
Static analysis and testing of executable DSL specification

Qinan Lai
1
, Andy Carpenter

1

1School of Computer Science, the University of Manchester, Manchester, UK

{laiq,afc}@cs.man.ac.uk

Keywords: ALF; fUML; DSL; modelling language; behavioural semantics; static check

Abstract: In model-driven software engineering, the syntax of a modelling language is defined as a meta-model, and

its semantics is defined by some other formal languages. As the languages for defining syntax and semantics

comes from different technology space, maintaining the correctness and consistency of a language

specification is a challenging topic. Technologies on formal methods or sophisticated dynamic verification

have been developed to verify a language specification. While these works are valuable, they can be hard to

apply to a complex language in reality. In this paper, extended static checking and testing are used to

maintain the correctness of a language specification, and the techniques are applied to a case study that

formalises WS-BPEL to a model-based specification defined by OMG standard fUML and ALF. Several

categories of different errors are identified which can happen during semantics development, and how our

framework can simplify the checking on them by static checking and direct testing of executable models is

discussed.

1. INTRODUCTION

It is common to need to create a new Domain
Specific Language (DSL) and a set of supporting
tools. Model-driven technologies address several
aspects of the development of a DSL, for example
EMF/Xtext [3]/GMF support syntax development
and OCL allows the definition of static semantics.
Experience has showed that basing tool development
on model-driven technologies is simpler and faster
than traditional language parser/compiler or
interpreter approaches. Recently researchers have
sought ways to extend the use model-driven
technologies to definition of the behavioural
semantics of a DSL [6, 1, 8]. .

In practice, a DSL specification usually defines
its syntax and semantics in an abstract way. Tools to
support a DSL are built by implementing an
interpretation of this specification. Compared to
other means of defining DSL specification, a model-
based description has the advantage that it is both
human understandable and machine processable. By
exploiting the generation aspects of model-driven
engineering tooling implementations can be created
directly from the specification eliminating the
possibility of interpretation errors.

However, even when using a model-based
approach, the different aspects of a DSL defined
separately against independent meta-models. This
means that there is not a tool that can consider all
aspects of the DSL specification and identify, for
example, inconsistencies between them or errors in
embedded specifications. This is a known source of
errors; for example for many years the OCL
constraints embedded in the UML superstructure
specification contained more than a hundred syntax
errors [9], which were eventually removed in UML
2.4 beta version.

In this paper, a unified and formalised definition
of the Business Process Execution Language DSL is
created using the Action Language for fUML (ALF)
[5]. This specification forms a case study that is used
to identify the kinds of errors can happen while
creating a DSL definition. From the types of errors
static checks to programmatically identify errors are
being developed. The aim is to exploit the unified
description to reduce the effort needed to create
error free DSL tooling.

 The contributions of the paper are: (1)
Identification of the seven categories of common
error patterns that can appear in a DSL specification;
these patterns are introduced in section 2. It is
identified that most of them are small errors, and
simple automatic technologies can counter them. (2)

An extensible framework that performs static
analysis and testing of a DSL specification is
proposed to check these errors. The framework uses
an extended ALF language [5] to compose a DSL;
currently it could check inconsistency/syntax and
many bad practices on a DSL specification. The
framework also supports to generate an EMF based
DSL interpreter prototype, which could be used to
test logic and runtime errors.

2. ERRORS AND BAD PRACTISES

IN DSL SPECIFICATION

In this section, the context of how the errors are
identified is given. The WS-BPEL language is a
DSL aimed for web service composition. Its syntax
is defined as XML, and its semantics is defined by
natural language, but several works tried to
formalise it [4]. We tried to formalise it to a model-
based specification, which means creating a MOF
based meta-model, formalising the well-formed

rules to OCL and modelling the behavioural
semantics of an operational language. The
framework of defining the BPEL specification is
based on our previous work [6]. The meta-model,
the OCL constraints and the behaviours are all
defined as ALF programs.

The meta-model of BPEL is created by
translating the Ecore model of BPEL from Eclipse
BPEL designer project to ALF structures.

Figure 1 introduces how our framework could
specify, testing and statically check a complete DSL
specification. Firstly the BPEL meta-model is
defined as an ALF program. ALF syntax for UML
units modelling captures the meta-model, and the
ALF statements and expressions captures the
behavioural semantics. The ALF program is defined
in an Xtext-based editor, which also provides static
checkers which could report checkable errors to the
DSL designer. By testing the ALF program through
a generated EMF application, new errors could be
found, and new static checkers could be created and
integrated to the framework with minimal effort.

2.1 Build ALF executor as a code

generator

The ALF open source implementation can
directly execute ALF programs. However in our
experience, the software is not easy to use. Firstly it
does not support some necessary concepts, such as

inheritance of signal receptions and operation
overloading. Secondly the error message given by it
is not clear enough, for example, for many different
types of errors it will always report internal
reference errors. Practically we try to execute the
DSL specification by transforming the ALF based
spec to an Ecore model, and directly map the
operation body to Java code which embedded as the
Genmodel annotations. Thus EMF will generate a
Java application that has a one-to-one mapping to

DSL specification

Abstract syntax

Static semantics

Behavioural
semantics

MDE technology space

ALF with OCL

Concrete syntax

Defined by

Defined by

DSL designer

Create
Modify

Defined by

Ecore

Generate

Test

Static checkers

UML

Generate

Check

Errors and feed back

Result

Testing

Reference
implementation

Figure 1 Framework overview

the concepts defined in the specification. Some
concepts that do not have a one to one mapping are
tried to generate semantically similar code, for
example, translating ALF active class as a class
implements Runnable interface, and start an active
class become creating a thread.

By generating Ecore model with Genmodel
annotations, the model editor can be reused to create
DSL testing models. As a result, a prototype of DSL
interpreter and code editor based on EMF are
generated from the DSL specification.

2.2 Identifying errors by testing

executable DSL specification

In this process of defining BPEL, the errors met
were documented. The process of error identification
and the creation of static checkers work as below.

Firstly, while developing the ALF programs, test
cases were created and the ALF programs are tested
by testing the generated EMF application. In this
process, many types of error could happen. The code
generator could generate wrong code, or there could
be errors in the ALF program. The errors that
happened in the ALF program, in other words, the
BPEL specification was relevant to this paper. Once
such an error was identified, they were documented.
And then the source and reason of the error was
analysed. Finally, static checkers were created and
dropped to the ALF editor, so the same types of
error would be eliminated or reduced.

It was identified that these errors were easily
introduced. If there was no static checker, they
would happen again and again. In summary, 32 error
patterns are identified, and they can be categorised
as the following 7 kinds of errors. The principle of
the categorisation was based on the source and the
reason of the errors.

2.3 Errors identified in BPEL case

study

The syntax error is the most common kind of
error. It includes wrong syntax, type mismatch and
any violations on the well-formedness of the
modelling languages. Despite they are not hard to
check, due to the fact that behavioural semantics are
defined in another technology space, the tools that
can take all the kinds of errors into consideration is
not valid.

Inconsistency errors can happen between the
definitions of different aspects of a DSL. The first
type of consistency is horizontal consistency, which
can happen when the meta-model, the static
semantics and the behavioural semantics referred to

an invalid concept. Vertical inconsistency may
happen when the meta-model changed, but the
model that conforms to the meta-model does not
change. Both horizontal and vertical inconsistency
can easily happen when the DSL specification
evolves. A small rename of one class in the meta-
model can cause all the semantics models that
referred to that model become invalid.

The example in Figure 2 shows an example of

syntax and inconsistency error. The OCL invariance
called activity property, but in the meta-model it is
called activities. In the behavioural specification, the
run() operation is invoked, however in the meta-
model such an operation is undefined.

Conflicting errors can happen in static
semantics definition, where invariance on the meta-
model conflicting with each other. It can also happen
if the pre- and post-conditions of an operation is
conflicting with the static semantics. It is also
possible that the invariance of the meta-model
conflicts that leads to an unsatisfiable model, which
means there is no model which could be instantiate
that conforms to the meta-model.

Deficiency can happen when the DSL
specification lacks some certain properties. One
common category of bad practice is unused concepts
or undefined operation stubs. Another deficiency
error is signal deficiency, which could happen in the
behavioural semantics definition when the active
class and signal models are used. Consider the
example ALF code:

public active class Execution {

 public receive signal SignalStart{}

}do{

accept(SignalStart){

Figure 2 Inconsistency example

 //do something

}

}

When the class Execution is instantiated, it will wait
for other objects to send a SignalStart then it will
continue. If this signal is not sent, the active object
goes to deadlock due to lack of signal.

Extended static errors are defined as the errors
that can be checked by static analysis, but they do
not belong to the syntax. In fact, many bad code
practices and errors belong to this category. For
example:

Comparing multiple valued variable with null

if (structuedActivity.activities==null)

should be

if(strucutedActivity.activities

 ->isEmpty())

The “instanceof expression always return false”
is another example, take the same meta-model in
Figure 1, and assume that process is an instance of
Process

if (process instanceof Activity){}

the condition of the if statement will always remain
as false.

These kinds of errors are usually platform-specific to

ALF language. However, considering the action
languages for behavioural modelling share some
common design principles and even syntax are
similar. They are usually able to direct manipulating

models, have higher abstraction level and support
OCL-like syntax, the principles of static errors can
be adapted to other languages.

Platform specific errors can happen when the
developers wish to use the DSL standard as platform
independent models, and generate platform specific
models from it. For example, if the developers want
to generate a Java-based interpreter of the DSL, the
DSL models must avoid names preserved in Java. If
the model in Figure 2 is used to generate Java code,
it will override java.lang.Process class and
result compiling error.

Another example is to enforce the naming rules of
Java. Any string could be legal names in ALF,
however, this lead to compile errors or code that are
hard to understand.
 Logic errors and runtime errors can still
happen, and they are easy to identify by testing
rather than static checking.

3. STATIC ANALYSIS AND

TESTING ON DSL

SPECIFICATION

These errors identified in section 2 should be
avoided by some automatic technology, and when
developing a DSL specification, the developers
should apply automatic checking technology. We
designed a framework and which could specify a
complete DSL specification, and then perform static
analysis of the semantics specification to check
syntax error, inconsistency error and other static
errors. Logic errors are also testable by directly

execute the specification. Our framework uses the
syntax of ALF language plus adding OCL
annotations to it. The meta-model is defined as ALF
units. The OCL constraints are specified as an

Figure 3 Error checking and testing

annotation. The behavioural semantics are defined as
activities and operations. The framework of
specification and analysis is developed using Xtext.

The architecture of the static analysis is listed in
Figure 3. Different kinds of errors can be checked by
integrating relevant analysing technology. Because
the specification is defined by ALF language, errors
can naturally checked by Xtext validators.

In such a specification, abstract syntax, static
semantics and behavioural semantics are defined in a
single model-driven technical space. Unlike defining
them in different technical spaces that are hard to
check the consistency, the syntax errors and
inconsistency errors can be easily detected. The
detection of inconsistency and syntax errors become
the same problem of checking the validity of ALF
programs. By defining the grammar of ALF and
resolving the internal references, Xtext can report
syntax and inconsistency errors while editing the
ALF program.

The Xtext validator will check the errors that are
checkable in ALF domain. By using the extension
points of EMF plugin, it is possible to integrate other
types of validators. Currently the framework
supports to invoke OCL validator, other validators
are still under development.

The Xtext validator works as below: syntax
errors can appear in ALF text or OCL text. Xtext
will automatically check the errors which could be
checked by the parser. A type system is developed to
check type errors in the expressions. Separate
validator rules are defined to check well-formedness
rules, for example, an operation with a return type
must have a return statement in the entire execution
path. OCL syntax errors are checked by invoking
OCL validator in EMF. Extended static errors and
platform specific errors can be checked by the same
principle. All the static checkers require tens to
hundreds of lines of code, which are not hard to
create, but it showed that the checkers could
significantly reduce the errors in the specification.

Most logical and runtime errors are hard if not
possible to check by static analysis technologies.
However, some particular kinds of runtime errors
can be checker, for example, null pointer
dereference, impossible or redundant type cast.

4. FURTHERWORK

There are several unfinished works. There are
still some static checkers that are under research.
Conflicting errors are not directly checkable by
Xtext validation rules. One possible way to check it
is to translate the DSL spec to another analysis
domain and map the analysis result back to the users.

UMLtoCSP [2] is a tool which can check OCL
conflicts. Currently we are working on how to use
this tool to report conflict errors. Because this
process contains translations, how to back annotate
the error message produced by the analysis domain
to the definition domain remains to be researched.

Some Deficiency errors such as unused models
or empty stubs can be easily checked by our
framework. Currently our approach for checking
signal deficiency is a lightweight approach, which
only report error when one active class accepts some
signal, but there is no object that has sent these
signals. We wish to seek other ways that can check
more complex cases.

Currently the generation of DSL interpreter does
not support all the concepts defined in ALF standard,
it does not support direct use of OCL-like
expressions, the code still need some manual work
to test. It is interested to fully automate the
generation of an interpreter with no limitations.

The framework to use a unified definition to
define, check and test a DSL specification is only
tested by one case study. The behavioural semantics
is based on the imperative paradigm. It is necessary
to test whether the same technique can be applied to
declarative languages, because there is a large
number of DSLs which are declarative languages. It
is planned that to carry out another case study for
creating a model-based specification for a small
functional programming language.

5. CONCLUSION

In this paper, the correctness issue of a DSL
specification has been discussed. Seven categories of
error that can occur during the development of a
specification have been identified and introduced. It
has been demonstrated that most of these errors can
be detected using a simple static checker, making
their removal from specifications a trivial task. The
use of generating an implementation from a
specification has also been described. This has the
advantage of eliminating interpretation errors from
the process of creating DSL tooling. Finally an
extensible framework that brings together the
integration of static checks and the generation of
implementations has been outlined.

REFERENCE

[1] Lionel Briand, Clay Williams, Pierre-Alain
Muller, Franck Fleurey, and Jean-Marc Jézéquel.
Weaving Executability into Object-Oriented Meta-
languages, volume 3713 of Lecture Notes in
Computer Science, pages 264–278. Springer Berlin /
Heidelberg, 2005.

[2]Jordi Cabot, Robert Clarisó, and Daniel Riera.
Umltocsp: a tool for the formal verification of
uml/ocl models using constraint programming. In
Proceedings of the twenty-second IEEE/ACM
international conference on Automated software
engineering, ASE ’07, pages 547–548, New York,
NY, USA, 2007. ACM.

[3] S. Efftinge and M. Völter. oaw Xtext: A
framework for textual dsls. In Workshop on
Modeling Symposium at Eclipse Summit, volume 32,
2006.

[4] D. Fahland and W. Reisig. Asm-based
semantics for bpel: The negative control flow. In
Proc. 12th International Workshop on Abstract State
Machines, pages 131–151. Citeseer, 2005.

[5] Object Management Group. Action language
for foundational uml (alf) 1.0 - beta 1.
www.omg.org/spec/ALF/, 2010.

[6] Qinan Lai and Andy Carpenter. Defining and
verifying behaviour of domain specific language
with fuml. In Proceedings of the Fourth Workshop
on Behaviour Modelling - Foundations and
Applications, BM-FA ’12, pages 1:1–1:7, New York,
NY, USA, 2012. ACM.

[7] Andreas Prinz, Markus Scheidgen, and
Merete Tveit. A model-based standard for sdl. In
Emmanuel Gaudin, Elie Najm, and Rick Reed,
editors, SDL 2007: Design for Dependable Systems,
volume 4745 of Lecture Notes in Computer Science,
pages 1–18. Springer Berlin / Heidelberg, 2007.

[8] Markus Scheidgen and Joachim Fischer.
Human comprehensible and machine processable
specifications of operational semantics. In
Proceedings of the 3rd European conference on
Model driven architecture-foundations and
applications, ECMDA-FA’07, pages 157–171,
Berlin, Heidelberg, 2007. Springer-Verlag.

[9] C. Wilke and B. Demuth. Uml is still
inconsistent! how to improve ocl constraints in the
uml 2.3 superstructure. Electronic Communications
of the EASST, 44, 2011.

