
Implementing Superposition in iProver
(System Description)

André Duarte and Konstantin Korovin

The University of Manchester

{andre.duarte,konstantin.korovin}@manchester.ac.uk

Abstract iProver is a saturation theorem prover for �rst-order logic with equal-

ity, which is originally based on an instantiation calculus Inst-Gen. In this paper

we describe an extension of iProver with the superposition calculus. We have

developed a �exible simpli�cation setup that subsumes and generalises common

architectures such as DISCOUNT or Otter. This also includes the concept of

“immediate simpli�cation”, wherein newly derived clauses are more aggressively

simpli�ed among themselves, and the concept of “light normalisation”, wherein

ground unit equations are stored in an interreduced TRS which is then used to

simplify new clauses. We have also added support for associative-commutative

theories (AC), namely by deletion of AC-joinable clauses, semantic detection of

AC axioms, and preprocessing normalisation.

iProver
1

[11] is an automated theorem prover for �rst-order logic. It is a saturation

prover, and is based primarily on the Inst-Gen calculus [8], but also implements resolu-

tion and supports running them in combination in an abstraction-re�nement frame-

work [10, 13]. In this work we detail how iProver was extended with support for the

superposition calculus.

Currently, iProver deals with equality axiomatically, which can be ine�cient for

problems heavy on equality. At the same time, the superposition calculus is a set of

complete inference rules specialised for �rst-order logic with equality. It complements

the instantiation calculus since it is e�ective on problems where instantiation struggles,

and vice-versa. We show that running the two calculi in combination yields better

results than either plain instantiation or plain superposition.

Rules in a calculus can be classi�ed as “generating”, if they derive new clauses,

or “simplifying”, if some premise gets deleted. While generating rules are the ones

necessary for completeness of a calculus, simpli�cation rules are crucial for practical

performance. Intuitively, simpli�cation rules are bene�cial to taming the growth of

the search space as more clauses get generated. However, the computation of those

simpli�cations itself takes time, so being too eager in applying them will also grind

the prover to a halt. It is an open problem, what the optimal strategy to balance these

con�icting requirements is, and although there is a huge amount of �exibility in how

to perform simpli�cations (see e.g., [22]), most provers are rather restrictive about this.

In iProver we developed a �exible simpli�cation setup that subsumes and generalises

most common architectures.

1

Available at http://www.cs.man.ac.uk/~korovink/iprover.

http://www.cs.man.ac.uk/~korovink/iprover

Finally, we have also implemented specialised techniques to deal with associative-

commutative (AC) theories. These are theories of great interest which arise in several

domains [21], and are traditionally problematic for theorem provers to deal with, due

to combinatorial explosion and the non-orientability of the AC axioms.

The paper is structured as follows: �rst, we give a quick overview of the architec-

ture of iProver. Then, we describe the implementation of superposition in iProver, its

modi�cations, the simpli�cation architecture and given clause loop, and AC reasoning

rules. For a more in-depth description of basic features of iProver, see [10].

1 Overview

iProver is based on the Inst-Gen calculus, which is based on the following idea. We

approximate the �rst-order problem to a propositional problem, and submit it to a

black box SAT solver. It either �nds an inconsistency, which is also an inconsistency at

the �rst-order level, or else it returns a model, which guides the instantiation of new

clauses whose abstraction witnesses some inconsistency at the ground level. If no such

instantiation exists, then the problem is satis�able.

The SAT solver is also used to implement “global” simpli�cation rules (in the sense

that they involve reasoning with the clause set which is shared between di�erent

calculi), such as global propositional subsumption [10]. In a nutshell, we submit ground

abstractions of clauses in S to a set Sgr . If the SAT solver �nds that Sgr propositionally

implies Dγ, with D a strict subset of C and γ an injective substitution of variables to

fresh constants, then we can replace Cθ, in S, by D.

Glob. prop. subs.

��Cθ

D
,

where D (C
and C ∈ S, S |= Sgr , Sgr |= Dγ

(1)

As mentioned before, iProver can also run other calculi. This is bene�cial because

(i) some problems are solved easily by one strategy and not by others, and (ii) clauses

derived in e.g. resolution can be passed to the instantiation solver to participate in

simpli�cations. For example, clauses derived in all calculi are submitted to a shared

global propositional subsumption set, which is in turn used by all calculi to simplify its

clauses.

Schematically, the high-level architecture of iProver is summarised in Figure 1.

We can view it as a modular architecture where each calculus (Inst-Gen, resolution,

superposition) runs its own saturation loop, and can (i) query external SAT and SMT

solvers, and (ii) submit clauses to, and retrieve clauses from, the ‘Exchange’ module.

The instantiation and resolution modules are discussed in [10]. Here we will focus on

the superposition calculus.

2 Extension with superposition

The superposition inference system consists of the following rules [16]:
2

Superposition

l ≈ r ∨ C t[s] ≈̇ u ∨D
(t[s 7→ r] ≈̇ u ∨ C ∨D)θ

(2)

2

‘≈̇’ means ‘≈’ or ‘ 6≈’; also rules are to be read modulo �ipping the equalities.

2

Input clauses

Preprocessing

Instantiation Resolution Superposition

Exchange

SAT solver SMT solver

Figure 1: Architecture of iProver.

where θ = mgu(l, s), lθ � rθ, tθ � uθ, and s not a variable,

Eq. Resolution

l 6≈ r ∨ C
Cθ

where θ = mgu(l, r), (3)

Eq. Factoring

l ≈ r ∨ l′ ≈ r′ ∨ C
(l ≈ r ∨ r 6≈ r′ ∨ C)θ

where θ = mgu(l, l′),

lθ � rθ and rθ � r′θ.

(4)

We assume that≺ is a simpli�cation ordering. Non-equality predicatesP (t) are encoded

as P (t) ≈ >. The calculus can easily be generalised to the many-sorted case, which

iProver uses even in untyped problems, since it can perform subtype inference during

preprocessing. Superposition is sound and refutationally complete for �rst-order logic

with equality (see [3, 16]) and implemented in a number of state-of-the-art theorem

provers: Vampire [12], E [20] and SPASS [23]. Currently, iProver uses non-perfect

discrimination trees to �nd uni�cation candidates e�ciently [9, 17]. For the literal

selection, to ensure completeness, we must select either a negative literal, or all maximal

literals. In iProver we use a variant of the Knuth-Bendix ordering which prioritises

non-equational literals.

Simultaneous superposition In (2), by t[s] and t[s 7→ r] we can mean resp. “a

distinguished occurrence of s as a subterm of t” and “replacing that subterm at that

position by r. We call the variant simultaneous superposition where we mean instead

“replacing all occurrences of s in t by r”. This variant is still refutationally complete

[4]. In cases where there are several occurrences of the same term, as in f(s, s, . . . , s︸ ︷︷ ︸
n times

),

this avoids producing 2n − 1 intermediate clauses with f(r, s, . . . , s), f(s, r, . . . , s),

f(r, r, . . . , s), etc., instead producing only f(r, r, r, . . . , r). In iProver, we implement

this variant of superposition.

3

2.1 Simpli�cations

Apart from the generating inferences, necessary for completeness, we can add sim-
pli�cation inferences. In our implementation, we use the following rules: tautology

deletion, syntactic equality resolution, subsumption, subset subsumption, subsumption

resolution, demodulation and global subsumption [10, 12, 18, 23].

Light normalisation In addition, we introduce the following rule:

Light Normalisation

R �
�C[l]

C[l 7→ r]
, where l→ r ∈ R (5)

where R is a set of interreduced wrt. (5) oriented rewrite rules. It can be seen as

a restricted case of the demodulation rule, but it is advantageous to formulate this

separately because it may be implemented much more e�ciently than demodulation,

by simply looking up terms in a hashtable, rather than having to do matching with

variable instantiations.

A light normalisation index consists of (i) a hashtable that indexes rewrite rules inR
by their left-hand sides for forward light normalisations and (ii) a map of all subterms

in R for keeping R interreduced. When we derive a unit equality, we �rst normalise it

wrt. R by recursively replacing each subterm by its normal form wrt. R. Then, if the

simpli�ed equality is orientable (wrt. ≺) we use it to normalise rules in R add it to R.

If there is a con�ict between two rules t→ s and t→ u where t � s � u, we keep the

rules t→ u and s→ u. If s and u are incomparable wrt. � we keep one of the rules in

R. Since R is only used for simpli�cations this choice does not a�ect the completeness.

In general, we can restrict which orientable equations we add to R (e.g. only ground

ones, or small in size).

2.2 Given clause algorithm

In a standard given clause loop, the clause set is split into an active set, where inferences

among the clauses have been performed, and a passive set, of clauses waiting to

participate in inferences. Clauses are initially added to the passive, then in each iteration

one given clause is picked from the passive set, added to the active set, and all inferences

between given and active are performed. Newly derived clauses are pushed into the

passive. The loop �nishes when all clauses have been moved to the active set, meaning

the initial set is satis�able, or when a contradiction is derived.

Immediate simpli�cation set Next, we introduce the idea of immediate simpli�ca-
tion. The intuition is as follows. Clauses that are derived in each loop are “related” to

each other. It may be bene�cial to keep the set of immediate conclusions inter-simpli�ed.

Also, throughout the execution of the program the set of generated clauses in each

loop remains small compared to the set of passive or active clauses. Therefore, we can

get away with applying more expensive rules that we do not necessarily want to apply

on the set of all clauses (e.g. only “light” simpli�cations between newly derived clauses

4

and passive clauses, but more expensive “full” simpli�cations among newly derived

clauses). Finally, during this process, it is possible that the given clause itself becomes

redundant (e.g. subsumed by one of its children). If this happens, we can add only the

clauses responsible for making it redundant to the passive set, then remove the given

clause from the active set, and throw away the rest of the iteration’s newly generated

clauses, abort the rest of the iteration, and proceed to the next given clause. In some

problems, a signi�cant number of iterations may be aborted, which means that fewer

new clauses are added to the passive queue, and that we avoid the work of computing

those inferences. This can be seen as a variant of orphan elimination [18]. Even when

the given clause is not eliminated it is often bene�cial to extensively inter-simplify

immediate descendants of the given clause.

Simpli�cation setup How all these simpli�cations are performed can greatly impact

the performance of the solver, so care is needed, and tuning this part of the solver

can pay o� signi�cantly. There is a signi�cant amount of choice in how to perform

simpli�cations. We can choose which simpli�cations to perform, and at what times,

and with respect to which clauses. Additionally, some of these simpli�cations require

auxiliary data structures (here referred to generally as “indices”) to be done e�ciently,

and some indices support several simpli�cation rules. Therefore we also need to choose

which clauses to add to which indices at which stages.

For example, Otter-style loops [15] perform simpli�cations on clauses before adding

them to the passive set. The problem with this is that the passive set is often orders of

magnitude larger than the active set, therefore performance will degrade signi�cantly

as this set grows, and the system will spend most of its time performing simpli�cations

on clauses that may not even end up being used. On the other hand, DISCOUNT-style

loops [5] perform simpli�cations only with clauses that have been added to the active

set. This has the bene�t of reducing the time spent in simpli�cations, at the cost of

potentially missing many valuable simpli�cations wrt. passive clauses. It is not clear

where the “sweet spot” is, in terms of these setups.

It is possible, for example, to choose to apply only “cheap” simpli�cations to the full

active + passive set (e.g. subset subsumption, and light normalisation), and use more

expensive ones only on the small active set (e.g. full subsumption and demodulation). In

Listing 1.1 we describe the ‘iProver-Sup’ given-clause saturation loop for superposition.

A simpli�cation set consists of a collection of indices, each of which supports one or

more simpli�cation rules. In our given clause loop we have four such sets: Spassive,

to which we add the clauses added to the passive set, Sactive, for the clauses in the

active set, Simmed for newly derived clauses (this set is cleared at the end of every

given-clause iteration, and the non-redundant clauses added to the passive queue), and

Sinput for preprocessing input clauses. Each set supports the following operations: add,

which adds a clause to all indices in a set S, and simplify, which simpli�es via some

rules R wrt. a set S. These are called at several points in the loop (see Listing 1.1),

and the user can con�gure which indices/rules are involved in each operation. When

simplifying, some rules forward simplify the clause wrt. the existing set, and others

backward simplify the clauses in the set wrt. the new clause.

5

Spassive SubsetSubsumption, PropSubs
Sactive Subsumption, LightNorm, FwDemod, BwDemod
Simmed SubsetSubsumption, Subsumption, LightNorm, FwDemod, BwDemod
Sinput SubsetSubsumption, Subsumption, LightNorm, FwDemod, BwDemod

Rpassive TrivRules, ACJoinability, FwLightNormDemod, FwSubsumption
Ractive TrivRules, FwPropSubs, FwLightNormDemod, FwSubsumption,

FwSubsumptionRes, BwDemod
Rimmed TrivRules, FwLightNormDemod, FwSubsumption, FwSubsumptionRes,

BwDemod, BwSubsumption
Rinput TrivRules, FwLightNormDemod, FwSubsumption, FwSubsumptionRes,

BwDemod, BwSubsumption, BwSubsumptionRes

Table 1: Default simpli�cation options

The simpli�cation setup is speci�ed by the rules to apply at each stage (Rx). and

the indices to which to add at each stage (Sx). These can be speci�ed by the user via

command-line options.Sx are lists of indices from {Subsumption, SubSetSubsumption,
FwDemod, BwDemod, LightNorm, PropSubsSet}. Rx are lists of rules from {EqResSimp,
TautologyElim, EqTautologyElim, TrivRules, FwPropSubs, FwSubsumption, FwSub
sumptionStrict, FwSubsumptionRes, FwDemod, FwLightNorm, FwLightNormDemodLoop,
ACJoinability, BwSubsumption, BwSubsumptionRes, BwDemod}. Their usage is docu-

mented in the command-line help. The default options are presented in Table 1.

Currently iProver uses non-perfect discrimination trees for implementing backward

and forward demodulation [9, 17], feature vector indices for subsumption [19], tries

for subset subsumption [9], and MiniSat [7] for global subsumption.

Generally, when during immediate simpli�cation a parent clause of a newly derived

clause is made redundant, we can remove all the children of that clause from the

immediate set (and thus avoid adding them to the passive queues), except for the ones

which caused it to be redundant. Currently, we restrict this feature to the given clause

rather than to all the parent clauses, therefore, this simpli�es to checking whether the

given clause is made redundant in Simmed, and if so abort the loop, add only the clauses

that made it redundant to the passive, and remove the given clause.

2.3 AC reasoning

If a problem contains associativity and commutativity axioms,

f(x, f(y, z)) = f(f(x, y), z) , f(x, y) = f(y, x) , (6)

then f is said to be AC.

AC axioms are particularly problematic in theorem proving, because they are non-

orientable, which means they can generate permutations of arguments of AC functions.

This leads to combinatorial explosion in the number of clauses, In particular, they will

combine with each other to produce an exponential number of instances.

6

Listing 1.1: iProver-Sup given-clause loop algorithm

Sinput = ∅
for c in input_clauses:

simplify(c wrt Sinput via Rinput)
add(c to Sinput)

add_to_passive_queue(Sinput)

Sactive = Spassive = ∅
loop:

Simmed = ∅
given = pop_from_passive_queue ()
simplify(given wrt Sactive ∪ Spassive via Ractive)
add_to_active_set(given)
add(given to Sactive)
add(given to Simmed)
for c in generating inferences between given and active:

simplify(c wrt Simmed via Rimmed)
if given was eliminated in Simmed by clauses U :

add(U to Spassive)
remove(given from Sactive)
continue

simplify(c wrt Sactive ∪ Spassive via Rpassive)
add(c to Simmed)

add_to_passive_queue(Simmed)
add(Simmed to Spassive)

AC problems are ubiquitous and appear in a variety of domains [21]. Although

theoretical developments behind AC reasoning have a long history, AC support in most

theorem provers is limited due to implementation complexity and is mainly restricted

to unit equality problems. We extended some of the techniques to be applicable to the

general clausal case, see Theorem 1 below, and implemented them in iProver.

AC preprocessing During preprocessing we can transform the input problem into

any equisatis�able form. We can normalise AC terms, by e.g. collecting nested AC

subterms into a �at list, sorting wrt. some total extension of the term ordering, and

making them right-associative.

Deletion of joinable equations A rewrite system is a set of rules l→ r, such that, if

l→ r, then for any substitution σ, lσ→ rσ, and for any term u, u[l]→ u[l 7→ r]. By

abuse of notation we can also use unorientable equalities l↔r, in which case they stand

for the set of its orientable instances, {lσ→rσ | lσ � rσ}∪{rσ→ lσ | rσ � lσ}. Two

terms s and t are joinable wrt. a rewrite system R (written s ↓R t) if s
?→ c

?← t, where

‘→’ denotes a rewrite step with a rule in R and ‘
?→’ its re�exive-transitive closure. Two

terms are ground joinable (s ⇓R t) if all its ground instances are joinable. Two terms are

7

strongly ground joinable (written s ⇓.R t) if, for all s′ = sσ, t′ = tσ ground instances

of s, t resp., with s′ � t′, either s′ is t′ or else s′
l→r∈R−−−−−→ u′ ↓R t′ where either l ≺ s′

or l is s′ but not u′ � t′ (see [1, 14]).

Theorem 1. If s ⇓.R t, then s≈ t ∨C is redundant wrt. R. If s ⇓R t then s 6≈ t ∨C is
redundant wrt. R ∪ {C}.

Theorem 1 was shown in the context of unit equality reasoning in [1]; we extended

this theorem to general clauses and provided a di�erent proof [6] (see Appendix).

This abstract theorem can be used for AC reasoning, provided we have a criterion

to test l ⇓. r. We use the following criterion [1]. Let RAC be

f(x, y)↔ f(y, x) , (7a)

f(f(x, y), z)→ f(x, f(y, z)) , (7b)

f(x, f(y, z))↔ f(y, f(x, z)) , (7c)

Unless l ≈̇ r is an instance of RAC or can be simpli�ed by an equation in RAC, l =AC r
implies l ⇓.RAC

r, which means we can use Theorem 1 to simplify/delete clauses wrt.

RAC. This is a cheap test for strong ground joinability to apply in practice, since in order

to check whether s =AC t we can simply treat nested applications of f as a �at-list, and

then sort wrt. some total order on terms (see above discussion on AC normalisation).

Semantic detection of axioms Some problems are AC even though the input does

not contain the axioms explicitly. We say that a problem S is AC if S |= AC. The usual

syntactic detection checks if AC ∈ S. But we wish also to detect AC problems even

when this is not the case.

During preprocessing, we query an SMT solver to �nd out whether S |= AC. Since

SMT solvers only accept ground problems, we need to use a sound approximation of

the entailment relation. We do this using an injective substitution mapping variables

to fresh constants similar as it is done for global subsumption [10]. This is a sound

approximation, since φ(c̄) |= ψ(c̄) ⇒ ∀xφ(x̄) |= ∀xψ(x̄). In order to make SMT reas-

oning more e�ceint we can further restric reasoning to fast rules like unit propagation

or place a limit on the number of backtracks. Apart from this, we also check if the AC

axioms (6) get produced at some point during saturation, among binary symbols of

sort α× α→ α.

3 Implementation and experimental results

We integrated the simultaneous superposition calculus, with the iProver-Sup saturation

loop, into iProver and evaluated it over 15 168 �rst-order problems in TPTP-v7.2.0.

The superposition loop can solve 7375 (49%), the instantiation loop (on the previous

version of iProver) can solve 7884 (52%), and their combination can solve 8708 (57%).

We can see that the combination with superposition and the iProver-Sup simpli�cation

setup improved the performance of iProver over the whole TPTP library.

8

Among problems that were solved by superposition, (excluding trivial problems

solved by preprocessing), immediate simpli�cation was used in 71.7 % of problems

and light normalisation was used in 64.5 % of problems. AC axioms were detected in

1903 problems.

References

[1] J. Avenhaus, T. Hillenbrand and B. Löchner. “On using ground joinable equations

in equational theorem proving”. In: J. Symb. Comput. 36.1-2 (2003), pp. 217–233.

doi: 10.1016/S0747-7171(03)00024-5 (cit. on p. 8).

[2] L. Bachmair and H. Ganzinger. “Resolution Theorem Proving”. In: Handbook
of Automated Reasoning (in 2 volumes). 2001, pp. 19–99. doi: 10.1016/b978-
044450813-3/50004-7 (cit. on p. 11).

[3] L. Bachmair and H. Ganzinger. “Rewrite-Based Equational Theorem Proving

with Selection and Simpli�cation”. In: J. Log. Comput. 4.3 (1994), pp. 217–247.

doi: 10.1093/logcom/4.3.217 (cit. on p. 3).

[4] D. Benanav. “Simultaneous Paramodulation”. In: 10th International Conference
on Automated Deduction, Kaiserslautern, FRG, July 24-27, 1990, Proceedings. 1990,

pp. 442–455 (cit. on p. 3).

[5] J. Denzinger, M. Kronenburg and S. Schulz. “DISCOUNT — A Distributed and

Learning Equational Prover”. In: Journal of Automated Reasoning 18.2 (Apr. 1997),

pp. 189–198. doi: 10.1023/A:1005879229581 (cit. on p. 5).

[6] A. Duarte and K. Korovin. “AC Reasoning Revisited”. to appear. 2020 (cit. on

p. 8).

[7] N. Eén and N. Sörensson. “An Extensible SAT-solver”. In: Theory and Applications
of Satis�ability Testing, 6th International Conference, SAT 2003. Santa Margherita
Ligure, Italy, May 5-8, 2003 Selected Revised Papers. 2003, pp. 502–518. doi: 10.
1007/978-3-540-24605-3_37 (cit. on p. 6).

[8] H. Ganzinger and K. Korovin. “New Directions in Instantiation-Based Theorem

Proving”. In: Proc. 18th IEEE Symposium on Logic in Computer Science,(LICS’03).
IEEE Computer Society Press, 2003, pp. 55–64 (cit. on p. 1).

[9] P. Graf. Term indexing. Lecture notes in computer science ; Lecture notes in

arti�cial intelligence 1053. Berlin ; New York: Springer, 1995. 284 pp. isbn: 978-3-

540-61040-3 (cit. on pp. 3, 6).

[10] K. Korovin. “Inst-Gen — A Modular Approach to Instantiation-Based Automated

Reasoning”. In: Programming Logics. Ed. by A. Voronkov and C. Weidenbach.

Vol. 7797. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 239–270 (cit.

on pp. 1, 2, 4, 8).

[11] K. Korovin. “iProver – An Instantiation-Based Theorem Prover for First-Order

Logic (System Description)”. In: Proceedings of the 4th International Joint Confer-
ence on Automated Reasoning, (IJCAR 2008). Ed. by A. Armando, P. Baumgartner

and G. Dowek. Vol. 5195. Lecture Notes in Computer Science. Springer, 2008,

pp. 292–298 (cit. on p. 1).

9

https://doi.org/10.1016/S0747-7171(03)00024-5
https://doi.org/10.1016/b978-044450813-3/50004-7
https://doi.org/10.1016/b978-044450813-3/50004-7
https://doi.org/10.1093/logcom/4.3.217
https://doi.org/10.1023/A:1005879229581
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/978-3-540-24605-3_37

[12] L. Kovács and A. Voronkov. “First-Order Theorem Proving and Vampire”. In:

Proceedings of the 25th International Conference on Computer Aided Veri�cation.

Ed. by N. Sharygina and H. Veith. Lecture Notes in Arti�cial Intelligence 8044.

Springer-Verlag, 2013, pp. 1–35 (cit. on pp. 3, 4).

[13] J. C. López-Hernández and K. Korovin. “An Abstraction-Re�nement Framework

for Reasoning with Large Theories”. In: Automated Reasoning - 9th International
Joint Conference, IJCAR 2018, Proceedings. Ed. by D. Galmiche, S. Schulz and

R. Sebastiani. Vol. 10900. Lecture Notes in Computer Science. Springer, 2018,

pp. 663–679. doi: 10.1007/978-3-319-94205-6_43 (cit. on p. 1).

[14] U. Martin and T. Nipkow. “Ordered Rewriting and Con�uence”. In: 10th Interna-
tional Conference on Automated Deduction, Kaiserslautern, FRG, July 24-27, 1990,
Proceedings. Ed. by M. E. Stickel. Vol. 449. Lecture Notes in Computer Science.

Springer, 1990, pp. 366–380. doi: 10.1007/3-540-52885-7_100 (cit. on p. 8).

[15] W. McCune. “OTTER 3.3 Reference Manual”. In: CoRR cs.SC/0310056 (2003).

arXiv: cs.SC/0310056 (cit. on p. 5).

[16] R. Nieuwenhuis and A. Rubio. “Paramodulation-Based Theorem Proving”. In:

Handbook of Automated Reasoning (in 2 volumes). Ed. by J. A. Robinson and A.

Voronkov. Elsevier and MIT Press, 2001, pp. 371–443. isbn: 0-444-50813-9 (cit. on

pp. 2, 3).

[17] J. A. Robinson and A. Voronkov, eds. Handbook of Automated Reasoning (in 2
volumes). Elsevier and MIT Press, 2001. isbn: 0-444-50813-9 (cit. on pp. 3, 6).

[18] S. Schulz. “E — A Brainiac Theorem Prover”. In: Journal of AI Communications
15.2/3 (2002), pp. 111–126 (cit. on pp. 4, 5).

[19] S. Schulz. “Simple and E�cient Clause Subsumption with Feature Vector Index-

ing”. In: Automated Reasoning and Mathematics - Essays in Memory of William W.
McCune. Ed. by M. P. Bonacina and M. E. Stickel. Vol. 7788. Lecture Notes in Com-

puter Science. Springer, 2013, pp. 45–67. doi: 10.1007/978-3-642-36675-8_3
(cit. on p. 6).

[20] S. Schulz. “System Description: E 1.8”. In: Proc. of the 19th LPAR, Stellenbosch.

Ed. by K. McMillan, A. Middeldorp and A. Voronkov. Vol. 8312. LNCS. Springer,

2013 (cit. on p. 3).

[21] G. Sutcli�e. “The TPTP Problem Library and Associated Infrastructure. From CNF

to TH0, TPTP v6.4.0”. In: Journal of Automated Reasoning 59.4 (2017), pp. 483–502

(cit. on pp. 2, 7).

[22] U. Waldmann, S. Tourret, S. Robillard and J. Blanchette. “A Comprehensive

Framework forSaturation Theorem Proving”. In: IJCAR 2020. Ed. by N. Peltier

and V. Sofronie-Stokkermans. Vol. this volume. Lecture Notes in Computer

Science. Springer, 2020 (cit. on p. 1).

[23] C. Weidenbach, R. A. Schmidt, T. Hillenbrand, R. Rusev and D. Topic. “System

Description: SpassVersion 3.0”. In: Automated Deduction - CADE-21, 21st Interna-
tional Conference on Automated Deduction, Bremen, Germany, July 17-20, 2007,
Proceedings. Ed. by F. Pfenning. Vol. 4603. Lecture Notes in Computer Science.

Springer, 2007, pp. 514–520 (cit. on pp. 3, 4).

10

https://doi.org/10.1007/978-3-319-94205-6_43
https://doi.org/10.1007/3-540-52885-7_100
https://arxiv.org/abs/cs.SC/0310056
https://doi.org/10.1007/978-3-642-36675-8_3

Appendix A Proof of Theorem 1

Preliminaries

Consider a function signature Σ and a countable set of variables V . We assume the

signature Σ contains an in�nite number of fresh constant symbols. The set of all terms

over a set of variables X , will be denoted T (Σ,X), the set of all ground terms T (Σ).

An expression is either a term, a literal, a clause, or a list of thereof.

A substitution is a mapping from variables to terms which is the identity on all but

�nitely many variables. A ground substitution is a substitution whose codomain are

ground terms. A substitution σ is grounding for an expression e if eσ is ground. The

set of all grounding substitutions for e will be denoted by GSubs(e). The set of ground

instances of an expression e is de�ned as GInsts(e) = {eσ | σ ∈ GSubs(e)}.
We write s[t] if t is a subterm of s. We write s[t 7→ t′] to denote the term s with

that distinguished occurrence of t replaced by t′.
A relation ‘→’ over terms is a rewrite relation if (i) t → s ⇒ tσ → sσ and (ii)

t→ s⇒ u[t]→ u[t 7→ s]. A transitive and re�exive closure of→ will be denoted by

∗→.

Two terms are joinable (s ↓ t) if s
∗→ u

∗← t. They are ground joinable (s ⇓ t) if for

all σ ∈ GSubs(s, t) we have sσ ↓ tσ. Obviously joinability implies ground joinability.

Two literals are strongly ground joinable (written s ⇓. t) if for all ground instances

s′, t′ of s, t respectively, either s′ = t′, or else (letting s′ denote wlog. the greater of

s′, t′), s′
l≈r→ u′ ↓ t′ with either: l ≺ s′, or l = s′ but not u′ � t′.

A simpli�cation ordering is a rewrite relation which is a well-founded and total

ordering on ground terms. Let� be a simpli�cation ordering on terms. We assume that

� is extended to an ordering on literals and clauses using the multi-set extensions of

�. In particular we represent a literal l ≈ r as {l, r}, l 6≈ r as {l, l, r, r} and a clause as

a multi-set of its literals.

Redundancy

The standard redundancy criterion is de�ned as follows [2]. A ground clause C is

redundant with respect to a set of ground clauses S if there exists a subset of clauses

S′ of S such that

(i) S′ |= C , and

(ii) ∀D ∈ S′. D ≺ C .

This notion can be extended to non-ground clauses as follows. A possibly non-

ground clause C is redundant wrt. a set of clauses S if every C ′ ∈ GInsts(C) is

redundant wrt. to GInsts(S).

Proof of Theorem 1

We prove the Theorem 1 using the standard notion of redundancy. We say that a clause

C is redundant wrt R if it is either subsumed by an equation in R or C follows form

smaller equations in R.

11

Theorem A.1. If s ⇓.R t, then s≈ t∨C is redundant wrt. R. If s ⇓R t, then s 6≈ t∨C
is redundant wrt. R ∪ {C}.

Proof. Assume that s ⇓.R t, let us show that s ≈ t ∨ C is redundant. For this it is

su�cient to show that all clauses in GInsts(s ≈ t ∨ C) follow from smaller rules in

GInsts(R). Consider the ground instance s′ ≈ t′ ∨ C ′ in GInsts(s≈ t ∨ C). If s′ = t′

then this instance is a tautology and follows from ∅ ⊆ R, therefore redundant. Now

assume that s′ � t′ (the case when t′ � s′ is similar). Since s ⇓.R t we have that

s′
l→r∈R−−−−−→ u′ ↓R t′ where either i) l ≺ s′ or ii) l is s′ but not u′ � t′. Let R′ be the

ground instances of rules in R used in the joinability proof. It is clear that R′ |= s′ ≈ t′
and therefore R′ |= s′ ≈ t′ ∨ C ′. Let us show that all rules in R′ are smaller in � than

s′ ≈ t′. In the case i) we have l ≺ s′ therefore l ≈ r ≺ s′ ≈ t′. Likewise t′, u′ ≺ s′ and

therefore all rules used in rewrites of u′ and t′ have left-hand-side smaller than s′ and

therefore are smaller than s′ ≈ t′. The case ii) is similar: we have s′ = l and u′ = r
and either u′ = t′, so l ≈ r = s′ ≈ t′ and in this case the clause is subsumed by l ≈ r,

or u′ ≺ t′ and in this case all rewrite rules used to reduce u′ and t′ are smaller than

s′ ' t′.
To prove the second part of the theorem we can use the �rst part to note that for

any ground instance s′ 6≈ t′ ∨ C ′ of s 6≈ t ∨ C , s′ ≈ t′ follows from a smaller ground

instances of rules from R, denote them by R′. Therefore s′ 6≈ t′ ∨ C ′ follows from

R′ ∪ {C ′}. As C ≺ s′ 6≈ t′ ∨ C ′, the statement is proved.

12

	Implementing Superposition in iProver (System Description)

