
IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 9, NO. 1, MARCH 2017 63

Rapid Skill Capture in a First-Person Shooter
David Buckley, Ke Chen, Senior Member, IEEE, and Joshua Knowles

Abstract—Various aspects of computer game design, including
adaptive elements of game levels, characteristics of “bot” behavior,
and player matching in multiplayer games, would ideally be sensi-
tive to a player’s skill level. Yet, while game difficulty and player
learning have been explored in the context of games, there has been
little work analyzing skill per se, and how this is related to the in-
teraction of a player with the controls of the game—the player’s
input. To this end, we present a data set of 476 game logs from over
40 players of a first-person shooter game (Red Eclipse) as a basis
of a case study. We then extract features from the keyboard and
mouse input and provide an analysis in relation to skill. Finally, we
show that a player’s skill can be predicted using less than a minute
of their keyboard presses.We suggest that the techniques used here
are useful for adapting games to match players’ skill levels rapidly,
arguably more rapidly than solutions based on performance aver-
aging such as TrueSkill.

Index Terms—First-person shooter, player modeling, skill cap-
ture, skill measures, skill prediction.

I. INTRODUCTION

S KILL is an important component of any recreational or
competitive activity. Not only does it contribute to the out-

come, but the relationship between skill and the difficulty of
the activity affects the experience of those taking part. More
specifically, players in a game often have the most fun when
their skill is matched equally, rather than dominating novices or
being dominated by highly accomplished players [1].
In our research, skill is a property of a player, defined in terms

of their average performance. This definition discounts notions
of “skillful” behavior other than those that aid in winning the
game [2]. The definition used here falls in line with existing skill
measures [3], [4], and allows skill to be explicitly measured.
If a player’s skill were known before they played, their op-

ponents could be selected in a way that would optimize their
experience of the game. In competitive games, this is known
as matchmaking, and is widely used in online gaming. Single
player games, on the other hand, use dynamic difficulty adjust-
ment (DDA) [5], [6], where the game’s difficulty is changed ac-
cording to the player’s progress. Left 4 Dead’s AI director is an
example of this in action [7].
Unfortunately, there is currently no quick and accurate way of

measuring a player’s skill. Bayesian methods, such as TrueSkill

Manuscript received November 06, 2014; revised April 04, 2015, July 06,
2015; accepted August 21, 2015. Date of publication October 27, 2015; date of
current version March 15, 2017. This work was supported by the Engineering
and Physical Research Council under Grant EP/I028099/1.
The authors are with the School of Computer Science, University of Man-

chester, Manchester M13 9PL, U.K. (e-mail: david.buckley@cs.man.ac.uk;
ke.chen@manchester.ac.uk; j.knowles@manchester.ac.uk).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TCIAIG.2015.2494849

[4], require several games before converging, depending on the
number of players, and DDA relies on heuristic methods which
are not necessarily representative of a player’s skill [5]. In a
domain where a single bad experience can alienate a player, two
or three games are too many, so we seek to reduce this to a single
game or less.
Whereas a player’s performance may depend on several fac-

tors including their opponents, their input, e.g., mouse and key
presses, is consistent over several games. It is intuitive to as-
sume that a skilled player will interact with the controls differ-
ently to a novice [8]. Instead of relying on performance as a
measure for each player, we consider using their input and hy-
pothesize that it could better predict skill from fewer games.
Towards this goal, we have performed a systematic study

based on Red Eclipse, a first-person shooter (FPS). Game logs
were automatically recorded during the study, storing input
events, some game events and a few common measurements of
performance. In order to understand these measurements, we
present a thorough analysis of them and the features extracted
from the input events. Building on the success of random
forests in previous work [9], we then predict the player’s skill
with reasonable accuracy from only 30 s of data.
Our main contribution is a model capable of predicting a

player’s skill within a single game. As a minor contribution,
we also provide a complete data set of games containing player
input and game results, and some analysis of this data set, ex-
ploring its connection to player skill.
The rest of this paper is organized as follows. After a re-

view of previous work in Section II, the data set is described
in detail in Section III. We then use the techniques presented in
Section IV to analyze the data in Section V and present the skill
prediction in Section VI. Finally, we discuss the implications of
this research in Section VII and offer our concluding remarks in
Section VIII.

II. PREVIOUS WORK

We define skill as the average level of performance over a set
of games. A value of skill only holds meaning for a particular set
and for a particular averaging technique. This definition does not
consider concept drift or learning, and assumes skill is averaged
over a reasonable length of time. Note that the definition of skill
used here is distinct from the term “ability” defined by Parker
and Fleishman [10]: “Ability refers to amore general, stable trait
of the individual which may facilitate performance in a variety
of tasks. The term skill is more specific: it is task oriented.”
Performance is the value assigned to a person after a partic-

ular task has been completed. This value, or measurement, is
defined by a measure, where different measures may yield dif-
ferent performance measurements for the same task (e.g., the
player with the highest score may have taken the most damage),

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/

64 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 9, NO. 1, MARCH 2017

task

Performance

Skill

Ability

metrics prediction

Skill Capture

Fig. 1. Connections between relevant concepts used in this paper.

and the choice of measure used affects the rankings of players.
The connection between skill and performance has been illus-
trated in Fig. 1, and is similar to the connection Chomsky draws
between competence and performance [11].
We differentiate between a skill measure, which is calculated

by averaging performance over time, and skill prediction, the
process of predicting a skill measure using less information than
that required by the measure. Thus, while the prediction may
share the same unit as the measure, it is not guaranteed to pro-
duce the same ranking. Although both are considered methods
of skill capture, this research assumes that a skill measure al-
ways has higher validity than a prediction.

A. Performance and Skill Measures

There are numerous ways to measure performance of a task,
and each video game has its own common measures. StarCraft
and Counter-Strike, for instance, use win-loss measures and
rankings respectively, which determine the winner of each
game. However, players of these games use their own mea-
sures, e.g., actions-per-minute or kill-to-death ratio, to compare
themselves. Regardless of their purpose, these can, and often
are, averaged to provide players with skill measures.
A common problem with measures is “inflation,” where

players change their gameplay to manipulate their performance
(and consequently their skill measurement), contrary to how
the developers intended them to play. Combining and adjusting
different measures is done in order to encourage desired be-
havior [12]. The WN6 algorithm used for World of Tanks, for
example, takes a variety of measures and combines them using
weightings and a series of mathematical operations to produce
a single skill measure [13].
TrueSkill, unlike the simple measures previously mentioned,

averages performance using Bayesian updating [4]. The model,
which is based on the Elo rating [3], actually represents a belief
in a player’s skill, which can be reduced to produce a skill mea-
sure. The model uses rank as its performance measure, and can
therefore cope with multiple teams of varying player sizes. The
main criticisms of TrueSkill are its time to convergence, which
can take several games to find a confident representation, and
that values cannot be compared across different leagues [14].

B. Skill Prediction

Skill measures have the distinct disadvantage that perfor-
mance measurements must be taken over a set period of time

in order to determine an average. Users of the TrueSkill algo-
rithm, for instance, need to play anywhere between 3 and 100
games, depending on the number of players in each game. Skill
prediction techniques seek to determine an individual’s skill in
significantly less time.
Regan et al. extend a chess end-game performance measure

[15] to complete chess games [16]. Using the assumption that
computers can play better than humans, a player’s move is com-
pared with those of a computer to produce a prediction of the
player’s performance. The authors then use Bayesian averaging
over several moves in order to produce a skill prediction.
The task of skill prediction is not limited to games, and also

extends to domains such as teleoperations [17] and Human
Computer Interaction (HCI) [18], [19]. The work in HCI uses
several features of the user’s mouse input to predict their skill
for a specific task and for the whole system. The useful features
that these authors found have been tested in our own research
to explore how well the mouse performs within the context
of games. The major difference between their research and
ours is that the work in HCI focused on a predefined task with
specific instructions that the users can learn very quickly. This
contrasts with the task used in our own experiments, which is
more analogous to “system skill.”
Within the domain of video games, there have been a few

attempts at skill prediction, using techniques such as physiolog-
ical monitoring, recording game events, and logging player ac-
tions. The first of these, monitoring physiological responses, ex-
plored skill in a fighting game [2]. The researchers distinguished
between players of different skill using the performance mea-
sure “success rate” when inputting commands. However, while
the work provides a foundation for further research, there was
a very small number of participants and little analysis of the
differences between player types. Moreover, physiological data
collection can be intrusive, potentially distancing players from
immersion, thus changing how they play.
An alternative to physiological data is using information

about the game and high-level game events. This sort of data is
easy to collect, and useful for other methods of prediction [20].
Mahlmann et al. consider this data for predicting completion
time in Tomb Raider: Underworld [21]. The main focus of
the paper was not on player skill, however, and the results of
prediction were inconclusive.
Finally, the most closely related research was done in the

real-time strategy (RTS) game StarCraft II [22]. In this work,
Tetske et al. successfully predict a player’s skill level using
“actions,” the interactions between the player and the inter-
face, from a substantial data set. StarCraft II groups players
into leagues that represent different categories of skill. These
categories were used for skill prediction. Building on this, our
research uses hardware input events to predict continuous skill
measures, which are more descriptive of a player’s skill than
leagues.

III. DATA SET
In this work, we provide amedium-sized data set of game logs

recording keyboard and mouse input, some basic game events,
and a selection of player survey responses. To our knowledge,
there does not exist a publicly available data set based on an

BUCKLEY et al.: RAPID SKILL CAPTURE IN A FIRST-PERSON SHOOTER 65

Fig. 2. Screenshot of the game used in our study, Red Eclipse.

FPS, a popular video game genre. This data set compliments
existing data sets in the literature, such as the MazeBall data
set [23], a 3-D predator–prey game; the Platformer Experience
Dataset [24]; and a StarCraft data set [25], which all include
a variety of player feedback types, including keyboard input,
physiological data and survey responses. In contrast to these,
our data set also provides mouse movement events for each
game.
Designed for balance and representation of different player

types, the data, and how it was collected is described here. The
data set, scripts for manipulating it and further information can
be found on our website [26].

A. Red Eclipse
The test-bed for this experiment was an open-source first-

person shooter, Red Eclipse,1 which is a fully customizable,
fast-paced action game that includes many common game me-
chanics from the FPS genre. A screenshot of the game can be
seen in Fig. 2.
While Red Eclipse strives to emulate traditional game me-

chanics, it also provides a “parkour” system, which is not
present in most first-person shooters. The system allows players
greater freedom in moving around their environment. The key
associated with this parkour system was pressed by many of the
players, but only two players used it consistently throughout
their games.
The data collected from the games were limited to logging

the inputs of the player and select information about the game.

1http://www.redeclipse.net

A timestamped log file was constructed for each, recording the
game’s settings and a selection of events, including keyboard
and mouse events and some game features such as kill and
damage events.
Red Eclipse allows users to modify game settings in order to

customize their experience. This includes the type of game they
play (the game mode), the arena in which they play (the map),
and the difficulty of simulated enemies (bots).
The gamemodewas set to deathmatch, in which players com-

pete to kill each other for the most points. This limited the com-
plexity of rules and tactics used, and meant players were less
dependent on the skill of their teammates. In this experiment,
however, players only played with bots, and not against human
opponents. Each game was set to three minutes; considered long
enough for players to become immersed, but short enough to
avoid boredom [27].
Eight different maps were chosen in order to represent a range

of playing environments. Some maps were more difficult for
players, whereas others were harder for the bots. Six ranges of
bot difficulty were used (40–50 to 90–100) defining the min-
imum and maximum difficulty. From a given range, inclusive of
the two limits, the engine randomly selects an integer for each
bot which defines its skill for that game.

B. The Log File

Each log file has a set of metadata that describes the game
and a variable-length list of events. The log files, originally
text-based, have been published as JSON objects. This is for
flexibility and human-readability.

66 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 9, NO. 1, MARCH 2017

TABLE I
METADATA FOR EACH GAME

consent demographic tutorial game A likert A game B likert B 4-AFC

SESSION

game A

Fig. 3. Overall format of the experiment.

Each game comes with information that describes its settings.
The list of metadata can be found in Table I along with a brief
description. Although the bot difficulties had a larger range, they
were restricted to 40 and 100 in this experiment, as difficulties
lower than 40 were considered minimally different.
Two types of events were extracted from the game: input

events and game events. Input events were further separated
into key presses, mouse button presses and mouse motion. Key-
board and mouse button events contain a key identifier, the final
state of the button and the action the button caused in the game.
Mouse motion events have an x and y value (the number of
pixels the mouse was moved), and were triggered roughly once
every three milliseconds while the mouse was in motion.
The second category of events is a simplified summary of

game events. These events, generated by the game, only concern
events that happen to the player; in other words, interactions
between bots is not considered. The events were chosen with
the consideration of skill as a focus of the experiment. Some
examples included damage taken and dealt by the player, and
when points were awarded.

C. Data Collection

The data set was compiled from an in-house experiment. This
level of control gave both consistency and reliability to the data
set. It also allowed the experimenters to ensure the data set re-
mained balanced throughout.
Although the terms participant and player can be used inter-

changeably, we have attempted to attribute participant to the
context of the experiment, and player to the context of the game.
The overall format for the experiment is presented in

Fig. 3 and was similar to a previous study [27], although the

questionnaires differed. Each participant started by completing
a demographic questionnaire, a summary of which can be
found on the website [26]. They were then presented with a
written tutorial and given as much time as they needed to read
through it. This included a summary of general first-person
shooter mechanics and more specific details about Red Eclipse.
Participants were allowed to ask questions at any point through
the experiment or refer back to the tutorial, but the experimenter
did not provide information voluntarily.
The main part of the experiment was split into “sessions,”

where a single session consists of a pair of games and a respec-
tive set of questionnaires, as shown in Fig. 3. A participant was
allowed to complete as many sessions as they wanted. After
each game, the participant answered questions about their ex-
perience, and at the end of each session, the participant would
compare the two experiences. The questionnaires are described
in the next subsection.
All participants used the same keyboard and mouse, and a

headset was provided to wear at their discretion. The researcher
was present throughout the experiment to guide participants and
answer any questions. On three occasions, the researcher had
to intervene to ensure participants completed the questionnaires
for the previous games. For each of these games, there is roughly
an 18-s gap of missing game data. These games are highlighted
on the website [26].
Finally, it is worth noting that the data, while only spanning

a few weeks, is separated by several months. After the initial
study [9], a further period of data collection was held in order
to correct imbalances of skill, increase the overall number of
games, and increase the number of games per player. From all
45 participants, 14 took part exclusively in the first period, 11
in the second, and 20 took part in both periods.

BUCKLEY et al.: RAPID SKILL CAPTURE IN A FIRST-PERSON SHOOTER 67

Fig. 4. Number of games played by each player. Games highlighted by the
dashed box are those used in this research. Colors indicate which maps each
player played.

D. Questionnaires

There were three different questionnaires used in total
throughout the experiment: a demographic questionnaire, an
experience-based questionnaire using the Likert scale [28], and
an experience-based questionnaire using 4 Alternative Forced
Choice (4-AFC) [29].
The demographic questionnaire was presented to participants

before they started. This questionnaire gleaned information such
as age, gender and, most notably, two self-reported measures of
skill. The first measure, how many hours the participant plays
per week, is a common question in research [30], [31]. The
second, the number of first-person shooters played , was con-
ceived to discount the effect of other genres, and account for the
player’s entire gaming experience, rather than playing habits.
These questions were designed to be objective and avoid self-as-
sessment, which players are notoriously poor at [32]. The ques-
tions were multiple choice.
• How many hours do you usually play video games in a
week? 0–2, 2–5, 5–10, or 10+.

• How many first-person shooters have you played previ-
ously? Never, 1 or 2, 2–5, 5–10, or 10+.

From the group of 20 players that took part in both testing
periods, there were 6 players who gave different answers for this
self-reported skill measure between the two experiments. While
most of these discrepancies were off by one category, one player
reported playing more (1 or 2 went up to 5–10), while another
reported playing less (10+ down to 2–5). Any effects caused
by the time delay between experiments has been ignored in this
research.
The two experience-based questionnaires used the same

questions in two different forms. The first was Likert, to allow
the participant to rate each game separately, and the second
4-AFC, comparing the last two games. There are advantages
and disadvantages to each method, which are discussed more
thoroughly in [33]. Each of these questionnaires had four ques-
tions concerning the fun, the frustration, the challenge and the
player’s impression of the map. The first three questions have

Fig. 5. Number of times each map was played, overlaid by the number of times
played by each group in (FPSs played).

Fig. 6. As in Fig. 5, the number of games played on each difficulty, with addi-
tional grouping over (FPSs played).

been used previously with some degree of success [20], [34]. In
our research, the Likert questionnaire was worded as follows.
• How much would you want to keep playing the game?
• How frustrating did you find the game?
• How challenging did you find the game?
• How lost did you feel while playing the map?
The first question, regarding fun, was chosen to allow players

to question their current state of feeling, rather than remem-
bering how they felt during the game. This was to mitigate the
effects of memory on self-reported affect [35].

E. Data Distribution

The complete data set consists of 476 games from 45 partic-
ipants. The range of number of games played varied from 4 to
22, and has been visualized in Fig. 4.
As player skill was the main focus of this research, some ef-

fort went towards ensuring balance. The number of FPSs played
was found to be a better indicator of the two self-reported

measures, and was therefore used to validate the balance of the

68 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 9, NO. 1, MARCH 2017

data set. The maps and bot difficulties were selected indepen-
dently and uniformly at random, adjusted by the experimenter
to ensure players and groups of did not have a biased expe-
rience of the game. The final distribution of maps over players
is represented in Fig. 4, while the maps and bot difficulties for
each skill group is shown in Figs. 5 and 6, respectively.
Although there is an overall imbalance of players according

to , the distribution of the original population is unknown, and
the range of different skills observed was considered acceptable
for this experiment.
From a preliminary analysis of the first period of data, average

player skill leveled out near the sixth game. For this study, we
therefore discarded players with fewer than eight games and ig-
nored games played after the 16th, in order to minimize bias.
This selection of data (430 games from 37 players) is high-
lighted in Fig. 4 and has been used throughout the rest of this
paper.

IV. METHODS

This section reviews the existing measures and algorithms
that are used in our experiments. In order to perform the analysis
and prediction, we present some skill measures and highlight
some methods for evaluating them. We finally introduce some
techniques used to extract features from the players’ input that
are used in Section V.

A. Skill Measures
Many different measures are used to measure skill in a game,

some by the developers, and others by the community. In multi-
player games, there is often a ranking of players that determines
the order of winners. In Red Eclipse, score is used to determine
this ranking at the end of each game. Two other performance
measures, kill-to-death ratio (KDR) and accuracy, are also used
in FPS games to measure how efficient a player is. These are
more commonly used by the community to compare players.
The performance measures score and KDR are av-

eraged for each player over all their games to produce a single
skill measure, player score and player KDR . An in-depth
comparison between these skill measures and others such as
TrueSkill is presented separately [26]. While there are advan-
tages to using other measures, we found the most descriptive
measure of skill. , on the other hand, may represent play style
to some extent, and has been included as a comparison for some
experiments.
In order to perform classification and to help analyze the data,

four groups were created using . Each bin was defined using
limits defined in Table II. These groups are used as a substitute
for where groups of skill are more appropriate.

B. Evaluating Skill Measures
In classification problems, it is common to evaluate a model

using its testing accuracy (or error rate). Within regression
(predicting a continuous measure), the proportion of explained
variance is a common evaluation criterion. This measure
and others, including relative absolute error (RAE) [21], punish
offset results and those suffering from scaling effects. The
values we are comparing, however, are skill measurements;
measurements which are ultimately used for ranking players.

TABLE II
DIFFERENT GROUPS SEPARATED BY PLAYER SCORE

TABLE III
FEATURE GROUPS USED WITHIN THIS RESEARCH

We therefore use Spearman’s rank correlation coefficient
(Spearman’s) to evaluate our models. This has the added ad-
vantage that the ranking of two different skill measures can be
compared. Spearman’s is defined as the Pearson correlation
coefficient [36] between two ranked variables.

C. Measuring Player Input Complexity
A reasonable hypothesis is that skilled players use controls in

a more complex way than novices.We therefore use a number of
techniques to measure this complexity—some for compression
of a sequence and others for analysis on a time-series. These
techniques are used to extract features which are then used in
Sections V and VI.
The first two, Lempel–Ziv–Welch (LZW) [37] and Huffman

coding, can all be used for compression of data. Simple, or more
predictable data, should be easier to compress, allowing these to
be used to measure complexity. The first, LZW, has the advan-
tage of being simple to implement. The algorithm is as follows.
1) Initialize a dictionary with single-character strings.
2) Find the next longest string, , in the dictionary.
3) Replace with the dictionary index.
4) Add (next character) to the dictionary.
5) Go to Step 2.
The second algorithm, designed by Huffman [38], constructs

a Huffman tree based on probability distributions. Common
characters are given smaller codes and placed towards the left
of the tree. Encoding involves replacing characters with codes
from the tree. If the population distribution of the characters is
known, Huffman encoding is close to the theoretical minimum.
In addition to the compression techniques above, two mea-

sures of entropy are used: Shannon entropy and sample en-
tropy. The first measures the amount of information in a given
sequence

BUCKLEY et al.: RAPID SKILL CAPTURE IN A FIRST-PERSON SHOOTER 69

TABLE IV
TOP TEN FEATURES RANKED ACCORDING TO THEIR CORRELATION TO PLAYER SCORE

The second measure, sample entropy, based on approximate
entropy [39], is performed on continuous data and was origi-
nally designed for physiological time series. As it is indepen-
dent of data length, it is potentially useful in understanding the
complexity of either mouse or keyboard input.
The final complexity measure used was a discrete Fourier

transform [40]. This method reveals regularities in the data and
relative strengths of periodic components. Assuming complex-
ities vary with skill, it would be interesting to see how the fre-
quencies of the mouse input compare between users.

V. PLAYER INPUT FEATURE ANALYSIS

Using the methods presented in Section IV and previous work
[19], 174 global features were extracted from the keyboard and
mouse events of each game.2 These features are grouped and
analyzed in this section in order to better understand player input
and how it relates to skill.
Three different schemes, summarized in Table III, were used

to group the features. By grouping these features, we can start
to see how different types of player input are affected by skill.
While the groups of each scheme were designed to be mutually
exclusive, some features could not be categorized, so are left
ungrouped, and were not used in analysis.
In order to understand the relevance of the features, the

Pearson correlation coefficient (Pearson’s) was calculated
with respect to player score , chosen as a major index of
skill. Strong correlation has been defined here as 0.6, slightly
greater than that suggested in previous work [41]. The features
that are most correlated with skill have been summarized in
Table IV.

A. Hardware: Keyboard, Mouse Movement, and Clicks

The first set of groups separates features according to which
input device generated the events. As one of the first obstacles
to playing a game, use of the input devices is likely to contribute
to skill. In addition, different types of games may have different
dependencies on each of the devices.
The features extracted from the Keyboard events concerned

the complexity of the input or the frequency with which they
were pressed. Some of these features were based specifically on
the movement keys, which allow the player to move around. An

2The complete list of features and their associated groups have been provided
online as a separate document [26].

example of this is the amount of time the player spent strafing
left and right. A number of mouse movement events have al-
ready been used in related HCI research [19], and these formed
the basis for the Mouse features. Mouse Clicks, having been
used less in the literature and far more simple in nature, had the
fewest features. One set of features (an estimate of the player’s
position) was created using knowledge of both the mouse and
keyboard and, as such, did not fall into one single category.
These were ignored for this particular grouping.
The overall correlation of each group has been presented in

Fig. 7. Although Keyboard contains the most features, it was
also one of the more interesting groups, as most features were
correlated in some way. The Mouse group, on the other hand,
correlated significantly less with skill overall. This contrasts
previous work in HCI, in which mouse features played a key
role [19]. A possible cause of this is the increased noise in a
first-person shooter, where the mouse is constantly in motion,
and the objectives quickly change. By contrast, the objectives
in an HCI task are static. Clicks were also generally uncorre-
lated to skill, the most interesting being the LZW complexity of
a player’s clicks, with a correlation of only 0.418.

B. Type: Event Frequency, Complexity, and Kinetics
The second grouping scheme is slightly less obvious, in that

features are grouped according to what type of input they de-
scribe. Some features, for instance, describe the motion of the
mouse, referred to here as kinetics, whereas others describe how
complex a user’s input was (according to the algorithms pre-
sented in Section IV). These groups allow us to see what types
of player input are most relevant to skill. Unfortunately, there
were 49 ungrouped features which did not fall into any of the
three groups within this category.
The Complexity-based features that well correlated to skill

described how complex a player’s keyboard input was. For ex-
ample, the LZW complexity of the four movement keys (for-
ward, left, right and back) correlates highly with skill (Pearson’s

). Skilled players had a higher LZW value, implying
their skill is more complex according to the LZW algorithm.
The Kinetics group was much smaller than its counterparts.

The most interesting features, corresponding to , in-
clude the number of times the player changed the x-direction of
the mouse and the average angle of change in a player’s move-
ment. That there were few well correlated features in this group
suggests that this type of feature is less descriptive of player
skill.

70 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 9, NO. 1, MARCH 2017

Fig. 7. Pearson correlation coefficient for each feature to player score , grouped by feature group and ordered by correlation. Dotted lines indicate correlation
of .

Event Frequency described how often a player generated
events with the input devices. While not as prominent as key-
board, there were several features in this group that correlated
highly with skill, as illustrated in Fig. 7. In general, the higher a
player’s skill, the greater the number of presses, and the longer
each key was pressed. In addition to being well correlated to
skill, these features are also relatively easy to compute.

C. Context: Free and Dependent
In an ideal scenario, data collection could be done indepen-

dently of each game. By splitting the features into those that
require some prior knowledge about the game (e.g., the user
pressed a key that moves the player forward), and those that do
not (e.g., the user pressed the “w” key), we start to understand
how independent the features are from the game. This category
had the most balanced grouping out of each set. Although sim-
ilar in size, the Dependent group generally had more features
that correlated well with skill, as seen in Fig. 7. This indicates
that it was easier to create features given knowledge about the
game, which is not unexpected. On the other hand, features ex-
tracted from the keyboard without knowing anything about the
game still contained some information about skill. The length
of time any two keys were pressed at once, for instance, had a
correlation to of 0.780.

D. Player Learning
The cumulative average score for each score group has been

presented in Fig. 8. There is a notable increase in average per-
formance over the first few games for groups Skilled and Expert

which is less visible in the other two groups. Given that only
one person had played Red Eclipse before, this is consistent with
previous research that found skilled players learned faster [42].
Selecting a feature that was particularly highly correlated

with player score (the average number of keys pressed at once,
which had a Pearson’s), we plot the cumulative
average value for this over successive games in Fig. 9, again
grouping by score group. In contrast to Fig. 8, there is much
less variation in value over several games. This may suggest
that this feature is a poor indicator of skill because it is invariant
to learning effects. However, we argue that the initial learning
effects present in Fig. 8 are caused by player acclimatization to
the game, rather than increase in skill.

VI. SKILL PREDICTION
This section presents how a player’s skill can be predicted

from their input to a game. The experiments presented include
predicting different classes of skill, predicting continuous skill
measures and finally attempting to learn from smaller sections
of gameplay. Each experiment uses random forests, which is
introduced first.

A. Random Forests

There are several techniques that could be used for predicting
player skill. Previous research [22], [43] successfully used sup-
port vector machines [44]. However, random forests [45] were
chosen for their ability to generalize well, even with a large
number of features with unknown properties. A random forest

BUCKLEY et al.: RAPID SKILL CAPTURE IN A FIRST-PERSON SHOOTER 71

Fig. 8. Cumulative average score over several games for each score group.

Fig. 9. Cumulative average value for a feature over several games for each
score group.

also has the added advantage of being a “gray box,” in that it can
be used with little knowledge of its internal mechanics, but can
tell us which features were the most important during training.
Finally, a random forest model can be trained for either clas-
sification or regression, which can accommodate the different
shapes and sizes of skill measures.
Random forests are an ensemble method that train several

trees on different subsets of the data. The MATLAB imple-
mentation used was an interface to the R implementation by
Andy Liaw et al. [46]. Two settings are used during training
this model. The first, ntree, dictates how many trees to use.
This was left on its default setting of 500 for all the given ex-
periments. The second setting, mtry, determines how many
features are sampled from when a tree is split. This variable
was also left on its default setting, , where is the total
number of features.
Each experiment presented in this experiment used random

forests with 5-fold cross-validation, and the feature groupings
from Section V, regardless of correlation to skill measures.

Fig. 10. Mean accuracy of random forest trained to predict a player’s score
group using different feature groups. Error bars indicate standard error of each
model.

TABLE V
HOW EACH GAME WAS CLASSIFIED FOR A RANDOM FOREST TRAINED TO

PREDICT GROUPS OF PLAYER SCORE

B. Predicting a Skill Category
Categories of player can be used to get a general idea of how

skillful players are. StarCraft, for instance, groups players into
leagues, where players in the same league are generally compa-
rable in skill [22]. The score groups introduced in Section IV are
therefore used to construct a classification model.
The average accuracy for such a model trained on the dif-

ferent feature groups is presented in Fig. 10. An average ac-
curacy of 77.1% is achieved by training on Keyboard features,
significantly higher than the majority class baseline of 27.4%.
The confusion matrix of this model is given in Table V, and
shows that many mistakes (77.9% of all misclassifications) are
in neighboring classes. The Intermediate group was, however,
the most difficult to predict.
For some applications, it is often sufficient to be able to dis-

tinguish between two kinds of players: those who have never
played before, and those who have. For this binary classifica-
tion, we split the data into two groups: Novice and all others.
As shown in Fig. 11, the Context-Free group achieves an accu-
racy of 94.9%, whereas the worst group, Mouse, performed at
86.2%.

C. Predicting Skill Measures
Most measures of skill use a continuous measurement,

allowing detailed comparisons between players. A regression
model would allow these continuous values to be predicted
for each player, but has not been studied in the literature as

72 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 9, NO. 1, MARCH 2017

Fig. 11. Mean accuracy of random forest trained to detect Novice players using
different feature groups.

Fig. 12. Performance (Spearman’s) of models trained to predict player score
. Baseline indicates mean between score and .

thoroughly. Predicted values are represented in this research
with a hat (i.e., is the prediction of).
We constructed several models to predict player score

using different feature groups, measuring the performance for
each model using Spearman’s . The performances for these
models are summarized in Fig. 12. The comparative baseline for
this experiment is to use the player’s performance (which can
be collected after one game), as a substitute for the skill mea-
sure, , as this is known in real time. is successfully predicted
with , notably higher than , which has a correlation
of only .
We visualized the predicted values of player score against

the predicted values of player KDR for each game in Fig. 13.
Overlaid are the actual skill groups for each game. It is clear that
the two models agree with each. It also clusters the games into
three groups, around and . From this graph, it
seems particularly difficult for the model to distinguish between
the two highest skilled groups. It may be that the clusters created
here related to both skill and player style [8].

Fig. 13. Relationship between predicted player score and predicted player
KDR , colored by score group.

Fig. 14. How fast a classification model is able to predict binary score group.
Dotted line indicates mean accuracy guessing the majority class.

Fig. 15. How fast a regression model is able to predict player score . Base-
line indicates mean correlation of the current score at .

BUCKLEY et al.: RAPID SKILL CAPTURE IN A FIRST-PERSON SHOOTER 73

D. Prediction Convergence Rate
The features used up to this point were all extracted from the

entire three minutes of gameplay. However, in order to explore
how soon a player’s skill could be predicted, the same features
were extracted from smaller portions of the game, referred to
here as segments. In addition to the full 180-s segment already
used, data was extracted from the first s of the game, where
was selected from between 1 and 120 s.
Splitting the players into two roughly equally sized groups,

Novice and Intermediate players in one group, the Skilled and
Expert players in the other, we trained the model on the different
segment sizes. The result of this is presented in Fig. 14 and
compared to a model trained using score as a feature. We
performed the same test for a regression model, predicting for
each segment of the game. The performance of this is compared
to how well the current score at correlates to in Fig. 15.
Not only are the input-based models more accurate than their
baselines (using only the current score as a predictor), they start
to converge in a very short time (e.g., 30 s).
Having attempted to use keyboard and mouse data to predict

the player’s skill in different ways, we highlight some of the
more interesting results. Primarily, we find that it is more fea-
sible to predict a player’s skill within 30 s of game data using
the player’s input than it is using the player’s performance for
that game. In addition to predicting categories of players [22],
we were also able to predict continuous skill measures such as
a player’s average score .

VII. DISCUSSION

This section will discuss the implications and limitations of
the data set and predictive model, and outline future work that
this research leaves open.
Our data set, presented in detail in Section III, is potentially

useful to anyone delving into player input, particularly where
two distinct input devices are required (e.g., a keyboard and
mouse). Although our research did not offer promising results
with regards to the mouse input, it may be that there still exist
features of mouse input that can describe a player, their style, or
even their skill level. There is a small set of game events avail-
able, although limited to basic interactions. This means predic-
tion cannot be done based on higher-level game states such as
player positions. The player experience feedback has also been
left unexplored, leaving open an entirely different subject of re-
search: how a player’s input relates to their experience.
The two major limitations with this data set that may di-

rectly affect this research, are: 1) that players only competed
against bots; and 2) the lack of expert players for this specific
game. Although the measures used here were comparable be-
tween players, it is feasible that players would perform differ-
ently when competing directly against each other. Addition-
ally, real-world expert players would have more experience than
those that took part in our experiment, limiting the direct use-
fulness of our model. Both of these issues would require further
research to explore.
During our analysis of the features, we found that the key-

board was the most descriptive input device of skill. The mouse
features, on the other hand, were very weakly correlated to

player skill. While useful in previous research [19], it may
simply be too random for use in this application.3 We also
showed that even though knowledge of the game was preferred
when extracting features, there were features that correlated
with skill that required no previous knowledge of the game.
Using this, models based on a game-independent approach may
be implemented externally to a game. On the other hand, the
features extracted were limited to input features. As such, the
predictive models may be limited to predicting skill at using
the input, or a player’s mechanical dexterity, discounting other
aspects of skill, such as tactical thinking [47].
There are several key differences between the prediction done

in this research and that in previous work [9], [22]. The first is
the skill measures used, which are more objective. Secondly,
we showed that skill measures such as average score could
be predicted relatively accurately—more so than using a perfor-
mance measure like . And finally, this could be achieved within
the first half minute of gameplay. Using this model, match-
making algorithms could initialize skill values for players, and,
after a few games, switch to another slower, but more reliable,
model such as TrueSkill. This model also addresses TrueSkill’s
limitation, where players have to compete with each other for
TrueSkill values to become meaningful. The presented model
takes each new player and predicts their skill independently.
We defined our task as the average skill at deathmatch over a

preselected number of maps. This meant that our “ground truth”
was the average rank of the player compared to other players,
. If the task changed, however, to a different game mode, or to
a different game, the ground truth would undoubtedly change,
and as such, the meanings of these skill measurements. In addi-
tion, although each player in our data set experienced a well-bal-
anced proportion of content, traditional games may offer more
content to the player, and a player may have a preference for
particular maps, skewing a measure such as , which was cal-
culated using the mean. As such, different averaging techniques
should be compared to account for differences in content. This
research also assumed skill to be measured on a singular dimen-
sion, averaged from final performance. It may, however, be the
case that skill is multidimensional, and, as such, requires a mul-
tidimensional model [48].
The most obvious next step with this research is to show how

these techniques can be applied. An obvious example, as already
mentioned, is matchmaking. Would using a rapid model pre-
sented here help improvematchings over the first few games in a
matchmaking system? And similarly, in single-player games, it
is worth asking whether a rapid model can reliably select the dif-
ficulty for players, removing the need for players to learn what
the developer means by “normal” or “hard.”
Many of the features we collected are relevant to all PC-based

first-person shooters. Two possible extensions on this work are
either generalizing to other games in the genre or attempting to
predict skill on console devices. Difficulties may start to arise
with the former when a game’s pace changes. The Counter-
Strike series, for example, are much slower paced than Red

3Any findings in this research are limited to the types of features extracted.
There may yet be other features of mouse movement that correlate well with
skill.

74 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 9, NO. 1, MARCH 2017

Eclipse, and Team Fortress 2 lets players compete as different
classes, each with different styles of play. Console games, on
the other hand, control player movement using analogue sticks,
which may require completely different types of features.

VIII. CONCLUSION

This research has presented a solid model for skill prediction
in a first-person shooter, reliably doing so within 30 s of game-
play. Moreover, this was done exclusively using a player’s input
to the game.
The applications for this research can be directly applied to

matchmaking and DDA systems, potentially improving player
satisfaction in the short-term. However, the models will need to
be further refined or adapted when applied to other domains or
when using different input devices. The area of research that we
intend to explore next is skill capture in single-player games,
applying the same methods presented here, and showing how
they can be used to improve DDA.

ACKNOWLEDGMENT

The authors would like to thank the people at the University
of Manchester for assisting with experiments, and the reviewers
for their valuable feedback. A preliminary version of the predic-
tion section can be found in [9].

REFERENCES
[1] M. Csíkszentmihályi, Flow: The Psychology of Optimal Experience.

New York, NY, USA: Harper & Row, 1990.
[2] T. Taneichi andM. Toda, “Fighting game skill evaluation method using

surface EMG signal,” in Proc. IEEE Conf. Consumer Electron., Oct.
2012, pp. 106–107.

[3] A. Elo, The Rating of Chessplayers, Past and Present. New York,
NY, USA: Arco, 1972.

[4] R. Herbrich, T. Minka, and T. Graepel, “TrueSkill(TM): A Bayesian
skill rating system,” Adv. Neural Inf. Process. Syst., vol. 20, pp.
569–576, Jan. 2007.

[5] G. Andrade, G. Ramalho, H. Santana, and V. Corruble, “Extending
reinforcement learning to provide dynamic game balancing,” in Proc.
IJCAIWorkshop Reason. Represent. Learn. Comput. Games, Jul. 2005,
pp. 7–12.

[6] C. H. Tan, K. C. Tan, and A. Tay, “Dynamic game difficulty scaling
using adaptive behavior-based AI,” IEEE Trans. Comput. Intell. AI
Games, vol. 3, pp. 289–301, 2011.

[7] M. Booth, “The AI systems of left 4 dead,” in Proc. 5th Artif. Intell.
Interactive Digital Entertain. Conf., Stanford, CA, USA, Oct. 2009.

[8] J. Gow, R. Baumgarten, P. Cairns, S. Colton, and P. Miller, “Unsuper-
vised modeling of player style with LDA,” IEEE Trans. Comput. Intell.
AI Games, vol. 4, no. 3, pp. 152–166, 2012.

[9] D. Buckley, K. Chen, and J. Knowles, “Predicting skill from gameplay
input to a first-person shooter,” in Proc. IEEE Conf. Comput. Intell.
Games, Aug. 2013, pp. 105–112.

[10] J. F. Parker and E. A. Fleishman, Ability Factors and Component Per-
formance Measures as Predictors of Complex Tracking Behavior, ser.
Psychological Monographs: General and Applied. Worcester, MA,
USA: APA, 1961.

[11] N. Chomsky, Aspects of the Theory of Syntax. Cambridge,MA,USA:
MIT Press, 1965.

[12] S. Samothrakis, D. Perez, P. Rohlfshagen, and S. Lucas, “Predicting
dominance rankings for score-based games,” IEEE Trans. Comput. In-
tell. AI Games, Aug. 2014.

[13] “Curious about WN6? read here. Forum,” [Online]. Avail-
able: http://forum.worldoftanks.com/index.php?/topic/203366-cu-
rious-about-wn6%-read-here/ Jan. 2013

[14] P. Dangauthier, R. Herbrich, T. Minka, and T. Graepel, “TrueSkill
through time: Revisiting the history of chess,” in Advances in Neural
Information Processing Systems 20. Cambridge, MA, USA: MIT
Press, 2008, pp. 931–938 [Online]. Available: http://research.mi-
crosoft.com/apps/pubs/default.aspx?id=74417

[15] G. M. Haworth, “Gentlemen, stop your engines!,” ICGA J., vol. 30, no.
3, pp. 150–156, 2007.

[16] G. Di Fatta, G. Haworth, and K. W. Regan, “Skill rating by Bayesian
inference,” in Proc. IEEE Symp. Comput. Intell. Data Mining, Mar.
2009, pp. 89–94.

[17] Y. Xu and J. Yang, “Towards human-robot coordination: Skill mod-
eling and transferring via hidden Markov model,” in Proc. IEEE Conf.
Robot. Autom., May 1995, vol. 2, pp. 1906–1911.

[18] A. Hurst, S. E. Hudson, and J. Mankoff, “Dynamic detection of novice
vs. skilled use without a task model,” in Proc. SIGCHI Conf. Human
Factors Comput. Syst., 2007, pp. 271–280.

[19] A. Ghazarian and S. Noorhosseini, “Automatic detection of users’ skill
levels using high-frequency user interface events,” User Model. User-
Adapt. Interact., vol. 20, no. 2, pp. 109–146, 2010.

[20] C. Pedersen, J. Togelius, and G. N. Yannakakis, “Modeling player ex-
perience for content creation,” IEEE Trans. Comput. Intell. AI Games,
vol. 2, pp. 54–67, Mar. 2010.

[21] T. Mahlmann, A. Drachen, J. Togelius, A. Canossa, and G. N. Yan-
nakakis, “Predicting player behavior in Tomb Raider: Underworld,” in
Proc. IEEE Symp. Comput. Intell. Games, 2010, pp. 178–185.

[22] T. Avontuur, P. Spronck, and M. van Zaanen, “Player skill modeling in
starcraft II,” in Proc. AAAI Conf. AI Interactive Digit. Entertain., 2013.

[23] G. N. Yannakakis, H. P. Martínez, and A. Jhala, “Towards affective
camera control in games,” User Model. User-Adapt. Interact., vol. 20,
no. 4, pp. 313–340, Oct. 2010.

[24] K. Karpouzis, G. N. Yannakakis, N. Shaker, and S. Asteriadis, “The
platformer experience dataset,” in Proc. Conf. Affect. Comput. Intell.
Inter., Xi’an, China, 2015.

[25] G. Synnaeve and P. Bessire, “A dataset for StarCraft AI and an example
of armies clustering,” in Proc. AIIDE Workshop AI Adversarial Real-
Time Games, 2012.

[26] D. Buckley, K. Chen, and J. Knowles, “Keyboard and mouse data from
a first-person shooter: Red Eclipse,” [Online]. Available: http://dx.doi.
org/10.15127/1.262244

[27] S. Tognetti, M. Garbarino, A. T. Bonanno, M. Matteucci, and A.
Bonarini, “Enjoyment recognition from physiological data in a car
racing game,” in Proc. Int. Workshop Affect. Inter. Natural Environ.,
2010, pp. 3–8.

[28] R. Likert, A Technique for the Measurement of Attitudes 1932.
[29] G. T. Fechner, Elemente der Psychophysik. Leipzig, Germany: Bre-

itkopf & Härtel, 1860.
[30] A. Canossa, J. Martinez, and J. Togelius, “Give me a reason to

dig Minecraft and psychology of motivation,” in Proc. IEEE Conf.
Comput. Intell. Games, Aug. 2013, pp. 1–8.

[31] N. Shaker, S. Asteriadis, G. Yannakakis, and K. Karpouzis, “A game-
based corpus for analysing the interplay between game context and
player experience,” in Proc. Conf. Affect. Comput. Intell. Inter., S. D.
Mello, A. Graesser, B. Schuller, and J.-C.Martin, Eds., 2011, vol. 6975,
pp. 547–556.

[32] J. Kruger and D. Dunning, “Unskilled and unaware of it: How diffi-
culties in recognizing one’s own incompetence lead to inflated self-as-
sessments,” J. Personal Social Psychol., vol. 77, pp. 1121–1134, 1999.

[33] G. N. Yannakakis and J. Hallam, “Ranking vs. preference: A compar-
ative study of self-reporting,” in Proc. Conf. Affect. Comput. Intell.
Inter., Berlin/Heidelberg, Germany, 2011, pp. 437–446.

[34] V. M. lvarez Pato and C. Delgado-Mata, “Dynamic difficulty adjusting
strategy for a two-player video game,” Procedia Technol., vol. 7, pp.
315–321, 2013.

[35] D. Kahneman, , D. Kahneman and A. Tversky, Eds., “Choices, values
and frames,” in Experienced Utility and Objective Happiness: A
Moment-Based Approach. New York, NY, USA: Cambridge Univ.
Press, 2000, ch. 37, pp. 673–692.

[36] K. Pearson, “Note on regression and inheritance in the case of two
parents,” Proc. Roy. Soc. Lond., vol. 58, no. 347–352, pp. 240–242,
1895.

[37] T. A. Welch, “A technique for high-performance data compression,”
Computer, vol. 17, no. 6, pp. 8–19, Jun. 1984.

[38] D. A. Huffman, “A method for the construction of minimum-redun-
dancy codes,” Proc. IRE, vol. 40, no. 9, pp. 1098–1101, Sep. 1952.

BUCKLEY et al.: RAPID SKILL CAPTURE IN A FIRST-PERSON SHOOTER 75

[39] J. S. Richman and J. R. Moorman, “Physiological time-series
analysis using approximate entropy and sample entropy,” Amer.
J. Physiol.—Heart Circulatory Physiol., vol. 278, no. 6, pp.
H2039–H2049, Jun. 2000.

[40] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calcu-
lation of complex Fourier series,” Math. Comput., vol. 19, no. 90, pp.
297–301, 1965.

[41] J. Cohen, Statistical Power Analysis for the Behavioral Sciences.
Mahwah, NJ, USA: L. Erlbaum Associates, 1988.

[42] N. J. Hogle, W. D. Widmann, A. O. Ude, M. A. Hardy, and D. L.
Fowler, “Does training novices to criteria and does rapid acquisition of
skills on laparoscopic simulators have predictive validity or are we just
playing video games?,” J. Surgical Educ., vol. 65, no. 6, pp. 431–435,
2008.

[43] A. Drachen, A. Canossa, and G. N. Yannakakis, “Player modeling
using self-organization in Tomb Raider: Underworld,” in Proc. IEEE
Symp. Comput. Intell. Games, 2009, pp. 1–8.

[44] J. C. Platt, “Sequential minimal optimization: A fast algorithm for
training support vector machines, advances in kernel methods—Sup-
port vector learning Microsoft Research, Tech. Rep. MSR-TR-98-14,
1998.

[45] L. Breiman, “Random forests,”Mach. Learn., vol. 45, pp. 5–32, 2001.
[46] A. Liaw and M. Wiener, “Classification and regression by random-

Forest,” R News vol. 2, no. 3, pp. 18–22, 2002 [Online]. Available:
http://CRAN.R-project.org/doc/Rnews/

[47] D. Conroy, Apr. 2012, A Simple Model for Measuring Skill Ceilings
in Video Games. Blog. [Online]. Available: http://tinmangdj.blogspot.
co.uk/2012/04/simple-model-for-measuring-skill-in.html

[48] O. Delalleau, E. Contal, E. Thibodeau-Laufer, R. Ferrari, Y. Bengio,
and F. Zhang, “Beyond skill rating: Advanced matchmaking in Ghost
Recon online,” IEEE Trans. Comput. Intell. AI Games, vol. 4, no. 3,
pp. 167–177, Sep. 2012.

David Buckley received the B.Sc. degree (with first-
class honors) in 2011 from the University of Man-
chester, Manchester, U.K., where he is a currently
pursuing the Ph.D. degree in computer science.
His research mainly concerns adapting games

to match player skill, with a focus on first-person
shooters. He is also interested in general player
modelling, level adaptation, and skill capture in
other domains, including language acquisition.

Ke Chen (M’97–SM’00) received the B.Sc., M.Sc.,
and Ph.D. degrees in computer science in 1984, 1987,
and 1990, respectively.
He has been with The University of Manchester,

Manchester, U.K., since 2003. He was previously
with The University of Birmingham, Peking Univer-
sity, The Ohio State University, Kyushu Institute of
Technology, and Tsinghua University. His current
research interests lie in machine learning, machine
perception, and their applications in intelligent
system development, including AI video games.

Dr. Chen has been on the Editorial Board of several academic journals,
including Neural Networks (2011–present) and the IEEE TRANSACTIONS ON
NEURAL NETWORKS (2005–2010). He was a Technical Program Co-Chair of
the International Joint Conference on Neural Networks (IJCNN’12) and has
been a member of the Technical Program Committee of numerous international
conferences. In 2008 and 2009, he chaired the IEEE Computational Intelligence
Society’s Intelligent Systems Applications Technical Committee and the IEEE
Computational Intelligence Society’s University Curricula Subcommittee. In
2012 and 2013, he was a member of IEEE Biometrics Council AdCom. He
is a recipient of several academic awards, including the NSFC Distinguished
Principal Young Investigator Award in 2001 and JSPS Research Award in 1993.

Joshua Knowles received the B.Sc. (Hons.) degree
in physics with a minor in maths in 1993, the M.Sc.
(with distinction) in information systems engineering
in 1997, and the Ph.D. degree in computer science in
2002, all from the University of Reading, Reading,
U.K.
He is a Professor of Natural Computation in

the School of Computer Science, University of
Birmingham, Birmingham, U.K., and an Honorary
Professor in the Decision and Cognitive Sciences
Research Centre, Alliance Manchester Business

School, Manchester, U.K. His Ph.D. thesis was part of a second wave of work
on evolutionary multiobjective optimization (EMO), helping to establish the
field and some of its central topics. Contributions (with various co-authors)
have included theoretical work generalizing No Free Lunch, local search
methods with provable approximation properties, and ParEGO–one of the
better known surrogate-based methods for expensive optimization problems.
He currently leads a group (split between Manchester and Birmingham)
studying EMO, computational biology, artificial life, and applied optimization.
He has worked on optimization or machine learning projects with a number of
organizations, including BT, Astra Zeneca, Theo Chocolate, GlaxoSmithKline,
Thermo Instruments, and Jodrell Bank Centre for Astrophysics.
Dr. Knowles appeared as Keynote Speaker at the IEEE Symposium Series on

Computational Intelligence (SSCI), Cape Town, South Africa, in 2015, and Ple-
nary Speaker at the Surrogate-Assisted Multi-Criteria Optimization (SAMCO)
Workshop, Lorentz Centre, The Netherlands, in 2016.

