
System Description: iProver – An Instantiation-Based
Theorem Prover for First-Order Logic

Konstantin Korovin?

The University of Manchester
School of Computer Science
korovin@cs.man.ac.uk

Abstract. iProver is an instantiation-based theorem prover which is based on
Inst-Gen calculus, complete for first-order logic. One of the distinctive features of
iProver is a modular combination of instantiation and propositional reasoning. In
particular, any state-of-the art SAT solver can be integrated into our framework.
iProver incorporates state-of-the-art implementation techniques such as index-
ing, redundancy elimination, semantic selection and saturation algorithms. Re-
dundancy elimination implemented in iProver include: dismatching constraints,
blocking non-proper instantiations and propositional-based simplifications. In ad-
dition to instantiation, iProver implements ordered resolution calculus and a com-
bination of instantiation and ordered resolution. In this paper we discuss the de-
sign of iProver and related implementation issues.

1 Introduction

iProver is based on an instantiation framework for first-order logic Inst-Gen, developed
in [3–5, 7]. We are working with clause logic and the main problem we are investi-
gating is proving (un)satisfiability of sets of first-order clauses. The basic idea behind
Inst-Gen is as follows. Given a set of first-order clauses S, we first produce a ground
abstraction of S by mapping all variables into a distinguished constant, say ⊥, obtain-
ing a set of ground clauses S⊥. If S⊥ is unsatisfiable then S is also unsatisfiable and
we are done. Otherwise, we need to refine the abstraction by adding new instances of
clauses, witnessing unsatisfiability at the ground level. Instances are generated by an
inference system called DSInst-Gen, which incorporates dismatching constraints (D)
and semantic selection (S). We repeat this process until we obtain either (i) an unsat-
isfiable ground abstraction (this can be checked by any off-the-shelf SAT solver), or
(ii) a saturated set of clauses, that is no non-redundant inference is applicable, and in
this case completeness of the calculus [3, 7] implies that S is satisfiable. Moreover, if
S is unsatisfiable and the inference process is fair, i.e., all persistent eligible inferences
eventually become redundant, then completeness of the calculus guarantees that after
a finite number of steps we obtain an unsatisfiable ground abstraction of S. The main
ingredients which make this general scheme a basis for a useful implementation are the
following.

1. The Instantiation calculus DSInst-Gen.
? Supported by The Royal Society

2. Redundancy elimination techniques.
3. Flexible saturation strategies.
4. Combination with other calculi, such as resolution.
5. State-of-the-art implementation techniques.

In the following sections we describe these components in more detail.

2 Instantiation Calculus

In order to define our main calculus DSInst-Gen we first need to define selection func-
tions and dismatching constraints.

Semantic Selection. Selection functions allow us to restrict applicability of infer-
ences to selected literals in clauses. Our selection functions are based on models of the
propositional abstraction of the current set of clauses. In practice, such models are gen-
erated by the SAT solver, used for the ground reasoning. A selection function sel for
a set of clauses S is a mapping from clauses in S to literals such that sel(C) ∈ C for
each clause C ∈ S. We say that sel is based on a model I⊥ of S⊥, if I⊥ |= sel(C)⊥
for all C ∈ S. Thus, DSInst-Gen inferences are restricted to literals, whose proposi-
tional abstraction is true in a model for the propositional abstraction of the current set
of clauses.

Dismatching constraints. In order to restrict instance generation further, we con-
sider dismatching constraints. Among different types of constraints used in automated
reasoning, dismatching constraints are particularly attractive. On the one hand they pro-
vide powerful restrictions for the instantiation calculus, and on the other, checking dis-
matching constraints can be efficiently implemented. A simple dismatching constraint
is a formula ds(s̄, t̄), also denoted as s̄ /ds t̄, where s̄, t̄ are two variable disjoint tuples
of terms, with the following semantics. A solution to a constraint ds(s̄, t̄) is a substi-
tution σ such that for every substitution γ, s̄σ 6≡ t̄γ, where ≡ is the syntactic equiva-
lence. We will use conjunctions of simple dismatching constraints, called dismatching
constraints, ∧n

i=1ds(s̄i, t̄i), where every t̄i is variable disjoint from all s̄j , and t̄k, for
i 6= k. A substitution σ is a solution of a dismatching constraint ∧n

i=1ds(s̄i, t̄i) if σ
is a solution of each ds(s̄i, t̄i), for 1 ≤ i ≤ n. We will assume that for a constrained
clause C | [∧n

i=1 ds(s̄i, t̄i)], the clause C is variable disjoint from all ti, 1 ≤ i ≤ n. A
constrained clause C | [ϕ] is a clause C together with a dismatching constraint ϕ. An
unconstrained clause C can be seen as a constrained clause with an empty constraint
C | []. Let S be a set of constrained clauses, then S̃ denotes the set of all unconstrained
clauses obtained from S by dropping all constraints.

Proper instantiators. Another restriction on the instantiation calculus is that only
proper instantiations need to be considered. A substitution θ is called a proper instan-
tiator for an expression (literal, clause, etc.) if it maps a variable in this expression into
a non-variable term.

DSInst-Gen Calculus. Now we are ready to formulate the DSInst-Gen calculus. Let
S be a set of constrained clauses such that S̃⊥ is consistent and let sel be a selection
function based on a model I⊥ of S̃⊥. Then, the DSInst-Gen inference system is defined
as follows.

DSInst-Gen

L ∨ C | [ϕ] L′ ∨D | [ψ]
L ∨ C | [ϕ ∧ x̄ /ds x̄θ] (L ∨ C)θ

where (i) x̄ is a tuple of all variables in L, and
(ii) θ is the most general unifier of L and L′, wlog. we assume that

the domain of θ consist of all variables in L and L′, and
the range of θ is variable disjoint from the premises, and

(iii) sel(L ∨ C) = L and sel(L′ ∨D) = L′, and
(iv) θ is a proper instantiator for L, and
(v) ϕθ and ψθ are both satisfiable dismatching constraints.

DSInst-Gen is a replacement rule, which is replacing the clause in the left premise by
clauses in the conclusion. The clause in the right premise can be seen as a side condition.
In [7] we have shown that DSInst-Gen calculus is sound and complete. DSInst-Gen is
the main inference system implemented in iProver.

3 Redundancy Elimination

In [3] an abstract redundancy criterion is given which can be used to justify concrete
redundancy elimination methods [7], implemented in iProver. In order to introduce re-
dundancy notions we need some definitions. A ground closure, denoted as C · σ, is a
pair consisting of a clause C and a substitution σ grounding for C. Ground closures
play a similar role in our instantiation framework as ground clauses in resolution. Let S
be a set of clauses and C be a clause in S, then a ground closure C ·σ is called a ground
instance of S and we also say that the closure C ·σ is a representation of the clause Cσ
in S. A closure ordering is any ordering � on closures that is total, well-founded and
satisfies the following condition. If C ·σ andD ·τ are such that Cσ = Dτ and Cθ = D
for some proper instantiator θ, then C · σ � D · τ .

Let S be a set of clauses. A ground closure C · σ is called redundant in S if there
exist ground closures C1 · σ1, . . . , Ck · σk that are ground instances of S such that,
(1) C1 · σ1, . . . , Ck · σk |= C · σ, and (2) C · σ � Ci · σi, for each 1 ≤ i ≤ k. A
clause C (possibly non-ground) is called redundant in S if each ground closure C · σ is
redundant in S. This abstract redundancy criterion can be used to justify many standard
redundancy eliminations such as tautology elimination and strict subsumption, where
the subsuming clause has strictly less literals than the subsumed.

Global Subsumption. One of the novel simplifications implemented in iProver is
based on utilising propositional reasoning [7]. First, let us consider simplifications of
ground clauses and then later we show how to extend this to the general case. Consider
a set of clauses S. Let C be a ground clause we would like to simplify wrt. S. If we
can show that a strict subclause D (C is entailed by S, then we can simplify C by
D. Since our ground abstraction S⊥ is implied by S we can use S⊥ to approximate
the entailment above. In particular, if we can show that S⊥ |= D, this can be checked
by the SAT solver, then C can be simplified by D. We call this simplification global
propositional subsumption wrt. S⊥.

Global propositional subsumption

D ∨D′

D

where S⊥ |= D and D′ is not empty.

Global propositional subsumption is a simplification rule, which allows us to remove
the clause in the premise after adding the conclusion. Let us note that although the
number of possible subclauses is exponential wrt. the number of literals, in a linear
number of implication checks we can find a minimal wrt. inclusion subclause D (C
such that S⊥ |= D, or show that such a subclause does not exist. In [7] we have shown
that global propositional subsumption generalises many known simplifications, such as
strict subsumption and subsumption resolution.

Now we describe an extension of this idea to the general non-ground case (see [7]
for details). First, we note that in the place of S⊥ we can use any ground set Sgr ,
implied by S. Let ΣC be a signature consisting of an infinite number of constants not
occurring in the signature of the initial set of clauses Σ. Let Ω be a set of injective
substitutions mapping variables to constants in ΣC . We call C ′ an Ω-instance of a
clause C if C ′ = Cγ where γ ∈ Ω. Let us assume that for any clause C ∈ S there are
some Ω-instances of C in Sgr . In [7] we have shown that if some Ω-instance of a given
clause D is implied by Sgr , then S implies D. Now we can formulate an extension of
global subsumption to the non-ground case:

Global subsumption (non-ground)

(D ∨D′)θ
D

where Sgr |= Dγ for some γ ∈ Ω, and D′ is not empty.

Global subsumption is one of the main simplifications implemented in iProver.

4 Saturation Algorithm: The Inst-Gen Loop

Now we are ready to put inferences and simplifications together into a saturation algo-
rithm, called the Inst-Gen Loop, which is implemented in iProver.1 As shown in Fig 1,
the Inst-Gen Loop is a modification of the standard given clause algorithm, which ac-
commodates propositional reasoning. Let us overview key components of the Inst-Gen
Loop and how they are implemented in iProver. One of the main ideas of the given
clause algorithm is to separate clauses into two sets, called Active and Passive, with
the following properties. The set of Active clauses is such that all non-redundant in-
ferences between clauses in Active are performed (upon selected literals). The set of
Passive clauses are the clauses waiting to participate in inferences. Initially, the input
clauses are preprocessed and groundings of the preprocessed clauses are added to the
SAT solver. Preprocessing currently consists of optional splitting without backtracking

1 iProver is available at http://www.cs.man.ac.uk/˜korovink/iprover/

Passive (Queues) Given Clause
Simpl. II

Active (Unif. Index)

Model Changed

Instantiation Inferences

Preprocessed
Simpl. I

SAT Solver Call
Input

SAT Solver

Grounding

Fig. 1. The Inst-Gen Loop

on variable disjoint subclauses [8]. The given clause algorithm consists of a loop and at
each loop iteration the following actions are executed. First, a clause is taken from the
Passive set, called the Given Clause. Then, all inferences between the Given Clause and
the clauses in Active are performed and the Given Clause is moved to Active. Finally,
all newly derived clauses are preprocessed and groundings of the obtained clauses are
added to the SAT solver. The SAT solver is called in regular, user-defined intervals until
either (i) unsatisfiability is found, in this case the input set of clauses is unsatisfiable,
or (ii) all clauses are in Active, in this case the input set of clauses is satisfiable. Let us
describe the components of the Inst-Gen Loop.

Passive. The Passive set are the clauses waiting to participate in inferences. Experi-
ence with resolution-based systems shows that the order in which clauses are selected
for inferences from Passive is an important parameter. Usually, preference is given to
the clauses which are heuristically more promising to derive the contradiction, or to
the clauses on which basic operations are easier to perform. In iProver, Passive clauses
are represented by two priority queues. In order to define priorities we consider numer-
ical/boolean parameters of clauses such as: number of symbols, number of variables,
age of the clause, number of literals, whether the clause is ground, conjecture distance
and whether the clause contains a symbol from the conjecture (other than equality).
Then, each queue is ordered by a lexicographic combination of orders defined on pa-
rameters. For example, if a user specifies an iProver option: ‘- -inst pass queue1 [+age;
-num symb;+ground]’, then priority in the first queue is given to the clauses generated
at the earlier iterations of the Inst-Gen Loop (older clauses), then to the clauses with
fewer number of symbols and finally to ground clauses. The clauses are taken from the
queues according to a user-specified ratio.

Selection functions. Selection functions are based on the current model I⊥ of the
propositional abstraction of the current set of clauses. A clause can have several lit-
erals true in I⊥, and the selection function can be restricted to choose one of them.
Selection functions are defined by priorities based on a lexicographic combination of
the literal parameters. The following parameters currently can be selected by the user:
sign, ground, num var, num symb, and split. For example if a user specifies an iProver

option: ‘- -inst lit sel [+sign;+ground;-num symb]’. Then, priority (among the literals
in the clause true in I⊥) is given to the positive literals, then to the ground literals and
then to literals with a fewer number of symbols.

Active. After the Given Clause is selected from Passive all eligible inferences be-
tween the Given Clause and clauses in Active should be performed. A unification index
is used for efficient selection of clauses eligible for inferences. In particular, Active
clauses are indexed by selected literals. The unification index implemented in iProver is
based on non-perfect discrimination trees [6]. Let us note that since the literal selection
is based on a propositional model (of a ground abstraction of the current set of clauses),
selection can change during the Inst-Gen Loop iterations. This can result in moves of
clauses from Active to Passive, as shown in Fig 1. Such moves can be a source of in-
efficiency and we minimise them by considering the selection change only in clauses
participating in the current inference.

Instantiation Inferences. iProver implements DSInst-Gen calculus. In particular,
constrained clauses, dismatching constraint checking and semantic-based literal selec-
tions are implemented.

Redundancy elimination. In addition to dismatching constraints, global subsump-
tion for clauses with variables and tautology elimination are implemented.

Grounding and SAT Solver. Newly derived clauses are grounded and added to the
propositional solver. Although, in our exposition we used the designated constant ⊥
for grounding, all our arguments remain valid if we use any ground term in place of
⊥. In particular, for grounding, iProver selects a constant with the greatest number
of occurrences in the input set of clauses. After grounding, clauses are added to the
propositional solver. Currently, iProver integrates MiniSat [2] solver for propositional
reasoning. Incrementality of MiniSat is essential for global subsumption.

Learning Restarts. Initially, the propositional solver contains only few instances
of the input clauses, and therefore selection based on the corresponding propositional
model may be inadequate. Although the model and selection can be changed at the later
iterations, by that time, the prover may have consumed most of the available resources.
In order to overcome this, iProver implements restarts of the saturation process, keeping
the generated groundings of clauses in the SAT solver. After each restart, the proposi-
tional solver will contain more instances of clauses, this can help to find a better literal
selection. In addition, after each restart, global subsumption becomes more powerful.

Combination with Resolution. Instantiation, by itself, is not very well suited for
generating small clauses which can be later used in simplifications such as (global)
subsumption. For this, iProver implements a complete saturation algorithm for ordered
resolution. The saturation algorithm for resolution is based on the same data structures
as Inst-Gen Loop and implements a number of simplifications such as forward and
backward subsumption (based on a vector index [11]), subsumption resolution, tau-
tology deletion and global subsumption. Resolution is combined with instantiation by
sharing the propositional solver. In particular, groundings of clauses generated by reso-
lution are added to the propositional solver and propositional solver is used for global
subsumption in both resolution and instantiation saturation loops. The user can select
between combination of instantiation with resolution, pure instantiation and pure or-
dered resolution.

5 Implementation details and Evaluation

iProver is implemented in a function language OCaml and integrates MiniSat solver [2]
for propositional reasoning, which is implemented in C/C++. iProver v0.3.1 was evalu-
ated on the standard benchmark for first-order theorem provers – TPTP library v3.2.02.
Currently, iProver does not have a built-in clausifier and we used E prover3 for clausifi-
cation. Experiments were run on a cluster of PCs with CPU 1.8GHz, Memory 512 Mb,
Time Limit 300s, OS Linux v2.6.22. Out of 8984 problems in the TPTP library, iProver
(single strategy) solved 4843 problems: 4000 unsatisfiable and 843 satisfiable. Prob-
lems in TPTP are rated from 0 to 1, problems with the rating 0 are easy and problems
with the rating 1 cannot be solved by any state-of-the-art automated reasoning system.
iProver solved 7 problems with the rating 1, and 27 with rating greater than 0.9. We
compare iProver v0.2 with other systems, based on the results of the CASC-21 compe-
tition, held in 2007 [12]. In the major FOF devision, iProver is in the top three provers
along with established leaders Vampire [9] and E [10]. In the effectively propositional
division (EPR), iProver is on a par with the leading system Darwin [1]. We are currently
working on integrating equational and theory reasoning into iProver.

References
1. P. Baumgartner, A. Fuchs, and C. Tinelli. Implementing the model evolution calculus. Inter-

national Journal on Artificial Intelligence Tools, 15(1):21–52, 2006.
2. N. Eén and N. Sörensson. An extensible SAT-solver. In Proc. of the 6th International

Conference on Theory and Applications of Satisfiability Testing, SAT 2003, volume 2919 of
Lecture Notes in Computer Science, pages 502–518. Springer, 2004.

3. H. Ganzinger and K. Korovin. New directions in instantiation-based theorem proving. In
Proc. 18th IEEE Symposium on LICS, pages 55–64. IEEE, 2003.

4. H. Ganzinger and K. Korovin. Integrating equational reasoning into instantiation-based the-
orem proving. In CSL’04, volume 3210 of LNCS, pages 71–84, 2004.

5. H. Ganzinger and K. Korovin. Theory Instantiation. In Proceedings of the 13 Conference
on Logic for Programming Artificial Intelligence Reasoning (LPAR’06), volume 4246 of
Lecture Notes in Computer Science, pages 497–511. Springer, 2006.

6. P. Graf. Term Indexing, volume 1053 of LNCS. Springer, 1996.
7. K. Korovin. An invitation to instantiation-based reasoning: From theory to practice.

In A. Podelski, A. Voronkov, and R. Wilhelm, editors, Volume in memoriam of Harald
Ganzinger. to appear. Invited paper.

8. A. Riazanov and A. Voronkov. Splitting without backtracking. In Proc. of the 17 Inter-
national Joint Conference on Artificial Intelligence, (IJCAI’01), pages 611–617. Morgan
Kaufmann, 2001.

9. A. Riazanov and A. Voronkov. The design and implementation of VAMPIRE. AI Communi-
cations, 15(2-3):91–110, 2002.

10. S. Schulz. E - a brainiac theorem prover. AI Commun., 15(2-3):111–126, 2002.
11. S. Schulz. Simple and Efficient Clause Subsumption with Feature Vector Indexing. In G. Sut-

cliffe, S. Schulz, and T. Tammet, editors, Proc. of the IJCAR-2004 Workshop on Empirically
Successful First-Order Theorem Proving, Cork, Ireland, ENTCS. Elsevier Science, 2004.

12. G. Sutcliffe. CASC-21 proceedings of the CADE-21 ATP system competition, 2007.

2 http://www.cs.miami.edu/˜tptp/
3 http://www.eprover.org/

