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Introduction

In its simplest form a software component contains some code (that can be executed on certain platforms) and an interface that provides (the only) access to the component. The code represents the operations that the component will perform when invoked. The interface tells the component-user everything he needs to know in order to deploy the component. Components can of course be deployed in many different contexts.

Ideally, components should be black boxes, to enable users to (re)use them without needing to know the details of their inner structure. In other words, the interface of a component should provide all the information needed by its users.  Moreover, this information should be the only information they need. Consequently, the interface of a component should be the only point of access to the component. It should therefore contain all the information that users need to know about the component's operations (that is, what its code enables it to do) and its context dependencies (that is, how and where the component can be deployed). The code, on the other hand, should be completely inaccessible (and invisible), if a component is to be used as a black box. 

The specification of a component is therefore the specification of its interface. This must consist of a precise definition of the component's operations and context dependencies and nothing else. Typically, the operations and context dependencies will contain the parameters of the component.

The specification of a component is useful to both component users and component developers. For users, the specification provides a definition of its interface, viz. its operations and context dependencies. Since it is only the interface that is visible to users, its specification must be precise and complete. For developers, the specification of a component also provides an abstract definition of its internal structure. Whilst this should be invisible to users, it is useful to developers (and maintainers), not least as documentation of the component.

In this chapter, we discuss the specification of software components. We will identity all the features that should be present in an idealised component, indicate how they should be specified, and show how they are specified using current component specification techniques. 

Current Component Specification Techniques

The specifications of components used in practical software development today are mostly limited to what we will call syntac​tic specifications. This form of specification includes the specifi​ca​tions used with technologies such as Microsoft’s Component Object Model (COM) [1], the Object Management Group’s Com​mon Object Request Broker Architecture (CORBA) [2], and Sun’s JavaBeans [3]. The first two of these use different dialects of the Interface Definition Language (IDL) while the third uses the Java programming language to specify component interfaces. In this section, COM is mainly used to illustrate the concepts of syntactic specification of software components.

First, we take a closer look at the relationships between compo​nents and interfaces. A component provides the implementation of a set of named interfaces, or types, each interface being a set of named operations. Each operation has zero or more input and output parameters and a syntactic specification associates a type with each of these. Many notations also permit a return value to be associated with each operation, but for simplicity we do not dis​tinguish between return values and output parameters. In some specification techniques it is also possible to specify that a com​ponent requires some interfaces, which must be implemented by other compo​nents. The interfaces provided and required by a component are often called the incoming and outgoing interfaces of the component, respectively. 

Figure 2.1 is a UML class diagram [4] showing the con​cepts discussed above and the relationships between them. Note that instances of the classes shown on the diagram will be entities such as components and interfaces, which can themselves be instanti​ated. The model is therefore a UML metamodel, which can be instantiated to produce other models. It is worth noting that this model allows an interface to be implemented by several different components, and an operation to be part of several different interfaces. This independence between interfaces and the compo​nents that implement them is an essential feature of most compo​nent specification techniques. The possibility of an operation being part of several interfaces is necessary to allow inheritance, or subtyping, between interfaces. The model also allows parameters to be simultaneously input and output parameters.

Figure 2.1. UML metamodel of the concepts used in syntactic specification of software components.

The model presented above is intended to be a generic representation of the relationships between components, interfaces, and opera​tions. In practice, these relationships vary between specification techniques. For example, one can distinguish between object-ori​ented specifications and what might be called procedural specifi​cations. In this chapter we will only consider object-oriented specifi​cations that are used by current technologies.  This leads to no loss of generality, as procedural specification can be seen as a special case of object-oriented specification. There are subtle differences in the precise nature of the relationship between a com​ponent and its interfaces in differ​ent object-oriented specification techniques. In COM, for example, a component implements a set of classes, each of which implements a set of interfaces. The statement that a component implements a set of interfaces thus holds by association. In more traditional object-ori​ented specification techniques, a component is itself a class that has exactly one interface. The statement that a component implements a set of interfaces still holds, because this interface can include, or be a subtype of, several other interfaces.

As an example of a syntactic specification, we now consider the specification of a COM component. Below is a slight simplifica​tion of what might be the contents of an IDL file. First, two inter​faces are specified, including a total of three operations which pro​vide the functionality of a simple spell checker. Both interfaces inherit from the standard COM interface IUnknown. (All COM interfaces except IUnknown must inherit directly or indirectly from IUnknown. See [1] for more information about the particulars of COM.) All opera​tions return a value of type HRESULT, which is commonly used in COM to indicate success or failure. A component is then speci​fied (called a library in COM specifications), this implementing one COM class, which in turn implements the two interfaces pre​viously specified. This component has no outgoing interfaces. 

interface ISpellCheck : IUnknown

{

HRESULT check([in] BSTR *word, [out] bool *correct);

};

interface ICustomSpellCheck : IUnknown

{

HRESULT add([in] BSTR *word);

HRESULT remove([in] BSTR *word);

};

library SpellCheckerLib

{

coclass SpellChecker

{

[default] interface ISpellCheck;

interface ICustomSpellCheck;

};

};

Relating this specification to the model above, there is one in​stance of Component, which is associated with two instances of Inter​face. Taking a closer look at the first interface, it is associated with a single instance of Operation, which is itself associated with one instance of InParameter and two instances of OutParameter, representing the two named parameters and the return value. 

The information that can be obtained from a component specifi​cation such as the above is limited to what operations the compo​nent provides, and the number and types of their parameters. In particular, there is no information about the effect of invoking the operations, except for what might be guessed from names of operations and parameters. Thus, the primary uses of such specifications are type checking of client code and as a base for interoperability between independently developed components and applications. Different component technologies have different ways of ensuring such interoperability. For example, COM specifies the binary format of interfaces while CORBA defines a mapping from IDL to a num​ber of programming languages.

An important aspect of interface specifications is how they relate to substitution and evolution of components. Evolution can be seen as a special case of substitution where a newer version of a component is substituted for an older version. Substituting a com​ponent Y for a component X is said to be safe if all systems that work with X will also work with Y. From a syntactic viewpoint, a component can safely be replaced if the new component imple​ments at least the same interfaces as the older components, or, in traditional object-oriented terminology, if the interface of the new component is a subtype of the interface of the old component. For substitution to be safe however, there are also constraints on the way that the semantics of operations can be changed, as we shall see in the next section.

Specifying the Semantics of Components

While syntactic specifications of components are the only form of specifications in widespread use, it is widely acknowledged that semantic information about a component’s operations is necessary to use the component effectively. Examples of such information are the combinations of parameter values an operation accepts, an operation’s possible error codes, and constraints on the order in which operations are invoked. In fact, current component tech​nologies assume that the user of a component is able to make use of such semantic information. For instance, COM dictates that the error codes produced by an operation are immutable, i.e. changing these is equivalent to changing the interface. These technologies do not, however, support the specification of such information. In the example with COM, there is no way to include information about an operation’s possible error codes in the specification.

Several techniques for designing component-based systems that include semantic specifications are provided in the literature. In this section, we shall examine the specification technique pre​sented in [5], which uses UML and the Object Constraint Lan​guage (OCL [6]) to write component specifications. OCL is included in the UML specification. Another well-known method that uses the same notations is Catalysis [7]. The concepts used for specification of components in these techniques can be seen as an extension of the generic model of syntactic specification presented in the previous section. Thus, a component implements a set of interfaces that each consists of a set of operations. In addition, a set of pre-conditions and post-conditions is associated with each operation. Pre-conditions are assertion that the component assumes to be fulfilled before an operation is invoked. Post-condi​tions are assertions that the component guarantees will hold just after an operation has been invoked, provided the operation’s pre-conditions were true when it was invoked. In this form of specifi​cation, nothing is said about what happens if an operation is invoked while any of its pre-conditions are not fulfilled. Note that pre- and post-conditions is not a novel feature of component-based software development, and is used in a variety of software development techniques, such as the Vienna Development Method [8] and Design by Contract [9].

Naturally, an operation’s pre- and post-conditions will often depend on state maintained by the component. Therefore, the notion of an interface is extended to include a model of that part of a component’s state that may affect or be affected by the operations in the interface. Now, a pre-condition will in general be a predi​cate over the operation’s input parameters and this state, while a post-condition is a predicate over both input and output parameters as well as the state just before the invocation and just after. Furthermore, a set of invariants may be associated with an interface. An invariant is a predicate over the interface’s state model that will always hold. Finally, the component specification may in​clude a set of inter-interface conditions, which are predi​cates over the state models of all the component’s interfaces. 

The concepts introduced here and the relationships among them are shown on the UML class diagram in Figure 2.2. For the sake of readability, the classes Name, Type, and InOutParameter are not shown, since they have no direct relationships with the newly introduced classes. Note that this model allows the same state to be associated with several interfaces. Often, the state models of different interfaces of a component will overlap rather than be exactly the same. This relationship cannot be expressed in the model since we cannot make any assumptions about the structure of state models. Note also how each post-condition is associated with both input and output parameters and two instances of the state model, representing the state before and after an invoca​tion.

Figure 2.2. UML metamodel of the concepts used in semantic specification of software components.

In the model presented above, a partial model of the state of a component is associated with each interface, to allow the seman​tics of an interface’s operations to be specified. It is important to note that this is not intended to specify how state should be repre​sented within the component. While state models in component specifications should above all be kept simple, the actual repre​sentation used in the component’s implementation will usually be subject to efficiency considerations, depend on the programming language, and so on. It is also worth mentioning that the above model is valid for procedural as well as object-oriented specifica​tion techniques.

Before discussing the ramifications of this model any further, we now look at an example specification using the technique of [5]. Figure 2.3 is an example of an interface specification diagram. It shows the two interfaces introduced in the previous section as classes with the <<interface type>> stereotype. Thus, all the information in the syntactic interface specifications is in​cluded here. The state models of the interfaces are also shown. A state model generally takes the form of one or more classes having at least one composition relationship with the interface the state belongs to. The special stereotype <<interface type>> is used instead of the standard <<interface>> since this would not allow the state models to be associated with the interfaces in this way.

Figure 2.3. Example interface specification diagram.

The interface specification diagram is only a part of the complete interface specifications. The pre- and post-conditions that specify the semantics of the operations as well as any invariants on the state model is specified separately in OCL. Below is a specifica​tion of the three operations of the two interfaces above. There are no invariants on the state models in this example. 

context ISpellCheck:: check(in word : String, out correct : Boolean) : HRESULT

pre:

word <> “”

post:

SUCCEEDED(result) implies correct = words->includes(word)

context ICustomSpellCheck::add(in word : String) : HRESULT

pre:

word <> “”

post:

SUCCEEDED(result) implies  words = words@pre->including (word)

context ICustomSpellCheck::remove(in word : String) : HRESULT

pre:

word <> “”

post:

SUCCEEDED(result) implies words = words@pre->exluding(word)
The pre-condition of the first operation states that if it is invoked with an input parameter that is not the empty string, the post-condition will hold when the operation returns. The post-condi​tion states that if the return value indicates that the invocation was successful then the value of the output parameter is true if word was a member of the set of words and false otherwise. The speci​fications of the two last operations illustrate how post-conditions can refer to the state before the invocation using the @pre suffix. This specification technique uses the convention that if a part of an interface’s state is not mentioned in a post-condition, then that part of the state is unchanged by the operation. Thus, words = words@pre is an implicit post-condition of the first operation. All the specifications refer to an output parameter called result, which represents the return value of the operations. The function SUCCEEDED is used in COM to check whether a return value of type HRESULT indicates success or failure. 

Similarly to interface specification diagrams, component specifi​cation diagrams are used to specify which interfaces components provide and require. Figure 2.4 is an example of such a diagram, specifying a component that provides the two interfaces specified above. The component is represented by a class with stereotype <<comp spec>> to emphasize that it represents a component specification. UML also has a standard component concept, which is commonly used to represent a file that contains the implemen​tation of a set of concrete classes.

Figure 2.4. Example component specification diagram

The component specification is completed by the specification of its inter-interface constraints. The component in this example has one such constraint, specifying that the sets of words in the state models of the two interfaces must be the same. This constraint relates the operations of the separate interfaces to each other, such that invocations of add or remove affect subsequent invocations of check. The constraint is formulated in OCL below.

context SpellChecker

ISpellCheck::words = ICustomSpellCheck::words

An important property of the model presented above is that state models and operation semantics are associated with interfaces rather than with a component. This means that the semantics is part of the interface specification. Consequently, a component cannot be said to implement an interface if it implements opera​tions with the same signatures as the interface’s operations but with different semantics. It should be noted that the terminology varies in the literature on this point, as interfaces are sometimes seen as purely syntactic entities. In such cases, specifications that also include semantics are often called contracts. UML, for in​stance, defines an interface to be a class with only abstract opera​tions, which can have no state associated with it.

While the main uses of syntactic specifications are type checking and ensuring interoperability, the utility of semantic specifications is potentially much larger. The most obvious use is perhaps tool support for component developers as well as developers of com​ponent-based application. For the benefit of component develop​ers, one can imagine an automatic testing tool that verifies that all operations produce the correct post-conditions when their pre-conditions are satisfied. For this to work, the tool must be able to obtain information about a component’s current state. A component could easily be equipped with special operations for this purpose, which would not need to be included in the final release. Similarly, for application developers, one can imagine a tool that generates assertions for checking that an operation’s pre-conditions are satisfied before the operation is invoked. These assertions could either query a component about its current state, if this is possible, or maintain a state model of their own. The last technique requires that other clients do not affect the state main​tained by a component, however, since the state model must be kept synchronized with the actual state. Such assertions would typically not be included in a final release, either.

With a notion of interface specification that include semantics, the concept of substitution introduced in the previous section can now be extended to cover semantics. Clearly, if a component Y imple​ments all the (semantically specified) interfaces implemented by another component X, then Y can be safely substituted for X. This condition is not necessary, however, for substitution to be safe. What is necessary is that a client that satisfies the pre-conditions specified for X will always satisfy the pre-conditions specified for Y, and that the client can rely on the post-conditions ensured by X also to be ensured by Y. This means that Y must implement operations with the same signatures as the operations of X, and with pre- and post-conditions that ensures the condition above. More specifically, if X implements an operation O, where pre(O) is the conjunction of its pre-conditions and post(O) the conjunction of its post-conditions, Y must implement an operation O’ with the same signature such that pre(O’) implies pre(O) and post(O) im​plies post(O’). In other words, the interfaces implemented by Y can have weaker pre-conditions and stronger post-conditions than the interfaces implemented by X. It follows from this that the state models used for specifying the interfaces of X and Y need not be identical. This condition for semantically safe substitution of components is an application of Liskov’s principle of substitution [10]. 

Note that the above discussion is only valid for sequential systems. For multi-threaded components or components that are invoked by concurrently active clients, the concept of safe substitution must be extended as discussed in [11]. Finally, it must be noted that a client may still malfunction after a component substitution, even if the components fulfill semantic specifications that satisfy the above condition. This can happen, for instance, if the designers of the client and the new component have made conflicting assumptions about the overall archi​tecture of the system. The term “architectural mismatch” has been coined to describe such situations [12].
The component specification diagram in Figure 2.4 shows how we can indicate which interfaces are offered by a component. In this example, we indicated that the spell checker offered the interfaces ISpellCheck and ICustomSpellCheck and used the constraint

ISpellCheck::words = ICustomSpellCheck::words

to specify that the interfaces act upon the same information model. We could, however, extend such diagrams to indicate the interfaces on which a component depends. This is illustrated in Figure 2.5.

Figure 2.5. Component specification showing an interface dependency.

We can also specify realization contracts using collaboration interaction diagrams. For example, in Figure 2.6 we state that whenever the operation op1 is called, a component supporting this operation must in invoke the operation op2 in some other component.

Figure 2.6. Collaboration interaction diagrams.

Component specification diagrams and collaboration interaction diagrams may therefore be used to define behavioural dependencies.

Specifying Extra-Functional Properties of Components

The specification of extra-functional properties of software components has recently become a subject of interest, mainly within the software architecture community. In [13], it is argued that the specification of architectural components is not properly addressed by conventional software doctrine. Architectural components are components of greater complexity than algorithms and data structures. Software components, as defined above, generally belong to this class. Conventional software doctrine is the view that software specifications must be sufficient and complete (say everything a user needs to know and is permitted to rely on about how to use the software), static (written once and frozen), and homogeneous (written in a single notation).

To use an architectural component successfully, information about more things than its functionality is required. This includes structural properties, governing how a component can be composed with other components; extra-functional properties, such as performance, capacity, and environmental assumptions; and family properties, specifying relations among similar or related components. It is not realistic to expect specifications to be complete with respect to all such properties, due to the great effort that would require, even if the developer of a component were able to anticipate all aspects of the component its users might care about. Often, this is even unrealistic in itself. Since we cannot expect software components to be delivered with specifications that are sufficient and complete, and since developers are likely to discover new kinds of dependencies as they attempt to use independently developed components together, specifications should be extensible. Specifications should also be heterogeneous, since the diversity of properties that might be of interest is unlikely to be suitably captured by a single notation.

The concept of credentials is proposed in [13] as a basis for specifications that satisfy the requirements outlined above. A credential is a triple <Attribute, Value, Credibility>, where Attribute is a description of a property of a component, Value a measure of that property, and Credibility a description of how the measure has been obtained. A specification technique based on credentials must include a set of registered attributes, along with notations for specifying their value and credibility, and provisions for adding new attributes. A technique could specify some attributes as required and others as optional. The concept has been partially implemented in the architecture description language UniCon [14], which allows an extendable list of <Attribute, Value> pairs to be associated with a component. The self-describing components of Microsoft’s new .NET platform [15] includes a concept of attributes in which a component developer can associate attribute values with a component and define new attributes by sub-classing an existing attribute class. Attributes are part of a component’s metadata, which can be programmatically inspected, and is therefore suitable for use with automated development tools.

The concept of credentials has been incorporated in an approach to building systems from pre-existing components called Ensemble [16]. This approach focuses on the decisions that designers have to make, in particular when faced with a choice between competing technologies, competing products within a technology, or competing components within a product. In Ensemble, a set of credentials may be associated with a single technology, product, or component, or with a group of such elements. In addition, a variation of credentials is introduced to handle measures of properties that are needed but have not yet been obtained. These are called postulates and can be describes as credentials where the credibility is replaced by a plan for obtaining the measure. The credential triple is thus extended with a flag isPostulate.

Returning our focus to the specification of single components, we now extend the ideas of Ensemble to allow a set of credentials to be associated with a component, an interface, or an operation. A UML metamodel with the concepts of syntactic specification augmented with credentials is shown in Figure 2.7. The class Name and the subclasses of Parameter have been omitted for brevity. Note that the concept of credentials is complementary to the specification of a component’s functionality and completely orthogonal to the concepts introduced for semantic specifications. Since the specification of extra-functional properties of software components is still an open area of research, it would probably be premature to proclaim this as a generic model.
Figure 2.7. UML metamodel of concepts used to specify extra-functional properties of software components.

Since the extra-functional properties that may be included in a component specification can be of very different natures, it is not possible to formulate a general concept of safe substitution for components that includes changes of such properties. A set of extra-functional properties, which can all be expressed as cost specifications, is studied in [17] were it is shown that, depending on the chosen property, weakening, strengthening, or equivalence is required for substitution to be safe
Summary

A component has two parts: an interface and some code. The interface is the only point of access to the component, and should ideally contain all the information that users need to know about the component's operations, i.e. what it does, and how and where the component can be deployed, i.e. its context dependencies. The code, on the other hand, should be completely inaccessible (and invisible). The specification of a component therefore must consist of a precise definition of the component's operations and context dependencies. In current practice, component specification techniques specify components only syntactically. The use of UML and OCL to specify components represents a step towards semantic specifications. Specification of extra-functional properties of components is still an open area of research, and it is uncertain what impact it will have on the future of software component specification.
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