
Formal Methods in Computer-Aided Design 2020

Selecting Stable Safe Configurations for Systems
Modelled by Neural Networks with ReLU

Activation
Franz Brauße

Department of Computer Science
University of Manchester, UK
franz.brausse@manchester.ac.uk

Zurab Khasidashvili
Product Enablement Solutions Group

Intel Israel Development Center
zurab.khasidashvili@intel.com

Konstantin Korovin
Department of Computer Science
University of Manchester, UK

konstantin.korovin@manchester.ac.uk

Abstract—Combining machine learning with constraint solving
and formal methods is an interesting new direction in research
with a wide range of safety critical applications. Our focus
in this work is on analyzing Neural Networks with Rectified
Linear Activation Function (NN-ReLU). The existing, very recent
research works in this direction describe multiple approaches to
satisfiability checking for constraints on NN-ReLU output. Here
we extend this line of work in two orthogonal directions: We
propose an algorithm for finding configurations of NN-ReLU
that are (1) safe and (2) stable. We assume that the inputs
of the NN-ReLU are divided into existentially and universally
quantified variables, where the former represent the parameters
for configuring the NN-ReLU and the latter represent (possibly
constrained) free inputs. We are looking for (1) values of the
configuration parameters for which the NN-ReLU output satisfies
a given constraint for any legal values of the input variables
(the safety requirement); and (2) such that the entire family
of configurations with configuration variable values close to a
safe configuration is also safe (the stability requirement). To
our knowledge this is the first work that proposes SMT-based
algorithms for searching safe and stable configuration parameters
for systems modelled using neural networks. We experimentally
evaluate our algorithm on NN-ReLUs trained on a set of real-life
datasets originating from an industrial CAD application at Intel.

I. INTRODUCTION

Neural Networks (NN) are widely used in modeling real life
systems and processes, including safety critical ones. Formal
analysis of NN models is therefore becoming increasingly im-
portant for exploration, validation and optimisation of complex
systems, and for a much wider range of applications. Multiple
recent research works have partly addressed this emerging
need: they propose satisfiability checking algorithms for the
constraints defined by an NN-ReLU and by inequality con-
straints on its inputs and outputs by encoding this problem into
Satisfiability Modulo Theories (SMT) [3] or Mixed-Integer
Linear Programming (MILP) [28], [4], [16], [6], [9], [17]. In
this work, by a constraint we will mean a Boolean combination
of inequality constraints on the inputs of a NN-ReLU or its
outputs. Given an NN-ReLU and constraints on inputs most
of these algorithms can verify whether output constraints are
satisfied and provide a tight over-approximation (guarantee) on
the outputs’ range if required; the former capability is called

robustness to adversarial examples in [4] for classification
models, and the latter is called range estimation in [9] for
regression models; and both are studied for extensions of
NN-ReLU called Piecewise Linear NN [25] in [6] and [9],
respectively.

In this paper we are looking into a related but quite different
problem. In many applications we have analog systems which
do not have explicit representations and are modelled using
NNs based on some experimental test data. An important part
of such systems are parameters that are usually configured
manually to obtain a desired system behaviour. In this paper
we propose several algorithms for finding safe, stable and
close to optimal parameters for such systems. An atomic
building block in our algorithm is the capability of an SMT
solver to check that the output satisfies safety constraints
for inputs restricted by input constraints. The problem of
finding parameter configurations is more general than the
safety problem and requires solving problems with quantifier
alternations which are notoriously difficult for SMT solvers.

In a nutshell, we assume that the inputs of an NN-ReLU
are divided into two groups: the configuration parameters that
are used to configure the system, and the regular inputs to the
system for interacting with the environment. Values of the con-
figuration parameters should be fixed before the system starts
operating to perform the task it is designed and configured for,
in a safe and close to optimal fashion. A configuration is then
an assignment of values to the configuration parameters. We
assume that the NN-ReLU output o is a numeric variable that
ranges between 0 and 1, and we are looking for assignments
to the configuration parameters such that for all legal values of
inputs the output satisfies one or more range constraints like
o ≥ 0.9. Such an assignment is then a safe assignment and so
is the corresponding configuration. In addition, assuming that,
say, the high values of the NN-ReLU output are considered as
a better performance, then optimisation in the context of this
work would mean finding safe configuration of the NN-ReLU
for a constraint o ≥ th with a threshold value th > 0.9,
e.g., constraint o ≥ 0.95. Since we do not aim to always find
a maximal possible threshold for which a safe configuration
exists, “close to optimal” is used in this work informally.
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To avoid any confusion, we remark straightaway that by
configuring a NN-ReLU we do not mean configuring the
NN-ReLU training parameters themselves to aid a faster con-
vergence of the training or to improve the modeling accuracy.
Configuring parameters that control the training procedure
of NNs is an important problem that in principle can be
approached heuristically with the procedure proposed in this
work to search for close to optimal configurations but this
application is outside of the scope of this paper. In this paper
we consider configuration parameters which are a part of the
analog system which is modelled by a NN-ReLU.

We propose to formalise the problem of configuration selec-
tion for NN-ReLU modelled in first-order logic or quantified
SMT, where the configuration parameters correspond to the
existentially quantified variables and the inputs correspond to
universally quantified variables. The configuration selection
problem somewhat corresponds to the Effectively Proposi-
tional (EPR) fragment, also called the Bernays-Schönfinkel-
Ramsey fragment, which consists of first-order formulas with
no occurrences of function symbols other than constants, and
which when written in prenex normal form have the quantifier
prefix ∃∗∀∗. EPR is a decidable fragment of pure first-
order logic and very efficient solvers exist [20], and therefore
multiple formal verification problems have been encoded into
the EPR fragment [27], [18], [14], [15], [19].

In our encoding of the configuration selection problem for
NNs we require support for reasoning with linear and non-
linear functions: the theory we deal with is quantified linear
real arithmetic with ReLU constraints; in addition, for the
industrial application that we are dealing with, it is critical
for our algorithm to support ordered categorical variables (say
integers) and unordered categorical variables. One of the main
contributions in this paper is a δ-decision procedure for the
relevant fragment of ∃∗∀∗ formulas over these domains, we
call normed GEAR fragment.

In many real-life applications, for example the ones dealing
with analog systems, the value applied to an analog pin, which
we usually model as a numeric feature in machine learning
and as a real number in the constraint solving world, is not
the same as the value sampled by the system. There is always
an error, maybe very small, in the value that is applied and
in the value that is sampled, and these two errors do not need
to add up to 0. Thus when configuring or verifying such a
system, it is required to take this error into account. We think
that this aspect has been largely neglected in the context of
formal methods for quantified formulas, and we will address
this problem in this work by considering stable solutions for
the configuration problem, elaborated upon below.

Neural Networks and the ML models in general do not
model the systems with a hundred percent accuracy. In fact,
when training a model, it is a bad idea to build a model that
exactly matches the output values in the training dataset; this
is known in ML literature as overfitting, and is considered bad
practice because such a model is unlikely to be accurate on the
unseen samples (on which the model was not trained). In fact,
the data might actually be contradictory in that two completely

identical samples might have different labels, because of an
error in data collection or because of insufficient precision in
the representation of the feature values, thus a function that
fully matches the training data might not exist at all. Thus,
again, when exploring ML models configuring them for a
safe and close to optimal performance of the systems that they
model one needs to take into account that safely configuring
the model does not mean at all that the modelled system itself
is safe.

One way of mitigating this safety gap is to look for safe
configurations of the NN-ReLU models that are stable. A safe
configuration is stable if all configurations sufficiently close to
it are also safe for all legal inputs. In other words, a stable sat-
isfying assignment to configuration parameters is a Cartesian
product of open or close intervals of configuration parameters
within their respective legal ranges such that each assignment
within the product is a satisfying assignment. In the industrial
application where our research results have been applied, for
most configuration parameters the radius is actually as large
as 10% of the value of the variable in the configuration.
This is because the sampling error from analog equipment
can be dependent on the intended value itself. For some
other configuration parameters, say representing clock ticks,
the radius is defined through an absolute value, independently
from the value of that variable in the configuration.

It has been shown recently that NNs and several other clas-
sification models are vulnerable to adversarial examples [30].
That is, these ML models misclassify examples that are only
slightly different from correctly classified examples drawn
from the data distribution. This is another reason why building
stable safe configurations is important: we want the configu-
ration to remain safe if the values of configuration parameters
are perturbed, this being caused by a malicious adversary or
the errors in sampling or sensing data from the equipment
or environment. The roundoff errors in the software packages
used in training NNs and other ML models are yet another
source for the discrepancy between the intended models and
the ones that we analyze formally. This list can be continued
further.

Work [4] defines a robustness measure of an NN at an
input vector as the maximal Chebyshev distance L∞ to the
nearest adversarial input vector and proposes an algorithm
for estimating it. Work [16] defines a NN-ReLU as δ-locally-
robust at an input vector if there is no adversarial data point
within L∞-distance smaller than δ, and reports that their
Reluplex algorithm can verify whether a NN-ReLU is δ-
locally-robust at a given input vector or is globally robust.
Work [12] proposes an efficient way to generate adversarial
data samples for the purpose of improving the accuracy of
classification. For NN-ReLUs with a numeric output, a safety
constraint applied to the output straightforwardly converts the
model into a classifier of two classes SAT and UNSAT. We
note that unlike the robustness, our notion of stability is
defined with respect to the configuration parameters rather than
the free inputs.

To reiterate, our aim in this work is to safely configure



real, complex systems, not NNs; the NNs are used to ap-
proximate the original systems. In this context, we would like
to emphasize the following: real systems in many cases have
multiple functionalities and depend on many variables but not
all variables are equally important for all the properties of
the outputs. Specifically in the CAD domain, often accurate
models can be built using few variables only. See [24] for
an example where only 10 and 30 features out of 10 000
available features were enough to build high quality models for
a classification and a regression task, respectively, in the Signal
Integrity domain where the results of this research have been
applied. Our algorithms determine safe and stable regions for
the NN approximations which are checked against the original
system to see whether these safe regions are safe in the original
system. We demonstrate that one can use SMT solvers to
guide the NN model refinement not only based on spurious
counter examples to the safety constraint on the output but
also based on safe regions for a current NN approximation;
the latter is a new paradigm in model refinement. Related
abstraction refinement techniques such as usage of genetic
algorithms, Bayesian optimization, or reinforcement learning
are only heuristic methods, without any safety guarantees, and
are not guided by a constraint solver.

Main contributions:

• The notion of Safe and Stable Configurations for systems
represented by NNs and the corresponding SSC problem.

• The reflexively guarded ∃∗∀∗ fragment (GEAR) and its
connection to the SSC problem.

• A general satisfiability algorithm for GEAR, called
GEARSAT and its variant GEARSATδ for the SSC prob-
lem.

• Proof that GEARSATδ is a δ-decision procedure for the
SSC problem.

• Demonstration of the applicability of GEARSATδ to in-
dustrial configuration problems modelled using NNs in
the CAD domain.

The rest of the paper is organized as follows. We start
with preliminaries in Section II. In Section III we define
the problem of configuration selection formally and define
stable satisfying assignments for configuration parameters. In
Section IV we introduce the GEAR fragment of ∃∗∀∗ formulas
capturing this problem in a general context and present a sound
satisfiability algorithm GEARSAT. In Section V we introduce
GEARSATδ , an adaptation of this algorithm to normed do-
mains as required in our application and prove that GEARSATδ
is a δ-decision procedure for the SSC problem. Experimental
results on industrial problems are reported in Section VI. The
conclusions appear in Section VII.

II. PRELIMINARIES

We consider systems which have continuous and discrete
inputs and outputs. An input domain D is a Cartesian product
of reals R, integers Z and finite, non-empty sets with elements
from Z. Throughout this paper ‖·‖ denotes a fixed but arbitrary
norm on D.

A real-valued system defined on D can be represented as
a function f : D → R. A configurable real-valued system
is a system which also has configuration parameters f :
Dpar ×Din → R where Dpar is the domain for configuration
parameters and Din is the domain for inputs. We assume
D := Dpar × Din is not empty and ‖ · ‖ is a norm on D.

We assume that a system is given as a black-box function
which can be evaluated on a collection of inputs and config-
uration parameters but its explicit representation is generally
unknown. Given a finite collection D of data points from D
we can build approximations of f using neural networks by
training them on D.

A (feed-forward) neural network N consists of layers with
inputs and outputs [29]. The input to the first layer is the input
to N and the output of the last layer is the output of N . The
input of an intermediate layer is the output of the previous
layer. Each layer is a composition of an affine transformation
of its inputs with a non-linear activation function. One of
the most commonly used activation functions is the rectified
linear unit (ReLU), which is defined to be identity for all
positive inputs and 0 for non-positive inputs. Even with such
simple activation function neural networks can approximate
all continuous functions [22].

One of the advantages of neural networks with the ReLU
activation functions (NN-ReLU) is that they can be represented
in a language amenable to SMT solvers. In particular, one can
represent NN-ReLU either in the theory of linear arithmetic
with conditionals or directly as a specialised decision proce-
dure [16].

In this paper we are not concerned with particulars of
representations of NN-ReLUs. We will consider a theory T‖·‖
(in the SMT-LIB sense [3]) that can be used to specify NNs,
and include:
• sorts for reals, integers, finite non-empty domains inter-

preted as subsets of integers, together with
• operations for linear arithmetic with real coefficients and

variables of mixed real and integer sorts,
• usual arithmetic comparison operators {≥, >,=},
• the norm ‖ · ‖,
• Boolean operators and
• a collection of activation functions AF .

We will assume that there is a decision procedure for the
quantifier-free fragment of T‖·‖.

In our experiments (Section VI) we use only ReLU and
linear activation functions (i.e., AF = {ReLU,Lin}) but
our approach is applicable to arbitrary activation functions
as long as there is a decision procedure for them. We also
used Chebyshev norm ‖ · ‖∞ as this can be expressed using
linear constraints. In these cases activation functions and the
norm can be covered by standard SMT theories and we can
use SMT solvers or mixed integer programming to solve the
quantifier-free fragment of T‖·‖. While our focus in this work
is on NN models, we remark that the algorithms and decision
procedures proposed in this work are also applicable to other
ML models, including tree-based models such as random
forest and polynomial models.



We will use p, q, x, y possibly with indices to denote vari-
ables and boldface p, q,x will denote vectors of variables.
When it is not essential we do not specify sorts of the
variables. Given an assignment α, we use J·Kα to denote the
interpretation of variables according to α, which is extended
to interpretation of terms and formulas in the standard way.

We assume that NNs are expressible in T‖·‖. In particular,
with each neural network N : Dpar × Din → R we associate
a quantifier-free formula ϕN (p,x, y) in T‖·‖ such that for
every assignment α of variables, N (JpKα, JxKα) = JyKα if
and only if JϕN (p,x, y)Kα is true. Note that the special case
of classification problems when N : Dpar×Din → {0, . . . , n}
is covered by our framework as well.

III. SAFE AND STABLE CONFIGURATIONS

Consider a configurable system f : Dpar × Din → R. We
distinguish between parameters and inputs in order to be clear
about their quantification, which is existential and universal,
respectively. Let f be modelled by a neural network N . Let
ϕN (p,x, y) be a formula in T‖·‖ defining N as described
in Section II. A specification for the system is a formula
ϕspec(p,x, y) which includes constraints on paramenters, in-
puts and output. If the set of parameters is empty then a system
is safe if the following formula holds:

∀xy(ϕN (x, y)→ ϕspec(x, y)).

This notion is similar to the verification problem in [16], [28].
The main problem we consider in this paper is a different one:
finding configuration parameters for the system that are safe
and stable for all inputs, as defined below.

A safe solution to the parameter configuration problem (or
just a solution for short) is an assignment α of parameters p
such that the following formula holds:

∀xy(ϕN (JpKα,x, y)→ ϕspec(JpKα,x, y)).

Finding solutions to parametrised systems corresponds to
checking satisfiability of ∃∗∀∗ formulas:

∃p∀xy(ϕN (p,x, y)→ ϕspec(p,x, y)).

This is in contrast to safety properties where the problem can
be formulated using just one type of quantifiers ∀∗.

Let r ≥ 0 be a rational constant. A solution α is called
r-stable if all parameter configurations which are r close to α
are also solutions to the specification:

∀q(‖JpKα − q‖ ≤ r → ∀xy(ϕN (q,x, y)→ ϕspec(q,x, y))).

Similarly to above, finding r-stable solutions corresponds to
checking satisfiability of ∃∗∀∗ formulas.

∃p∀q(‖p− q‖ ≤ r →
∀xy(ϕN (q,x, y)→ ϕspec(q,x, y))).

(1)

We call this the Safe and Stable Configuration problem (SSC).
Let us note that the stability condition connects existentially

quantified parameters p with introduced universally quantified
variables q. In this case even when there are no inputs and only

parameters the formula involves ∃∗∀∗quantifier alternation
(see also Remark 1).

In order to solve the SSC problem we first introduce a gen-
eral GEAR fragment and a satisfiability algorithm for GEAR
called GEARSAT. GEARSAT does not rely on properties of
T‖·‖ and is applicable to any theory without uninterpreted
symbols and decidable quantifier-free fragment. Then we show
that SSC can be expressed in a special fragment of GEAR
called normed GEAR, for which we modify GEARSAT into a
δ-complete decision procedure GEARSATδ .

IV. THE REFLEXIVELY GUARDED ∃∗∀∗ FRAGMENT AND
GEARSAT

Algorithm 1 (EA-SAT-Basic) Solve ∃p∀xϕ(p,x) using a
solver for the existential fragment.

procedure EA-SAT-BASIC(ϕ)
loop

if ϕ(p,x) is unsat then
return unsat

end if
α← assignment of p,x satisfying ϕ
if ¬ϕ(JpKα,x) is unsat then

return α restricted to p
end if
ϕ(p′,x)← ϕ(p′,x) ∧ (p′ 6= JpKα) . learn lemma

end loop
end procedure

We start with a general Algorithm 1 for solving ∃∗∀∗ formu-
las which is inspired by model-based quantifier instantiation
procedures [11] and only requires a solver for the existential
fragment.

Theorem 1. Algorithm 1 is sound.

The theorem follows from the observation that Algorithm 1
only generates lemmas which are implied by its input formula
ϕ, making it a sound procedure.

The downside of Algorithm 1 is that it generates very
weak lemmas excluding point-wise counter-examples. In par-
ticular, for infinite domains, Algorithm 1 does not terminate
in general. To mitigate this, we propose a novel procedure
(Algorithm 2) which generates more general lemmas which
exclude large regions from the search space and facilitate
termination. This procedure assumes that the quantifiers in
∃∗∀∗ formulas are guarded as defined below.

Definition 1. A closed first-order ∃∗∀∗ formula ξ of the form

ξ ≡ ∃p[η(p) ∧ ∀q(θ(p, q)→ ∀x(ψ(q,x)))] (2)

is in the reflexively guarded ∃∗∀∗ fragment, GEAR for short,
iff η, θ and ψ are quantifier-free formulas and θ defines a
reflexive relation. We say that p is guarded by η(p) and q is
guarded by θ(p, q).



Algorithm 2 (GEARSAT) Solve reflexively guarded ∃∗∀∗
formulas based on a solver for the existential fragment.

procedure GEARSAT(η, θ, ψ)
E(p)← η(p)
loop

if ψ(p,x) ∧ E(p) is unsat then
return unsat

end if
α← assignment of p,x satisfying ψ(p,x) ∧ E(p)
ϕ(q,x)← (θ(JpKα, q)→ ψ(q,x))
if ¬ϕ(x, q) is unsat then

return α restricted to p
end if
β ← assignment of q,x satisfying ¬ϕ(q,x)
E(p)← E(p) ∧ ¬θ(p, JqKβ) . learn guard lemma

end loop
end procedure

In order to prove soundness of Algorithm 2, we require the
guard θ to define a reflexive relation, i.e., ∀q(θ(q, q)) holds
true. This can be motivated by the observation that θ connects
the existentially and (a subset of the) universally quantified
variables. In our application θ usually takes the form ‖p−q‖ ≤
r, which is trivially reflexive, however, no properties besides
reflexivity are required for soundness. We do not impose any
restrictions on the guard η, it can be used to constrain the
range of configuration parameters.

Theorem 2. The Algorithm GEARSAT is sound for the GEAR
fragment.

Proof: Let ξ be a formula in the GEAR fragment of
the form (2). Assume GEARSAT(η, θ, ψ) performs N ≥ 0
iterations and terminates in iteration N + 1 with result κ.
By the construction in Algorithm 2, for each n = 1, . . . , N
there are assignments αn and βn satisfying An := η(p) ∧∧n−1
i=1 ¬θ(p, JqKβi) ∧ ψ(p,x) and Bn := θ(JpKαn , q) ∧
¬ψ(q,x), respectively. We show the cases for κ separately.

Consider κ = unsat. If N = 0, then by construction
A1 ≡ η(p) ∧ ∀x(ψ(p,x)) is unsat. η(p) is implied by ξ
as is ∀q(θ(p, q)→ ∀x(ψ(q,x))). Since θ defines a reflexive
relation, ξ also implies ∀x(ψ(p,x)). Therefore ξ is unsat.
Otherwise N > 0, then AN+1 := AN∧¬θ(p, JqKβN ) is unsat.
In order to derive a contradiction, assume there is p∗ such that
η(p∗) ∧ ∀q(θ(p∗, q) → ∀x(ψ(q,x))) holds. By property of
θ, so does θ(p∗,p∗), therefore, ∀x(ψ(p∗,x)) is true. Since
AN+1 is unsat and both η(p∗) and ∀x(ψ(p∗,x)) are true,
there is n ≤ N such that ¬θ(p∗, JqKβn) is false. Consequently,
by assumption, ∀x(ψ(JqKβn ,x)) holds. However, βn satisfies
Bn and therefore also ¬ψ(q,x). A contradiction.

Consider κ 6= unsat. Then the assignment α is com-
puted which satisfies AN+1 and, in particular, η(p). Thus, if
θ(JpKα, q)∧¬ψ(q,x) is unsat, η(JpKα)∧∀qx(θ(JpKα, q)→
ψ(q,x)) and therefore also ξ(JpKα) hold.

Let us note that we can apply GEARSAT to general ∃∗∀∗
formulas ∃p[∀x(ψ(p,x))] which are not explicitly guarded by

first transforming them into a guarded form (2) where θ defines
the identity relation and η ≡ true. In this case GEARSAT
performs the same steps as Algorithm 1.

In contrast to Algorithm 1, however, GEARSAT takes ad-
vantage of guards when they define large regions in parameter
space. In this case, generated lemmas are negations of partial
guard instantiations that exclude large regions from the search
space around found counter-examples.

Let us note that GEARSAT terminates whenever the process
of generating lemmas En(p) = η(p) ∧

∧n
i=1 ¬θ(p, JqKβi) is

guaranteed to result in an unsatisfiable lemma after a finite
number of steps. Note, that during the run of GEARSAT we
generate strictly stronger lemmas, in particular ∃p(Ei(p) ∧
¬Ej(p)) holds for all i < j. From this it follows that
GEARSAT is a decision procedure for finite domains and more
generally for fragments where there are only finitely many
non-equivalent lemmas of the form above.

In many applications including ours, solutions to the SSC
problem are required to be stable on their (topological) neigh-
bourhood. In this case the reflexive guard also enables deciding
satisfiability even when the bounded domain itself is infinite.
This statement is made precise in Theorem 4 for normed
domains such as Dpar .

V. A δ-DECISION PROCEDURE FOR THE SAFE AND STABLE
CONFIGURATION PROBLEM

The GEARSAT algorithm can be employed to find safe and
r-stable solutions to the configuration problem as follows.
As described in Section III the SSC problem can be rep-
resented using formulas of the form (1). Such formulas are
a special case of the GEAR formulas (2) where the guard
is θr ≡ ‖p − q‖ ≤ r, which we call stability guard, and
ψ(q,x, y) ≡ ϕN (q,x, y) → ϕspec(q,x, y). Then, safe and
r-stable regions can be searched using Algorithm 2 applied
to:

ϕr = ∃p[η(p) ∧ ∀q(θr(p, q)→ ∀xy(ψ(q,x, y)))] (3)

We will call T‖·‖ formulas of the form (3) normed GEAR
formulas. They form a special case of reflexively guarded ∃∗∀∗
formulas, since ‖p− p‖ = 0.

In many applications, including ours, we can tolerate to re-
ject solutions if counter-examples are located within some tol-
erance of the safe region. To this end we introduce the notion
of unsatisfiability under δ-perturbation, or δ-unsatisfiability.

Let θr be a stability guard as given above and δ > 0, then
the δ-perturbation of θr is θr+δ = ‖p−q‖ ≤ r+ δ. Similarly,
δ-perturbation ϕr+δ of ϕr, is obtained by replacing θr with
θr+δ in ϕr.

We say that ϕr is δ-unsatisfiable if δ-perturbation of ϕr
is unsatisfiable. The δ-decision problem for normed GEAR
formulas ϕr is defined as the problem of showing that either
ϕr is satisfiable or showing that ϕr is δ-unsatisfiable. This can
be seen as an adaptation of the notion of δ-decision from [10]
to our setting.

We slightly modify the algorithm GEARSAT to
GEARSATδ(η, r, ψ) to solve the δ-unsatisfiability problem for



normed GEAR formulas as follows. First, we strengthen the
lemmas by δ to:

E(p)← E(p) ∧ ‖p− JqKβ‖ > r + δ

Second, “return unsat” is modified to “return δ-unsat”.
It is straightforward to generalise Theorem (2) to

GEARSATδ . Next we show that GEARSATδ terminates when
we consider bounded domains.

Theorem 3. Let δ > 0 and r ≥ 0 be rational numbers.
Consider a normed GEAR formula of the form (3) where
η defines a bounded subset of D. Then GEARSATδ(η, r, ψ)
terminates.

Proof: Towards a contradiction, assume GEARSATδ in-
voked on (η, r, ψ) does not terminate. Then there is no
bound on the number of iterations since the individual
steps are computable. Using the notations An := η(p) ∧∧n−1
i=1 ¬θr+δ(p, JqKβi) ∧ ψ(p,x) and Bn := θr(JpKαn , q) ∧
¬ψ(q,x) similar to those in the proof of Theorem 2, let (αn)n
and (βn)n be the sequences of assignments satisfying An and
Bn, respectively, computed by GEARSATδ(η, r, ψ) in iteration
n ∈ N. Let pn := JpKαn , qn := JqKβn be elements of Dpar

for each n ∈ N. We first show a lower bound on the distance
between candidates pn. Let k, n ∈ N with k < n. The triangle
inequality for ‖ · ‖ implies

‖pn − pk‖ ≥ ‖pn − qk‖ − ‖pk − qk‖. (∗)

Each assignment βk satisfies Bk, in particular, θr(pk, q), i.e.,
‖pk − qk‖ ≤ r holds. Additionally, αn satisfies An, in
particular ¬θr+δ(p, qk) from which we obtain ‖pn − qk‖ >
r + δ. These two facts together with (∗) imply ‖pn − pk‖ >
(r + δ)− r = δ.

Thus, the pairwise distances between candidates pn is at
least δ > 0. Since η defines a bounded set and is satisfied
by αn for each n ∈ N, the number of candidates pn with
pairwise distance of at least δ to each other is also bounded
by some N ∈ N. Thus, the set defined by η(p) is covered
by {z : θδ(z,pn)} ⊆ {z : θr+δ(z, qn)} for n = 1, . . . , N
making AN+1 unsatisfiable and therefore GEARSATδ returns
δ-unsat. A contradiction.

Theorem (2) and Theorem (3) imply the following.

Theorem 4. The algorithm GEARSATδ is a δ-decision proce-
dure for normed GEAR formulas.

A. Multiple solutions

We can use GEARSATδ to enumerate stable solutions in
the following way. Maintain a conjunction η of quantifier-free
formulas over free variables p, initially true. Then, in a loop,
first compute κ = GEARSATδ(η, θ, ψ) and record the formula
E(p) which it constructs internally. Second, replace η(p) by
E(p)∧(p 6= JpKκ) and repeat until κ = unsat. By Theorem 2,
every κ 6= unsat computed by this loop corresponds to a box
around JpKκ of radius r with the property that N is safe for all
parameters p from that box and for all unconstrained inputs
x. All κ are different, which is ensured by (p 6= JpKκ).

If, for instance, disjoint safe and r-stable regions are sought,
this predicate can be adjusted to maintain a concrete distance
between solutions which guarantees disjointness, i.e., ‖p −
JpKκ‖ > 2r. Instead of η being empty initially, it can also be
used to define a subset of the domain to be searched. This is
presented in Algorithm 3. Let us note that in Algorithm 3 the
lemmas are shared during the search for different solutions.

Algorithm 3 Enumerates r-stable pairwise disjoint solutions
function GEARREGIONSδ(η, r, ψ)

R← ∅
η1(p)← η(p)
for i = 1, 2, . . . do

κ← GEARSATδ(ηi, r, ψ)
if κ = δ-unsat then

break
end if
R← R ∪ {JpKκ}
E ← GEARSATδ .E . lemmas from GEARSATδ
ηi+1(p)← E(p) ∧ ‖p− JpKκ‖ > 2r

end for
return R

end function

B. Optimisation

In our application we want to find safe and stable con-
figurations such that for all inputs the output of the neural
network is greater than a specified threshold th . In this case
the specification is of the form N (q,x) ≥ th and ψ will be

ψ(q,x, y) ≡ (ϕN (q,x, y)→ y ≥ th).

Moreover we want to find configurations with high or close
to optimal values of th .

For this we use GEARSATδ to find close to optimal solutions
by incrementally increasing threshold th or by performing a
binary search for close to optimal th . Similarly, for enumer-
ation of solutions we can reuse lemmas generated by those
calls to GEARSATδ that return satisfying assignments.

Remark 1. It is possible in GEAR formulas (2) (and (3) as
a special case) to encode all universally quantified variables
in ∀x(ψ(q,x)) (which include all inputs and outputs) as
parameters under stability conditions resulting in the following
normalised form:

∃p[η(p) ∧ ∀q(θ(p, q)→ ψ(q))]

where p and q are of same shape, as follows. Let ξ, η, θ, ψ
be as in Definition 1. For every variable xi in x introduce an
existentially quantified variable yi and a universally quantified
variable zi. Next, define η′(p,y) ≡ η(p) and θ′(p,y, q, z) ≡
θ(p, q). Then the formula

∃py[η′(p,y) ∧ ∀qz(θ′(p,y, q, z)→ ψ(q, z))

has the same solutions as ξ and is in the above normalised
form.



This transformation has the effect of eliminating the (uni-
versally quantified) input/output variables and replacing them
with existentially quantified parameters under stability con-
ditions which require the solution to hold over entire in-
put/output domains. In this way we can uniformly treat inputs
as parameters under stability conditions. We adopted this
approach in our experiments.

VI. EXPERIMENTAL EVALUATION

We evaluated our configuration selection algorithm on 10
training datasets collected in an Electrical Validation Lab at
Intel. The output is an analog signal measuring the quality of
a transmitter or a receiver of a channel to a peripheral device.
Each channel is divided into eight bytes, and we treat each
channel as an unordered categorical variable with eight levels.
The integer variable in the data models clock ticks.

The datasets are freely available at http://www.cs.man.ac.
uk/∼korovink/fmcad2020: 5 transmitter (TX) datasets s2 tx,
m2 tx, h1 tx, h1 iter tx, mu tx and 5 receiver (RX) coun-
terparts s2 rx, m2 rx, h1 rx, h1 iter rx, mu rx. To avoid
IP disclosure, the numeric features including the output are
normalized to [0, 1]; the integer features are kept intact. We
refer to [23], [24] for details on the design of closely related
applications dealing with TX/RX/IO systems.

Our aim is to find safe and stable regions where the output o,
normalized to [0, 1], satisfies the constraint o ≥ th with as high
th ≤ 1 as possible in the grid ranging from 0.7 to 0.95 with an
increment of 0.05. In addition, we aim at finding stable safe
regions that are reusable across multiple bytes, with as high th
as possible. We built NN-ReLUs using the tensorflow [1]
and Keras [8] software packages. The different versions
of RX and TX datasets have five to eight input features
(not including the channel and bytes parameters). We use
NN-ReLUs with two internal layers, 14 nodes in the first
layer and 7 nodes in the second layer, which is in line with
rule-of-thumb guidelines for selecting the number of internal
nodes for a given number of inputs. As stability criterion for
solutions we employed a radius of 10% of the value around a
safe solution for the numerical variables and ±5 clock ticks for
the integer feature. These radii are measured in the Chebyshev-
norm ‖ · ‖∞.

We implemented our GEARSAT algorithms using Z3 [26]
as a backend for solving the quantifier-free fragment of T‖·‖,
which can be encoded in QF_LIRA in the SMT-Lib format [3].

Let us first remark that although it is possible to directly
encode the SSC problem as a quantified SMT formula without
our algorithms, e.g., Z3-v4.8.8 fails to solve a single problem
despite many state-of-the-art quantifier elimination procedures
are integrated in Z3; the same holds also for CVC4-v1.7 [2]
which is another top SMT solver. We included examples of
quantified SMT encoding on the website with datasets. In
our approach we only resort to quantifier free SMT calls to
solve quantified normed GEAR formulas. We believe the main
reason our algorithms perform well on these problems is due
to strong lemmas that take advantage of the guarded form to
exclude large regions from the search space.

RX
C:B th safe lb-ce lb-time ub-ce ub-time
0:0 0.9 100 54 319.05 – –
0:1 0.85 100 69 700.42 0 54.25
0:2 0.9 29 2867 3034.49 – –
0:3 0.85 100 251 512.31 0 111.00
0:4 0.9 100 128 830.72 – –
0:5 0.85 100 82 627.68 0 254.81
0:6 0.85 100 121 680.75 0 123.89
0:7 0.85 41 2620 3409.79 0 102.07
1:0 0.8 100 762 606.90 134 290.40
1:1 0.8 1 188 264.75 0 61.46
1:2 0.9 100 369 700.23 – –
1:3 0.8 100 3449 1328.61 2056 958.96
1:4 0.85 100 16 381.11 0 73.08
1:5 0.85 35 287 769.73 0 53.59
1:6 0.8 100 1088 980.34 0 68.65
1:7 0.9 100 84 405.49 – –

TX
C:B th safe lb-ce lb-time ub-ce ub-time
0:0 0.9 100 156 131.59 – –
0:1 0.9 51 1006 372.19 – –
0:2 0.9 100 69 114.17 – –
0:3 0.9 100 120 78.29 – –
0:4 0.9 100 315 211.75 – –
0:5 0.9 100 221 135.44 – –
0:6 0.9 20 110 41.84 – –
0:7 0.9 100 176 129.64 – –
1:0 0.9 100 84 89.81 – –
1:1 0.85 100 467 226.88 0 11.42
1:2 0.9 100 360 128.06 – –
1:3 0.9 100 169 82.60 – –
1:4 0.9 100 304 79.81 – –
1:5 0.85 100 357 205.29 0 20.24
1:6 0.9 100 259 68.61 – –
1:7 0.9 100 60 60.01 – –

TABLE I
BENCHMARKS OF FINDING UP TO 100 SAFE AND STABLE REGIONS FOR

DATA SET s2.

The results of computing stable safe regions along with
their optimal thresholds in the grid of thresholds described
above, for the receiver and transmitter datasets s2 rx, s2 tx
and h1 rx, h1 tx, respectively, are shown in Tables I and III.
The results are representative for all the datasets used in
our experiments. For each combination of channel and byte
values, a maximum number of regions was computed – up
to a threshold of 100 regions. During the run, the algorithm
generates candidate configuration parameters and checks for
counter-examples. The system can be used for both finding
safe and stable regions, and for checking that such regions
do not exist for a given th . For the cases when there are no
safe regions, the algorithm relaxes the safety constraint on the
output by lowering the threshold value th .

For each combination of channel-byte pair (C:B), the tables
give the best threshold (th), the number of safe regions found
by the algorithm (safe), and the number of counter-examples
(lb-ce) to the safety which are eliminated during the search,
along with the computation time for the lower and upper bound
of the threshold, respectively; these bounds are defined in the
next paragraph. The stable safe regions in the tables have not
only been constructed by Algorithm 2, but also by checking
each region against samples from the training dataset: the

http://www.cs.man.ac.uk/~korovink/fmcad2020
http://www.cs.man.ac.uk/~korovink/fmcad2020


C 0 0 1 2 3 4 5 6 7
0 – 77 28 16 70 67 22 38
1 20 – 7 10 14 58 32 12
2 0 0 – 0 3 0 2 0
3 0 3 0 – 0 13 0 1
4 6 5 6 0 – 0 0 11
5 0 7 0 7 0 – 5 16
6 0 12 25 9 15 87 – 37
7 0 1 0 0 7 0 0 –

C 1 0 1 2 3 4 5 6 7
0 – 0 0 15 0 34 35 0
1 0 – 0 0 0 0 0 0
2 8 0 – 0 0 2 1 23
3 0 0 0 – 0 2 5 0
4 7 1 0 39 – 60 86 3
5 0 0 0 1 0 – 1 0
6 5 0 0 13 16 4 – 0
7 39 0 1 17 0 54 5 –

TABLE II
SHARED SAFE AND STABLE REGIONS ACROSS MULTIPLE BYTES PER

CHANNEL IN DATA SET s2 rx : NUMBER OF REGIONS IN BYTE column IS
SAFE WITH RESPECT TO BYTE row.

RX
C:B th safe lb-ce lb-time ub-ce ub-time
0:0 0.9 100 1584 26376.50 – –
0:1 0.9 100 230 4780.70 – –
0:2 0.9 100 723 9084.00 – –
0:3 0.9 100 933 9596.69 – –
0:4 0.9 100 195 4924.51 – –
0:5 0.9 100 206 3511.69 – –
0:6 0.85 100 525 5213.19 636 6213.53
0:7 0.8 100 44 2854.15 0 434.43
1:0 0.9 100 51 2887.82 – –
1:1 0.85 100 81 1665.96 3 622.37
1:2 0.85 100 81 2758.16 33 651.10
1:3 0.85 100 149 3228.21 0 741.07
1:4 0.9 100 640 5713.27 – –
1:5 0.85 100 274 3532.65 0 398.29
1:6 0.9 100 90 2691.84 – –
1:7 0.9 100 336 4378.93 – –

TX
C:B th safe lb-ce lb-time ub-ce ub-time
0:0 0.9 100 215 1597.45 – –
0:1 0.9 100 341 1839.79 – –
0:2 0.9 100 523 3045.20 – –
0:3 0.9 100 186 1639.23 – –
0:4 0.9 100 100 635.99 – –
0:5 0.9 100 206 1544.68 – –
0:6 0.9 100 157 873.79 – –
0:7 0.9 76 186 694.96 – –
1:0 0.9 100 80 607.82 – –
1:1 0.9 10 269 843.37 – –
1:2 0.9 100 245 1809.32 – –
1:3 0.9 77 552 3206.61 – –
1:4 0.9 100 151 657.32 – –
1:5 0.85 100 152 681.89 0 42.05
1:6 0.9 100 42 376.40 – –
1:7 0.9 100 726 5759.01 – –

TABLE III
BENCHMARKS OF FINDING UP TO 100 SAFE AND STABLE REGIONS FOR

DATA SET h1. TIMES ARE IN SECONDS, ‘CE’ IS THE NUMBER OF
COUNTER-EXAMPLES, ‘LB’ AND ‘UB’ REFER TO THE PROOF OF LOWER

AND UPPER BOUND ON THE THRESHOLD, RESPECTIVELY.

regions violated by the samples in the data were not considered
safe even if the model output was safe on these samples.
The algorithm has been run on the normalized form of the
respective formulas as described in Remark 1.

If th < 0.9, then at least 2 searches for safe stable regions
were performed, one with threshold th , which succeeded in
finding some stable safe regions, and another with threshold
th+0.05, which did not find any and, in fact, did prove there
are none above th + 2 · 0.05. The factor 2 here comes from
the heuristic used by the solver that the center of a candidate
region should evaluate to th + 0.05. So we enumerated only
regions with center ≥ th + 0.05. If there are none, it proves
the upper bound th+0.05 on the safety threshold. If th = 0.9,
no upper bound check with threshold 0.95 has been performed,
since it could only prove the bound 1, which is clear by
construction. Tables I and III also provide the number of
counter-examples found during the proof and the computation
time.

As can be seen from Algorithms 2 and 3, for a region proven
safe two SMT calls were made and for each counter-example
(lb-ce and ub-ce) up to two SMT calls were performed. In
order to verify that the threshold th is minimal, one additional
call per C:B combination was required. As can be seen from
the tables, the total of these numbers in order to produce the
results for each C:B range between 233 and 11 211 Z3 calls.

In addition, Table II shows the count of stable safe regions
shared across multiple bytes of the same channel – from the
safe regions reported in Table I. Note that this table is not
symmetric because training samples falling in a shared stable
safe region can violate the output constraint for some of the
bytes (but not all the bytes) for which this region is safe.

As mentioned in the introduction, proving a safety constraint
on an NN output does not mean the modelled system itself is
safe. One reason for that is that it is very difficult to generate
high-quality training samples to build accurate models when
little is known about the behavior of the modelled system.
It therefore takes a number of iterations to improve the
training data and thereby improve the model. One can use the
stable safe regions to generate new training samples within
the safe regions in order to refine the current model. We
have performed such proof-based abstraction refinement of the
NN models on h1 rx and h1 tx datasets. We generated 100
random samples in each stable safe region and asked the Lab to
measure the output. Interestingly, 790 out of 1600 stable safe
regions for h1 rx remained safe in the sense that the system
output still satisfies the output constraint; and 1106 out of the
1463 safe regions of h1 tx remained safe. This matched the
user input that the RX model was much harder to analyze and
configure safely.

VII. CONCLUSIONS AND FUTURE WORK

We have defined the problem of configuration selection for
NN models in its general form and demonstrated the feasibility
of our proposed algorithms on a real-life industrial application.
Our work leverages the recent research on verifying inequality
constraints on NN-ReLU output when the inputs are also



constrained with inequalities, which can be seen as an atomic
black-box operation in our algorithms. In the current imple-
mentation we use the Z3 solver for performing this operation
in order to support real, integer and categorical variables. As
immediate future work, we intend to integrate and evaluate
other solvers that might be significantly faster for NN-ReLU
with only real-valued inputs (LP) or real and integer valued
inputs (MILP). In order to support NNs with transcendental
activation functions (such as Sigmoid or Softmax), as well
as transcendental constraints on safe and stable solutions, we
are extending the implementation to work with solvers such
as ksmt [5], dReal [10] and others. We will also integrate
other machine learning models such as random forest and
polynomial models which can be covered by our framework.

It is important to note that for many CAD applications, in
NN models used to model complex systems, there rarely is a
need for more than 5 to 20 input features; this is confirmed by
our experience of using NN and other models for a wide range
of CAD applications at Intel. Indeed, the state of the art is to
apply advanced feature selection [13] techniques to the input
features in the labeled dataset measured on the system, and to
select a subset consisting of highly relevant and highly inde-
pendent features that provide a high coverage of the variation
that exists in the data. Thus computational complexity of the
problem that we are dealing with is not preventing usage in
real-life CAD applications. For applications in computer vision
and related areas where very large NN models are required and
the inputs are real variables, we believe that integration of fast
decision procedures such as LP will help our algorithms to
scale, especially when the number of configuration parameters
is a relatively small fraction of the system’s interface.

Besides selection of safe and stable regions, our algorithms
addresses also the problem of selecting such regions where
the performance of the output is close to optimal. As a
future work, it would be interesting to adapt our algorithms
to multi-objective optimisation problems where the validity
of output constraints cannot be compromised for the benefit
of optimisation and at the same time Pareto-optimal regions
can be selected; besides the application domain discussed in
this work, relevant examples include joint optimisation of
power, performance and area, as well joint optimisation of
voltage, frequency and temperature, without compromising
safe operation. Currently multi-objective optimisation tasks are
handled in our framework via reduction to single-objective
optimisation using a weighted average over the optimisation
objectives.
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