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Abstract: In model-driven software engineering, the syntax of a modelling language is defined as a meta-model, and 

its semantics is defined by some other formal languages. As the languages for defining syntax and semantics 

comes from different technology space, maintaining the correctness and consistency of a language 

specification is a challenging topic. Technologies on formal methods or sophisticated dynamic verification 

have been developed to verify a language specification. While these works are valuable, they can be hard to 

apply to a complex language in reality. In this paper, extended static checking and testing are used to 

maintain the correctness of a language specification, and the techniques are applied to a case study that 

formalises WS-BPEL to a model-based specification defined by OMG standard fUML and ALF.  Several 

categories of different errors are identified which can happen during semantics development, and how our 

framework can simplify the checking on them by static checking and direct testing of executable models is 

discussed.  

1.  INTRODUCTION 

It is common to need to create a new Domain 
Specific Language (DSL) and a set of supporting 
tools. Model-driven technologies address several 
aspects of the development of a DSL, for example 
EMF/Xtext [3]/GMF support syntax development 
and OCL allows the definition of static semantics. 
Experience has showed that basing tool development 
on model-driven technologies is simpler and faster 
than traditional language parser/compiler or 
interpreter approaches. Recently researchers have 
sought ways to extend the use model-driven 
technologies to definition of the behavioural 
semantics of a DSL [6, 1, 8]. .  

In practice, a DSL specification usually defines 
its syntax and semantics in an abstract way. Tools to 
support a DSL are built by implementing an 
interpretation of this specification. Compared to 
other means of defining DSL specification, a model-
based description has the advantage that it is both 
human understandable and machine processable. By 
exploiting the generation aspects of model-driven 
engineering tooling implementations can be created 
directly from the specification eliminating the 
possibility of interpretation errors.  

However, even when using a model-based 
approach, the different aspects of a DSL defined 
separately against independent meta-models. This 
means that there is not a tool that can consider all 
aspects of the DSL specification and identify, for 
example, inconsistencies between them or errors in 
embedded specifications. This is a known source of 
errors; for example for many years the OCL 
constraints embedded in the UML superstructure 
specification contained more than a hundred syntax 
errors [9], which were eventually removed in UML 
2.4 beta version.  

In this paper, a unified and formalised definition 
of the Business Process Execution Language DSL is 
created using the Action Language for fUML (ALF) 
[5]. This specification forms a case study that is used 
to identify the kinds of errors can happen while 
creating a DSL definition. From the types of errors 
static checks to programmatically identify errors are 
being developed. The aim is to exploit the unified 
description to reduce the effort needed to create 
error free DSL tooling. 

 The contributions of the paper are: (1) 
Identification of the seven categories of common 
error patterns that can appear in a DSL specification; 
these patterns are introduced in section 2. It is 
identified that most of them are small errors, and 
simple automatic technologies can counter them. (2) 



 

An extensible framework that performs static 
analysis and testing of a DSL specification is 
proposed to check these errors. The framework uses 
an extended ALF language [5] to compose a DSL; 
currently it could check inconsistency/syntax and 
many bad practices on a DSL specification. The 
framework also supports to generate an EMF based 
DSL interpreter prototype, which could be used to 
test logic and runtime errors.  

2. ERRORS AND BAD PRACTISES 

IN DSL SPECIFICATION 

In this section, the context of how the errors are 
identified is given. The WS-BPEL language is a 
DSL aimed for web service composition. Its syntax 
is defined as XML, and its semantics is defined by 
natural language, but several works tried to 
formalise it [4]. We tried to formalise it to a model-
based specification, which means creating a MOF 
based meta-model, formalising the well-formed 

rules to OCL and modelling the behavioural 
semantics of an operational language. The 
framework of defining the BPEL specification is 
based on our previous work [6]. The meta-model, 
the OCL constraints and the behaviours are all 
defined as ALF programs.  

The meta-model of BPEL is created by 
translating the Ecore model of BPEL from Eclipse 
BPEL designer project to ALF structures.  

Figure 1 introduces how our framework could 
specify, testing and statically check a complete DSL 
specification. Firstly the BPEL meta-model is 
defined as an ALF program. ALF syntax for UML 
units modelling captures the meta-model, and the 
ALF statements and expressions captures the 
behavioural semantics. The ALF program is defined 
in an Xtext-based editor, which also provides static 
checkers which could report checkable errors to the 
DSL designer. By testing the ALF program through 
a generated EMF application, new errors could be 
found, and new static checkers could be created and 
integrated to the framework with minimal effort.  

2.1 Build ALF executor as a code 

generator 

The ALF open source implementation can 
directly execute ALF programs. However in our 
experience, the software is not easy to use. Firstly it 
does not support some necessary concepts, such as 

inheritance of signal receptions and operation 
overloading. Secondly the error message given by it 
is not clear enough, for example, for many different 
types of errors it will always report internal 
reference errors. Practically we try to execute the 
DSL specification by transforming the ALF based 
spec to an Ecore model, and directly map the 
operation body to Java code which embedded as the 
Genmodel annotations. Thus EMF will generate a 
Java application that has a one-to-one mapping to 
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the concepts defined in the specification. Some 
concepts that do not have a one to one mapping are 
tried to generate semantically similar code, for 
example, translating ALF active class as a class 
implements Runnable interface, and start an active 
class become creating a thread.  

By generating Ecore model with Genmodel 
annotations, the model editor can be reused to create 
DSL testing models. As a result, a prototype of DSL 
interpreter and code editor based on EMF are 
generated from the DSL specification.  

2.2 Identifying errors by testing 

executable DSL specification 

In this process of defining BPEL, the errors met 
were documented. The process of error identification 
and the creation of static checkers work as below. 

Firstly, while developing the ALF programs, test 
cases were created and the ALF programs are tested 
by testing the generated EMF application. In this 
process, many types of error could happen. The code 
generator could generate wrong code, or there could 
be errors in the ALF program. The errors that 
happened in the ALF program, in other words, the 
BPEL specification was relevant to this paper. Once 
such an error was identified, they were documented. 
And then the source and reason of the error was 
analysed. Finally, static checkers were created and 
dropped to the ALF editor, so the same types of 
error would be eliminated or reduced.   

It was identified that these errors were easily 
introduced. If there was no static checker, they 
would happen again and again. In summary, 32 error 
patterns are identified, and they can be categorised 
as the following 7 kinds of errors. The principle of 
the categorisation was based on the source and the 
reason of the errors. 

2.3  Errors identified in BPEL case 

study 

The syntax error is the most common kind of 
error. It includes wrong syntax, type mismatch and 
any violations on the well-formedness of the 
modelling languages. Despite they are not hard to 
check, due to the fact that behavioural semantics are 
defined in another technology space, the tools that 
can take all the kinds of errors into consideration is 
not valid.  

Inconsistency errors can happen between the 
definitions of different aspects of a DSL. The first 
type of consistency is horizontal consistency, which 
can happen when the meta-model, the static 
semantics and the behavioural semantics referred to 

an invalid concept. Vertical inconsistency may 
happen when the meta-model changed, but the 
model that conforms to the meta-model does not 
change. Both horizontal and vertical inconsistency 
can easily happen when the DSL specification 
evolves. A small rename of one class in the meta-
model can cause all the semantics models that 
referred to that model become invalid.  

The example in Figure 2 shows an example of 

syntax and inconsistency error. The OCL invariance 
called activity property, but in the meta-model it is 
called activities. In the behavioural specification, the 
run() operation is invoked, however in the meta-
model such an operation is undefined.  

Conflicting errors can happen in static 
semantics definition, where invariance on the meta-
model conflicting with each other. It can also happen 
if the pre- and post-conditions of an operation is 
conflicting with the static semantics. It is also 
possible that the invariance of the meta-model 
conflicts that leads to an unsatisfiable model, which 
means there is no model which could be instantiate 
that conforms to the meta-model.  

Deficiency can happen when the DSL 
specification lacks some certain properties. One 
common category of bad practice is unused concepts 
or undefined operation stubs. Another deficiency 
error is signal deficiency, which could happen in the 
behavioural semantics definition when the active 
class and signal models are used. Consider the 
example ALF code:  

 
public active class Execution { 

  public receive signal SignalStart{} 

}do{ 

accept(SignalStart){ 

Figure 2 Inconsistency example 



 

 //do something 

} 

} 

 

When the class Execution is instantiated, it will wait 
for other objects to send a SignalStart then it will 
continue. If this signal is not sent, the active object 
goes to deadlock due to lack of signal.  

Extended static errors are defined as the errors 
that can be checked by static analysis, but they do 
not belong to the syntax. In fact, many bad code 
practices and errors belong to this category. For 
example: 
 
Comparing multiple valued variable with null  
 
if (structuedActivity.activities==null)  

 
should be  
 

if(strucutedActivity.activities 

  ->isEmpty()) 

 
The “instanceof expression always return false” 
is another example, take the same meta-model in 
Figure 1, and assume that process is an instance of 
Process 
 
if (process instanceof Activity){} 

 
the condition of the if statement will always remain 
as false.  
 
These kinds of errors are usually platform-specific to 

ALF language. However, considering the action 
languages for behavioural modelling share some 
common design principles and even syntax are 
similar. They are usually able to direct manipulating 

models, have higher abstraction level and support 
OCL-like syntax, the principles of static errors can 
be adapted to other languages. 

Platform specific errors can happen when the 
developers wish to use the DSL standard as platform 
independent models, and generate platform specific 
models from it.  For example, if the developers want 
to generate a Java-based interpreter of the DSL, the 
DSL models must avoid names preserved in Java. If 
the model in Figure 2 is used to generate Java code, 
it will override java.lang.Process class and 
result compiling error.  

Another example is to enforce the naming rules of 
Java. Any string could be legal names in ALF, 
however, this lead to compile errors or code that are 
hard to understand.  
    Logic errors and runtime errors can still 
happen, and they are easy to identify by testing 
rather than static checking.  

3. STATIC ANALYSIS AND 

TESTING ON DSL 

SPECIFICATION 

These errors identified in section 2 should be 
avoided by some automatic technology, and when 
developing a DSL specification, the developers 
should apply automatic checking technology. We 
designed a framework and which could specify a 
complete DSL specification, and then perform static 
analysis of the semantics specification to check 
syntax error, inconsistency error and other static 
errors. Logic errors are also testable by directly 

execute the specification. Our framework uses the 
syntax of ALF language plus adding OCL 
annotations to it. The meta-model is defined as ALF 
units. The OCL constraints are specified as an 

Figure 3 Error checking and testing 



 

annotation. The behavioural semantics are defined as 
activities and operations. The framework of 
specification and analysis is developed using Xtext.  

The architecture of the static analysis is listed in 
Figure 3. Different kinds of errors can be checked by 
integrating relevant analysing technology. Because 
the specification is defined by ALF language, errors 
can naturally checked by Xtext validators.  

In such a specification, abstract syntax, static 
semantics and behavioural semantics are defined in a 
single model-driven technical space. Unlike defining 
them in different technical spaces that are hard to 
check the consistency, the syntax errors and 
inconsistency errors can be easily detected. The 
detection of inconsistency and syntax errors become 
the same problem of checking the validity of ALF 
programs. By defining the grammar of ALF and 
resolving the internal references, Xtext can report 
syntax and inconsistency errors while editing the 
ALF program.  

The Xtext validator will check the errors that are 
checkable in ALF domain. By using the extension 
points of EMF plugin, it is possible to integrate other 
types of validators. Currently the framework 
supports to invoke OCL validator, other validators 
are still under development.  

The Xtext validator works as below: syntax 
errors can appear in ALF text or OCL text. Xtext 
will automatically check the errors which could be 
checked by the parser. A type system is developed to 
check type errors in the expressions. Separate 
validator rules are defined to check well-formedness 
rules, for example, an operation with a return type 
must have a return statement in the entire execution 
path. OCL syntax errors are checked by invoking 
OCL validator in EMF. Extended static errors and 
platform specific errors can be checked by the same 
principle. All the static checkers require tens to 
hundreds of lines of code, which are not hard to 
create, but it showed that the checkers could 
significantly reduce the errors in the specification.  

Most logical and runtime errors are hard if not 
possible to check by static analysis technologies. 
However, some particular kinds of runtime errors 
can be checker, for example, null pointer 
dereference, impossible or redundant type cast.  

 

4. FURTHERWORK 

There are several unfinished works. There are 
still some static checkers that are under research. 
Conflicting errors are not directly checkable by 
Xtext validation rules. One possible way to check it 
is to translate the DSL spec to another analysis 
domain and map the analysis result back to the users. 

UMLtoCSP [2] is a tool which can check OCL 
conflicts. Currently we are working on how to use 
this tool to report conflict errors. Because this 
process contains translations, how to back annotate 
the error message produced by the analysis domain 
to the definition domain remains to be researched. 

Some Deficiency errors such as unused models 
or empty stubs can be easily checked by our 
framework. Currently our approach for checking 
signal deficiency is a lightweight approach, which 
only report error when one active class accepts some 
signal, but there is no object that has sent these 
signals. We wish to seek other ways that can check 
more complex cases. 

Currently the generation of DSL interpreter does 
not support all the concepts defined in ALF standard, 
it does not support direct use of OCL-like 
expressions, the code still need some manual work 
to test. It is interested to fully automate the 
generation of an interpreter with no limitations.  

The framework to use a unified definition to 
define, check and test a DSL specification is only 
tested by one case study. The behavioural semantics 
is based on the imperative paradigm. It is necessary 
to test whether the same technique can be applied to 
declarative languages, because there is a large 
number of DSLs which are declarative languages. It 
is planned that to carry out another case study for 
creating a model-based specification for a small 
functional programming language. 

5. CONCLUSION 

In this paper, the correctness issue of a DSL 
specification has been discussed. Seven categories of 
error that can occur during the development of a 
specification have been identified and introduced. It 
has been demonstrated that most of these errors can 
be detected using a simple static checker, making 
their removal from specifications a trivial task. The 
use of generating an implementation from a 
specification has also been described. This has the 
advantage of eliminating interpretation errors from 
the process of creating DSL tooling. Finally an 
extensible framework that brings together the 
integration of static checks and the generation of 
implementations has been outlined. 
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