case, they are
related to sequence queries [17]. In the spatial case, they
are related to the notion of developments [3]. Evolution
queries generalize both of these proposals in the sense that
they cover both aspatial and spatial entities uniformly.

In the approach contributed by this paper, given a his-
tory (or a pair thereof), the kind of evolution that has taken
place is characterized by firstly comparing successive snap-
shots (or by testing whether some predicate holds between
two values at the same point in time). This comparison
(e.g., for one snapshot being smaller than its successor) es-
tablishes what kind of change (if any) has taken place (e.g.,
that the value was growing). Note that, in this paper, given
two timestamps t1 and t2, “between t; and t2” is taken to
mean “at every granule contained in the (half-open) interval
denoted by [t1 : t2]”.

In some cases, before the comparison is carried out, a map-
ping is applied to each snapshot value. For example, to con-
secutive snapshots of type Lines one might apply the map-
ping length : Lines — float and compare the outcomes
with a view to concluding whether or when that length was
growing. In this paper, a mapping is always a Tripod prim-
itive operation (or the identity mapping), and a comparator
is always a Tripod predicate (e.g., >: float x float — Bool,
or on_border_of : Points x Regions — Bool) [7, 9].

There is an initial stage in which an intermediate repre-
sentation is built that plays the role of interpretation struc-
ture for a query. Individual elements in this structure map
one-to-one onto the instants contained in the history under
analysis. Each element either denotes whether change has
taken place, or that this fact cannot be determined. The
interpretation structure takes the form of a string over the
alphabet {t, f,u}, where, as expected, t denotes truth (e.g.,
yes, the corresponding, possibly mapped, value is greater
than its predecessor), £ denotes falsity (e.g., no, it is not
greater) and u denotes the impossibility to assign a truth
value (e.g., there is a gap where a predecessor state would
be expected, making it impossible to conclude that the snap-
shot is greater or not). To query for a change pattern, one
then specifies this pattern as a regular expression over the
interpretation structure. In a second and final stage, the
answer to the query is computed. For that purpose, regular
expression pattern matching is used over the string. Given
what each character denotes and the bijective property with
respect to the history being queried, the result can be used
to construct the answer, as described in detail in Sections 4.1
to 4.6. In this way one can express queries regarding con-
tinuity, alternation, etc. Likewise, one can express queries
regarding evolution over intervals whose length is not known.

To conclude this overview, a taxonomy of evolution queries
in Tripod is partially depicted in Figure 2. Since, in Tripod,
every construct that can be assigned a value can be con-
strued as historical, and since evolution queries can be posed
over any history, it is clear that Figure 2 merely exempli-
fies, rather than exhaustively covers, the kinds of evolution
queries in Tripod. The purpose of Figure 2 is to under-
pin the detailed description of how evolution queries can be

posed and answered. The question as to what other kinds
of evolution queries there exist that cannot be depicted in
a drawing such as Figure 2 is addressed formally at the end
of this section.

evolution queries

intra-history cross-history

cross-history
cross-timestamp i

unordered ordered based on based on based on
domain domain length/area no_of conponents dist

testing for testing for testing for testing for
T Baabuic el Z

testing for testing for testing for
= not= = not= > = not= > < = not= > < = not= > < d

on_border_of inside

constant
changing
constant
changing
falling

rising

constant
changing
shrinking
growing
constant
changing
growing sparser
growing denser
constant
changing
growing closer
growing apart
has-touched
has-entered
has-left
has-crossed

Figure 2: Kinds of Evolution Queries in Tripod

The left child of the root comprises IHC queries. The left-
most path in the IHC sub-tree captures the simplest case,
viz., if the history is of a nominal attribute (e.g., an enum at-
tribute such as marital_status), one can only query based
on equality (e.g., if one were to use equality as a compara-
tor, then a regular expression such as [t]* could be used to
identify the periods in which the marital status remained
constant, and possibly equal to some specific value, e.g., W,
for widowed). For an ordered attribute, using comparators
such as > and < opens the way to characterizing periods in
the history in which the snapshot values are falling and ris-
ing, respectively. The remaining branches of the IHC sub-
tree contain examples of how a mapping can be used to
characterize certain phenomena. For example, if one takes
the history of a Lines value, say, of (the geometrical repre-
sentation of) a road and applies the mapping length, one
can characterize that the road is, e.g., growing, by using
the comparator <. Likewise, one could query whether the
number of components in, say, a Regions value is growing.
In all the examples above, consecutive snapshots (hence the
cross-timestamp qualifier) from the same history (hence the
intra-history qualifier) are being compared.

The middle child of the root comprises CHC queries. For
example, the histories of a Points and a Regions value
can be first aligned (hence the cross-history qualifier) so
as to compute the dist between the paired snapshots and
then identify whether it is, e.g., growing. The comparison
is of distances in consecutive snapshots (hence the cross-
timestamp qualifier) in the aligned history.

Finally, the right child of the root comprises CHI queries.
It illustrates how predicates other than the classical ones
can be used as comparators. Using a predicate such as
on_border_of allows one to characterize change patterns re-
lating to whether two spatial entities came into contact
(e.g., if on the predecessor state it was false that one was
on_border_of the other, and, now, on the current state, it is
true). Similarly, patterns based on the predicate inside give
rise to a characterization as to whether an object entered an-
other (e.g., a person moved to an enumeration district, as-
suming the former to be spatially referenced). Because two
histories are aligned, these are cross-history queries, but be-
cause the comparator is applied at each snapshot (rather
than consecutive ones), they qualify as intra-timestamp.

Note that evolution queries are, in their most general for-
mulation, type-independent, i.e., one can query how val-
ues evolve irrespective of their types. In particular, be-
cause Tripod models spatial values as primitive values, it is
largely immaterial whether the change pertains to a spatial
attribute or an aspatial one (unlike, e.g., [5], where the fo-
cus is specifically on changes with reference to space, or [17],
where changes in space are not captured at all).

4.1 Interpretation Structurefor IHC Queries

The algorithm in Figure 3 constructs the interpretation
structure corresponding to an ITHC query, i.e., an evolu-
tion query over consecutive snapshots within a single (non-
empty) history. The signature of the BUILD-IHC-STRUCTURE
function defined in Figure 3 is History < 7,71 > x (T1 —
Ty) x ((Te x T2) — Bool) — (Instant x String{®**}) where
History < 7,71 > ranges over history values with timestamp
type 7 and snapshot type T1; T% is a Tripod type (possibly
the same as T1); (171 — T2) is a unary mapping from 71 to
T> (possibly the identity); ((72 x T2) — Bool) is a binary
predicate on T>; and (Instant x String{t’f‘“}) is a pair, with
the left element an instant value (denoting the earliest gran-
ule in the period covered by the argument history), and the
right element a string over the alphabet {t, f,u}.

BuILD-ITHC-STRUCTURE(H, u, ¢)
1 H — 0{(t,p(v) | (tv) — H)
2 ES«—¢
3 if H' has timestamp type Instants
4 then e « first(EarliestState(H’). timestamp)
5 else e « start(first(EarliestState(H’). timestamp))
6 it < new INSTANT-STATE-ITERATOR(H')
7
8
9

s « it. get_element()
while —(it. at_end())

do
10 it. next()
11 s’ — it. get_element()
12 d < dist(s. timestamp , s’. timestamp)
13 ifd 1
14 then ES — ES™(d*u)
15 else if ¢(s. snapshot ,s’. snapshot)
16 then ES «— ES”t
17 else ES — ES”f
18 s s

19 return (e, ES)

Figure 3: Interpretation Structure for IHC Queries

In Figure 3, INSTANT-STATE-ITERATOR is one of the it-
erators defined in the Tripod language bindings. It tra-
verses the state set of a history in ascending chronological
order, ensuring that if the timestamp value is not of the
type Instant, then it emits, in order, as many states (with
Instant timestamp type) as there are instants in the orig-
inal timestamp by replicating the original snapshot value.
For example, on a history H = {([t1 : ts],30), ([t4 : t5,t6 :
ts],12), ([to : t10], 14)} with timestamp type TimeIntervals,
an INSTANT-STATE-ITERATOR would return the following
states, in the stated order, ({t1,30), (t2, 30), (ts, 12), (t¢, 12},
(t7,12), (t9,14)). An INSTANT-STATE-ITERATOR responds
to an invocation of at_end() with true if it has emitted the
last state. It responds to get_element() by emitting the state
corresponding to its current index. It responds to nezt() by
pointing to the state that lies next (in ascending chronolog-
ical order) from its current index.

The first step in the algorithm in Figure 3 assigns to H'
the output of a monoid comprehension in which the input

mapping p (possibly the identity) is applied to each snap-
shot value in the (non-empty) input history H. Then the
evolution string ES is initialized to the empty string e be-
fore iteration starts. The earliest instant in H' is recorded
as e, taking into account the two possible timestamp types
when invoking the Tripod operations to obtain that instant.
Next, H' is traversed instant by instant in ascending chrono-
logical order. At each pass, the comparator ¢ is applied to
the snapshots of two consecutive states s and s’. String con-
catenation (denoted by ‘™) is used to record the outcome
in the evolution string ES. True is recorded as t and false
as f. If between the timestamps of s and s’ there is a gap
(measurable by the Tripod operation dist) of d granules,
then the character u (for undefined) is concatenated d times
to ES. This guarantees that, for each instant contained in
the timespan of H, there is a corresponding character in E'S.
When the traversal ends, the algorithm pairs e and ES as
the output interpretation structure I for an IHC query.

Values for the unary mapping p (other than the identity
function) include those in Figure 2, i.e., area, length and
no_of_components. Values for the binary comparator ¢ in-
clude those in Figure 2, i.e., =, #, >, <.

For example, consider again query Q1 in Section 2. To
see how the Tripod query processor constructs the interpre-
tation structure needed to answer Q1, assume Hg to de-
note the history of the salary of LS member P, then the call
BUILD-THC-STRUCTURE(H g, ¢, <) builds the required struc-
ture. This call returns a pair where the left element is that
Instant value corresponding to the earliest granule in the
history of the salary of P and the right element is a string,
referred to as an evolution string, where a t denotes that,
at that granule, the salary of P was smaller than in the suc-
ceeding granule, an f denotes that it was not, and an u
denotes that the succeeding granule is not one granule away
(i.e., there is a gap of size, at least, one).

4.2 Identifying Patternsin IHC Queries

In this paper, an evolution query specifies the changes
of interest as a pattern. The pattern is matched against
the evolution string in the output pair computed by the
algorithm in Figure 3. The earliest instant (i.e., the other
element in the output pair) is then used to compute the
intervals in which the desired changes were observed (if any).

The algorithm in Figure 4 constructs a TimeIntervals
value that represents those intervals in the history being
queried in which the change pattern occurs. The signature
of the BUILD-THC-INTERVALS function defined in Figure 4 is
RegExp{***} x (Instant x String!***}) — TimeIntervals

BuILD-IHC-INTERVALS(r, (e, ES))

TS — {}

M «— MATCH-REGULAR-EXPRESSION(r, ES)

for (i,m) € M

do T'S « TS U {MakeInterval(e +i,e + ¢+ m)}
return assemble(TS)

TUk W N

Figure 4: Change Patterns in IHC Queries

In Figure 4, MATCH-REGULAR-EXPRESSION is a string
matching algorithm that takes a regular expression r and
an interpretation structure I = (e, ES) returned by BUILD-
ITHC-STRUCTURE in Figure 3 and returns the index i and
the length m of each match of r in ES. Two Tripod op-
erations are used in Figure 4, viz., MakeInterval, which
constructs a TimeInterval value from two Instant values,

and assemble which constructs a TimeIntervals value out
of a set of TimeInterval values, with coalescing taking place
by default, if necessary.

The algorithm in Figure 4 begins by setting up an accu-
mulator for the return set T'S of TimeInterval values. It
then obtains the set M of all matches of the regular ex-
pression r in the evaluation string ES. Then, for each such
match (i,m) € M, it adds to T'S a TimeInterval defined
as follows. The start of the interval is determined by taking
the index ¢ of the match as an offset on the earliest instant e
returned by BUILD-IHC-STRUCTURE in Figure 3. The end
of the interval is determined by adding to the start of the
interval the length m of the match.

For example, assume a history H of an attribute salary of
type int, with TimeIntervals timestamps and granularity
YEAR. Assume the state set of H to be {({[1989 : 1994, 1997 :
1999], 20), ([1999 : 2000], 22), ([2000 : 2002],25)}. Recall
that an interval is interpreted as half-open (at the end).
Then, BUlLD-IHC-STRUCTURE(H, ¢, <) (with ¢ denoting the
identity mapping) returns the pair (1989, ffffuuuufttf),
i.e, taking the intervals to be open at the end, the two points
in which it can be said that the salary grew was between 1998
and 1999, and then between 1999 and 2000. A call to BUILD-
ITHC-INTERVALS([t]+, BUILD-THC-STRUCTURE(H, ¢, <)) id-
entifies (non-empty) periods of indefinite length when the
salary rose. In the above example, the single match is de-
noted by (9,2). Given that the earliest instant is e = 1989,
the interval set returned is {[(1989 4+ 9) : (1989 4+ 9+ 2)]} =
{[1998 : 2000]}. This is the answer to query Q1 if the his-
tory of the salary of LS member P is H given above.

4.3 Interpretation Structurefor CHC Queries

Interpretation structures for CHC queries, i.e., evolution
queries over consecutive snapshots in a paired (non-empty)
history are built by a variant of the algorithm in Figure 3.
In this case (and that of CHI queries discussed later), the
focus is on the evolving relationship between two objects,
rather than on the evolution of a property of an object.

In order to determine the evolution of a relationship be-
tween two historical objects it is necessary to compare their
snapshot values for all timestamp values they have in com-
mon in their respective histories. To address this require-
ment, the two histories need to be aligned, a notion that
closely resembles the process called splitting in [1]. In Tri-
pod, the binary Align operation on two histories H; and H»
returns a new history Hs such that, for each pair of times-
tamps t1 and t2 (from H: and Ha, respectively) that have
instants in common, it generates one state in H3 having as
timestamp the intersection of t; and t2 and as snapshot a
pair (v1,v2) where v1 and vy are the snapshots associated
with ¢1 and t2, respectively. More formally, Align can be
defined using a monoid comprehension as follows:

Align(Hi, H2)= WU{(intersection(¢1,t2), (v1,v2))|
(tr,v1) — Hu,
(tz, 1)2) «— Ho
common_instants_3(¢1,¢2)}

Once the two histories are aligned, a binary mapping into
a single value (e.g., one that computes the distance between
two spatial objects), and a binary comparator (e.g., <) are
used to build the interpretation structure. The signature of
the BuiLD-CHC-STRUCTURE function is History < 7,77 >
x History < 7,75 > X ((T1 X Tz) — Tg) X ((Tg X T3) —
Bool) — (Instant x String®®"}) where History < , T} >
and History < 7,75 > range over history values with times-
tamp type 7 and snapshot types 71 and T%, respectively; T3

is a Tripod type (with all of 71 to T3 possibly the same);
((Th x T») — T3) is a binary mapping (possibly the iden-
tity); ((T5 x T3) — Bool) is a binary predicate on T3; and
(Instant x String!®**}) is as for BUILD-THC-STRUCTURE
above. The BUILD-CHC-STRUCTURE function differs from
the algorithm in Figure 3 only insofar as line 1 is replaced
by the following two lines:

A« Align(H, H2)
H' @J{(tmu‘(vhl)?)) | (t7 (Ul7v2)) (_A}
where H; and H are the two input histories and p is binary,

rather than unary as in Figure 3. The rest of the algorithm
behaves in the way described for IHC queries.

4.4 Identifying Patternsin CHC Queries

Because the interpretation structure for CHC queries is
syntactically and semantically equivalent to that returned
for ITHC queries, it follows that

BuiLD-CHC-INTERVALS = BUILD-IHC-INTERVALS

i.e., the function defined in Figure 4 is applicable without
change to CHC queries.

E. bounddry! E. boundary!

m

boundd‘ry‘

P.} oclat ifon,

P.1ocati 9,”., 7‘__‘ P. ocation. ‘__L ‘_‘

1989 1990 1991

Figure 5: Aligned Histories of Spatial Objects

For example, assume two histories H1 and H> of a Points
and a Regions object, respectively (e.g., the geographical
location of an LS member P and the boundary of an enu-
meration district E), both with Instants timestamp type
and granularity YEAR. Assume the state sets of H1 and Hs to
be such as can be induced from Figure 5, where the times-
tamps are marked in the horizontal axis and the underlying
(contrivedly small) realm grid is shown at each timestamp.

A call such as BuiLD-CHC-STRUCTURE(H1, H2,dist, >)
would return the interpretation structure (1989, tt), i.e, the
two spatial objects grew closer between 1989 and 1990, and
between 1990 and 1991 (when it became zero, according to
the semantics of dist in the ROSE algebra [12]). This result
relies on the alignment of the two histories which is already
(graphically) reflected in Figure 5. Hence, the outcome is t
between 1989 and 1990, and t between 1990 and 1991, and
ES is tt . A call to BUILD-CHC-INTERvVALS([t]+, BUILD-
CHC-STRUCTURE(H1, H2,dist, >)) identifies (non-empty)
periods of indefinite length when the two objects grew closer
at every granule. In the above example, the single match is
denoted by (0,2). Given that the earliest instant is e =
1989, the interval set returned is {[(1989 + 0) : (1989 + 0 +
2)]} = {[1989 : 1991]}. This is the answer to query Q2 if
the histories of the location of LS member P and of the
boundary of enumeration district F are, after alignment, as
graphically depicted in Figure 5.

45 Interpretation Structure for CHI Queries

As is the case with CHC queries, the interpretation struc-
ture for CHI queries, i.e., evolution queries over the snap-
shots in a paired (non-empty) history at each timestamp,
also requires aligning the two input histories.

The signature of the BUILD-CHI-STRUCTURE function de-
fined in Figure 6 is History < 7,71 > xHistory < 7,75 >
X ((T1 xT2) — (T3 xT3))x ((T3xT3) — Bool) — (Instant X
String!®fu})

BuiLD-CHI-STRUCTURE(H1, Ho, i, ¢)
1 Hj«— Align(Hl,HQ)
2 Hg < U{(t, p(v1,v2)) | (¢, (v1,v2)) < Hs}
3 Hy — {(t, ¢(v,0")) | (t, (v,0')) — Ha}
4
5 if Hs has timestamp type Instants
6
7
8
9

ES —¢€
then e « first(EarliestState(Hs). timestamp)
else e« start(first(EarliestState(Hs). timestamp))
it < new INSTANT-STATE-ITERATOR(Hs)
s « it. get_element()
10 while —(it. at_end())

11 do

12 it. next()

13 s" « it. get_element()

14 d < dist(s. timestamp , s’. timestamp)
15 ifd 1

16 then ES — ES™((d—1) xu)

17 else if s. snapshot

18 then ES «— ES”t

19 else ES — ES”f

20 s s

21 return (e, ES)

Figure 6: Interpretation Structure for CHI Queries

The algorithm in Figure 6 resembles, but is significantly
different from, the one in Figure 3. Besides the alignment
step and the application of the binary mapping, which are
also present in BUILD-CHC-STRUCTURE, there is an addi-
tional, crucial difference (with respect to BUILD-IHC-STRU-
CTURE): the comparator ¢ is applied not to snapshots in
consecutive instants, but rather to the snapshots of two ob-
jects in the aligned history. This is captured in line 3 in
Figure 6. Contrast this with the application of the com-
parator in line 15 in Figure 3. Because of this crucial dif-
ference, the iteration is not over the aligned (possibly u-
mapped) snapshots but rather over the history that results
from applying the comparator to two snapshots at the same
instant. In other words, the snapshot type of Hs in Figure 6
is Boolean, and hence is tested as such in line 17 so as to con-
catenate to ES the character that properly represents the
truth value resulting from the application of the comparator
to the corresponding aligned snapshots. Another difference
is the computation of the size of a gap in line 16, which also
stems from the fact that Hs already represents the outcome
of applying the comparator ¢.

4.6 Identifying Patternsin CHI Queries

Again, because the interpretation structure for CHI queries
is syntactically and semantically equivalent to that returned
for IHC (and CHC) queries, it follows that

BuiLD-CHI-INTERVALS = BUILD-IHC-INTERVALS

i.e., the function defined in Figure 4 that builds the inter-
vals of interest for IHC queries is applicable without change
to CHI queries. Consider again H; and H2, the histories
of the location of LS member P and of the boundary of
enumeration district E in Section 4.4. A call such as BUILD-
CHI-STRUCTURE(H1, H2, ¢, inside) would return the inter-
pretation structure (1989, £ft), i.e, the Points object was
only inside the Regions object in 1991. This result re-
lies on the alignment of the H; and Hs which is already

(graphically) reflected in Figure 5, on applying the identity
mapping on the resulting paired snapshots, and on applying
the comparator inside to the latter. Therefore, the history
denoted by Hs in Figure 6 has the following value in this
case: {([1989 : 1990], false), ([1990 : 1991], false), ([1991 :
now|, true)}, where now denotes the fact that the snapshot
for 1991 holds at the moment in which the query is evaluated
(assumed here to be in the year 1992). Hence, the resulting
value for ES is fft. A call to BUILD-CHI-INTERVALS([ft]+,
BuILD-CHI-STRUCTURE(H1, H2, ¢, inside)) is meant to id-
entify paired instants such that the first object was not in-
side the second in the first instant, and then, in the second
instant, it was. In other words, occasions where it can be
said that the first object has entered the second. In the
above example, the single match is denoted by (1,2). Given
that the earliest instant is e = 1989, the interval set returned
is {[(1989 + 1) : (1989 + 1 4+ 2)]} = {[1990 : 1992]}. This is
the answer to query Q3 if the histories of the location of
LS member P and of the boundary of enumeration district
E are, after alignment, as graphically depicted in Figure 5.

Note that Figure 2 only constitutes an exhaustive taxon-
omy at depth 1. As hinted by the dotted lines at depth 2,
the kinds of evolution queries that can be formulated is far
too large to be captured in a drawing. Nevertheless, the set
of all evolution queries is precisely defined if the data model
is. To see this, note that an evolution query is either an
THC, a CHC or a CHI query. Now, consider Figures 3 to 6.
Note that, apart from the histories themselves, all the above
queries are parameterized by a mapping p and a predicate
¢. Thus, the set of all evolution queries is well-defined given
a set T of types, a set M > p of mappings over T" and a set
® > ¢ of comparators over T'. In Tripod, all of 7', M and ®
have such cardinalities that the set of all possible combina-
tions of their elements is quite large. Now, taking a subset
of such combinations characterizes one kind of Tripod evo-
lution query that a taxonomy might attach an identifier to
and depict as a node in Figure 2. Other settings than Tripod
will have different extensions for 7', M and &, but, again,
given those, the set of evolution queries for each such setting
is well-defined.

5. RELATED WORK

Erwig and Schneider present a formal model of spatio-
temporal predicates in [5] that can be used to characterize
how a topological relationship between two spatial objects
unfolds in a temporal sequence. This notion, referred to
by Erwig and Schneider as developments [3], has inspired
the approach contributed in this paper. Erwig and Schnei-
der have also devised a two-dimensional visual language [4]
for specifying these temporally changing topological rela-
tionships, and translating them into a sequence of spatio-
temporal predicates. However, their approach seems to fo-
cus on the representation of topological relationships, where-
as the approach described in this paper can be used to cap-
ture a wider range of queries, both metric and topological,
on spatial objects while also ranging over aspatial objects.

The behavioural time sequences model [19] for managing
highly variable data (e.g., spatial objects that evolve over
time) bears some similarity to the approach contributed in
this paper. In [19] data is represented using time sequences,
where each element of the sequence contains a geometric
value, a date, and a behavioural function. The latter de-
scribes how the data evolves between two consecutive ele-
ments of the sequence. Evaluating spatio-temporal queries
on highly variable data is then achieved by computational-

geometric techniques on a geometric representation of the
sequence. While some of the ideas in [19] are also present in
different forms in this paper, the question as to which be-
havioural functions are legitimate to apply in each particular
system is not discussed in [19]. In contrast, this paper indi-
cates precisely how the underlying type system is related to
(and ultimately determines) the class of all evolution queries
that an effective system supports.

In [17] an SQL-based query language for time series is pro-
posed, called SQL-TS, which can be used to specify complex
sequential patterns. The authors also describe an optimized
pattern search algorithm for querying complex sequential
patterns of aspatial data based on the text searching algo-
rithms by Knuth, Morris and Pratt [14]. There are simi-
larities with the algorithms in Section 4 for identifying pat-
terns. However, because this paper expresses patterns as
regular expressions, it is possible to answer a much larger
class of queries than can be done in SQL-TS. Moreover, the
approach presented here makes no distinction between spa-
tial and aspatial data other than those that stem from the
semantics captured by their respective algebras.

Other proposals exist for data models that capture ob-
jects whose properties (spatial and aspatial) are continu-
ously changing. These models are typified by the moving
object approach adopted in [11] and [16]. Such models al-
low the state of each spatial and aspatial property to be
expressed as a continuous function of time. Queries about
the position of spatial data can then be inferred by the inter-
polation of spatial values between known bounds [18]. This
provides an expressive mechanism for the representation of
moving points and polygons ([16] only considers points). It
should be noted, however, that such models do not pro-
vide comprehensive support for temporally changing aspa-
tial data and object model constructs such as relationships,
which are supported in a uniform way by the Tripod data
model. In contrast, the Tripod data model and calculus
do not model continuous change, as they explicitly target
applications in which objects change in discrete steps; for
example cadastral, cartographic, and demographic ones.

6. CONCLUSIONS

Support for spatio-temporal queries is one of the primary
functions of geographical information systems and spatio-
temporal database systems. Simple spatio-temporal queries
tend to be limited to producing information from stored data
by simple retrieval (e.g., based on selection, projection, join,
etc). In contrast, advanced spatio-temporal queries require
mechanisms to capture and represent derived data in order
to produce added-value information, e.g., about how a prop-
erty or a relationship between two (possibly spatial) objects
has evolved over time. This paper has characterized a class
of spatio-temporal queries in which change patterns can be
identified and has shown how to compute answers for such
queries in the setting of Tripod, a complete spatio-temporal
object database system under development by a team that
includes the authors [7, 8, 9]. It has shown how the un-
derlying type system determines, for a particular platform,
the class of all evolution queries that it is legitimate to pose.
The paper has thus contributed a general, detailed and well-
founded account of how a class of advanced spatio-temporal
query capabilities can be supported in applications.

Acknowledgements: This work is partly supported by
a grant from the UK Engineering and Physical Sciences Re-
search Council for which the authors are grateful.

7. REFERENCES

[1] M. Agesen, M. H. Bohlen, L. Poulsen, and K. Torp. A split
operator for now-relative bitemporal databases. In ICDE,
pages 41-50, 2001.

2] R. G. G. Cattell, editor. The Object Database Standard:
ODMG 3.0. Morgan Kaufmann, 2000.

[3] M. Erwig and M. Schneider. Developments in
Spatio-Temporal Query Languages. In IEEE Int. Workshop
on Spatio-Temporal Data Models and Languages, pages
441-449, 1999.

[4] M. Erwig and M. Schneider. Visual specifications of
spatio-temporal developments. In 15th IEEE Symp. on
Visual Languages, pages 187188, 1999.

[5] M. Erwig and M. Schneider. Spatio-temporal predicates.
TKDE, 2002. to appear.

[6] L. Fegaras and D. Maier. Optimizing Object Queries Using
an Effective Calculus. TODS, 25(4):457-516, 2000.

[7] T. Griffiths, A. A. A. Fernandes, N. Djafri, and N. W.
Paton. A Query Calculus for Spatio-Temporal Object
Databases. In Proc. TIME, pages 101-110, 2001.

[8] T. Griffiths, A. A. A. Fernandes, N. W. Paton, K. T.
Mason, B. Huang, and M. Worboys. Tripod: A
Comprehensive Model for Spatial and Aspatial Historical
Objects. In Proc. ER, pages 84-102, 2001.

[9] T. Griffiths, A. A. A. Fernandes, N. W. Paton, K. T.
Mason, B. Huang, M. Worboys, and C. Johnson. Tripod: A
Comprehensive System for the Management of Spatial and
Aspatial Historical Objects. In Proc. ACM-GIS, pages
118-123, 2001.

[10] S. Grumbach, P. Rigaux, M. Scholl, and L. Segoufin. The
DEDALE Prototype. In G. Kuper, L. Libkin, and
J. Paredaens, editors, Constraint Databases, pages 365—382.
Springer, 2000.

[11] R. H. Giiting, M. H. Bohlen, M. Erwig, C. S. Jensen, N. A.
Lorentzos, M. Schneider, and M. Vazirgiannis. A
Foundation for Representing and Querying Moving
Objects. TODS, 25(1):1-42, 2000.

[12] R. H. Giiting and M. Schneider. Realm-Based Spatial Data
Types: The ROSE Algebra. VLDB Journal, 4(2):243-286,
1995.

[13] L. Hattersley and R. Creeser. Longitudinal Study
1971-1991: History, Organization and Quality of Data.
Number 7 in ONS Series LS. The Stationery Office.,
London, 1995.

[14] D. E. Knuth, J. H. Morris, and V. R. Pratt. Fast Pattern
Matching in Strings. SIAM Journal of Computing,
6(2):323-350, 1977.

[15] C. Parent, S. Spaccapietra, and E. Zimdanyi.
Spatio-temporal conceptual models: Data structures +
space + time. In C. B. Medeiros, editor, Proc. ACM-GIS,
pages 26-33, 1999.

[16] D. Pfoser, C. S. Jensen, and Y. Theodoridis. Novel
Approaches in Query Processing for Moving Object
Trajectories. In Proc. VLDB, pages 395-406, 2000.

[17] R. Sadri, C. Zaniolo, A. Zarkesh, and J. Adibi. A
Sequential Pattern Query Language for Supporting Instant
Data Minining for e-Services. In Proc. VLDB, pages
653-656, 2001.

[18] E. Tgssebro and R. H. Giiting. Creating Representations
for Continuously Moving Regions from Observations. In
Proc. SSTD, volume 2121 of LNCS, pages 321-344, 2001.

[19] T. S. Yeh and B. de Cambray. Modeling Highly Variable
Spatio-Temporal Data. In Proc. Australasian Database
Conf., pages 221-230, 1995.

