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Abstract

As a new pattern classification method, nearest feature line (NFL) provides an effective way to tackle the sort of

pattern recognition problems where only limited data are available for training. In this paper, we explore the use of

NFL for speaker identification in terms of limited data and examine how the NFL performs in such a vexing problem

of various mismatches between training and test. In order to speed up NFL in decision-making, we propose an al-

ternative method for similarity measure. We have applied the improved NFL to speaker identification of different

operating modes. Its text-dependent performance is better than the dynamic time warping (DTW) on the Ti46 corpus,

while its computational load is much lower than that of DTW. Moreover, we propose an utterance partitioning strategy

used in the NFL for better performance. For the text-independent mode, we employ the NFL to be a new similarity

measure in vector quantization (VQ), which causes the VQ to perform better on the KING corpus. Some computational

issues on the NFL are also discussed in this paper.

� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Nearest feature line (NFL) is a new pattern
classification method, first proposed by Li (1998).
In particular, it performs better on the condition
that only limited data are available for training.
The basic idea underlying the NFL approach is to
utilize all the possible lines consisting of any pair
of feature vectors (prototypes) in a given training

set to encode the feature space in terms of the
ensemble characteristics and the geometric rela-
tionship. As a simple yet effective algorithm, the
NFL has shown good performance in face recog-
nition (Li, 1998), audio classification and retrieval
(Li, 2000), and image classification (Li et al., 2000).
The NFL takes advantage of both the ensemble
and the geometric features of samples for pattern
classification. In contrast to a nearest neighbor
(NN) classifier, the NFL makes better use of the
ensemble information for decision-making.
Speaker identification is a task to determine an

unknown voice token as belonging to one of reg-
istered speakers. There are usually two operating
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modes; i.e., text-dependent and text-independent
modes. By text-dependent, the same text is used in
both training and testing. For the text-independent
mode, any text is allowed during speaker identifi-
cation. There are numerous sources of variability
leading to poor speaker identification performance.
The mismatch factors include session variability,
health, educational level and intelligence, speech
effort level, speaking rate as well as experience
(Doddington et al., 2000). Therefore, speaker
identification is extensively recognized as a chal-
lenging pattern classification problem.
Dynamic time warping (DTW) is a typical

method to align two sequences of different lengths,
and thus, applicable to both speech and speaker
recognition for temporal template matching
(Sakoe and Chiba, 1978; Furui, 1981). For speaker
identification, the DTW distinguishes between two
different speakers by means of speaker character-
istics conveyed in verbal information of the given
text. Thus, the frame-by-frame alignment makes
the DTW applicable to only a text-dependent task.
Unfortunately, such a frame-by-frame alignment
leads to an expensive computational cost. In con-
trast, vector quantization (VQ) (Linde et al., 1980)
provides a way to take advantage of speaker
features regardless of verbal information, and
therefore, becomes a useful method for text-inde-
pendent speaker identification (Soong et al., 1985).
In VQ, an NN criterion is employed for decision-
making by measuring the similarity between a test-
ing pattern and every codeword achieved during
training. Thus, the geometric relationship among
codewords is not sufficiently taken into consider-
ation in the decision-making process.
Theoretically, speaker recognition belongs to

the category of non-verbal speech classification.
Although both instantaneous and transitional
information turns out to be useful for speaker
recognition (Soong and Rosenberg, 1988), our
previous work showed that the use of such tran-
sitional (inter-frame) information might not be
involved with a strict temporal alignment (Chen
et al., 1996). Moreover, some instantaneous in-
formation carried by certain frames within an ut-
terance can play a more important role than that
of others in text-dependent speaker identification
(Chen et al., 1996). In this paper, we explore the

use of NFL for speaker identification without a
strict temporal alignment. In this paper, we at-
tempt to investigate the performance of the NFL
in speaker identification and examine how the
NFL approach performs in such a vexing problem
of various mismatches between training and test.
We propose an utterance partitioning strategy for
the NFL to yield better text-dependent perfor-
mance. On the other hand, we employ the NFL as
a new similarity measure in VQ for the text-inde-
pendent mode. In reality, a VQ method may need
numerous codewords to model the original prob-
lem. Since an exhaustive search in the feature-line
space is necessary for decision-making, the NFL
measure could introduce higher computational
cost to decision-making. In order to alleviate the
problem, we propose a new distance calculation
algorithm to reduce the computational cost. Some
computational issues related to the NFL will also
be discussed in this paper.
In simulations, we use two benchmark speech

databases of Linguistic Data Consortium, Ti46
and KING, designed especially for speaker recog-
nition. The former is used for the text-dependent
mode, and the latter is used for the text-indepen-
dent mode. As a consequence, text-dependent
simulation results indicate that the NFL performs
better than the DTW and its computational cost is
much lower than that of DTW during decision-
making. On the other hand, text-independent
simulation results suggest that the VQ with a help
of the NFL as a similarity measure leads to the
better performance in contrast to the standard VQ
itself for the same problem.
This paper is organized as follows: Section 2

briefly reviews the NFL and presents a new dis-
tance calculation algorithm. Section 3 describes
the methodology of our experiments, and Section
4 reports simulation results. Some issues related to
the NFL are discussed in Section 5 and conclu-
sions are drawn in the last section.

2. Nearest feature line

In this section, we first briefly review NFL, and
then, present a new distance calculation algorithm
for the NFL to find the feature line of the nearest
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distance from an unknown pattern to feature lines
composed of the prototypes registered in a pattern
classification system.

2.1. Brief review

NFL assumes that there are at least two pro-
totypes in every class. The line passing through
two feature points in the same class can extrapo-
late or interpolate to form a feature line in the
feature space, as illustrated in Fig. 1.
We consider two feature points f si and f sj in

the feature space belonging to class s. Let f si ¼
ðf s

i;0; f
s
i;1; . . . ; f

s
i;m; . . . ; f

s
i;MÞ, 06m6M � 1, whereM

is the dimension of this feature point. The distance
d between the feature line f si f

s
j passing through f si

and f sj and a query feature point f x is calculated as

dðf x; f s
i f

s
jÞ ¼ kf x � psi;jk; ð1Þ

where psi;j is the projection point of f x (c.f. Fig. 1)
and k � k is the Euclidean norm. Thus, psi;j can be
achieved by

psi;j ¼ lf s
i þ ð1� lÞf s

j ¼ f si þ lðf sj � f si Þ; ð2Þ

where

l ¼
ðf x � f si Þ

Tðf sj � f si Þ
ðf sj � f si Þ

Tðf sj � f si Þ
: ð3Þ

We can find the feature line of minimal distance
by traversing all i and j (i 6¼ j), and thus, name it
NFL. As a consequence, the testing pattern is

recognized as belonging to the class represented by
the prototypes constituting the NFL.

2.2. A new distance calculation algorithm

We denote f s
i , 06 i6Ns � 1, as training feature

points belonging to class s in the feature space, and
Ns is the number of points in class s. f x is a query
feature point, psi;j, 06 i6Ns � 1, i < j6Ns � 1, is
the projection of f x onto the feature line passing
through f si and f sj. hs

i;j is the angle formed at the
intersection of feature lines f xf

s
i and f xp

s
i;j. Then we

can get a cluster of lines all passing through f si
belonging to class s, 06 i < Ns � 1, as illustrated in
Fig. 2.
Then, the distance between f x and f si f

s
j can be

calculated as

dðf x; f
s
i f

s
jÞ ¼ kf x � f sik sin hs

i;j; ð4Þ

where kf x � f s
ik is the norm which is unchangeable

in the same cluster. When sin hs
i;j is a minimum,

that is,

j cos hs
i;jj ¼

jðf x � f si Þ
Tðf sj � f si Þj

kf x � f sikkf
s
j � f s

ik

is maximum, dðf x; f si f
s
jÞ is the shortest in this

cluster. Since kf sj � f sik can be achieved off-line
during training, thus we only need to compute
jðf x � f s

iÞ
Tðf s

j � f s
i Þj in testing phase. Let

ksi ¼ argmax
i<j6Ns�1

jðf x � f si Þ
Tðf sj � f si Þj

jf sj � f si j
;

Fig. 1. Feature line f si f
s
j and the query feature point f x.
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thus, the nearest distance in cluster i belonging to
class s can be calculated as

dðf x; f
s
i f

s
ksi
Þ ¼ kf x � f s

ik
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos2 hs

i;ksi

q

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kf x � f s

ksi
k2 �

jðf x � f s
ksi
ÞTðf s

i � f s
ksi
Þj

kf s
i � f s

ksi
k

 !2vuut
:

ð5Þ
Then, the nearest distance ds

NFL in terms of class
s is

ds
NFL ¼ argmin

06 i<Ns�1
dðf x; f

s
i f

s
ksi
Þ: ð6Þ

The decision rule throughout all classes is de-
fined as follows:

s
 ¼ argmin
16 s<S

ðds
NFLÞ; ð7Þ

where S is the number of registered speakers and s


is the resulting speaker identity in terms of the
current testing pattern.
We reduce the computational cost through in-

troduction of a new distance calculation algorithm
presented above to the NFL. Now we analyze why
our algorithm yields a faster search. Suppose there

are Ns training prototypes in class s and each of
them is an M-dimensional feature vector. Then
there will be NsðNs � 1Þ=2 feature lines. As a re-
sult, the cost of the original NFL is ð3M þ 1Þ �
NsðNs�1Þ=2 multiplication operations; i.e., it needs
ð3M þ 1Þ

2
N 2

s þOðNsÞ

multiplication operations, while our distance cal-
culation algorithm takes only ðM þ 1ÞðNs � iÞmul-
tiplication operations in cluster i. For all i,
06 i < Ns � 1, our algorithm can find the NFL in
this class withXNs�2

i¼0
ðM þ 1ÞðNs � iÞ þ ðM þ 2ÞðNs � 1Þ

¼ M þ 1
2

N 2
s þOðNsÞ

multiplication operations. Thus, our computa-
tional cost is only 1/3 of the original one. Here, we
emphasize that the time analysis for our distance
calculation algorithm is only applicable to the
search for the NFL during decision-making for an
unknown pattern.
It is worth stating that our new distance cal-

culation algorithm merely speeds up the search
during decision-making but never changes the
performance of the original NFL. Since the near-
est distance ds

NFL is fixed given a set of prototypes
registered in a system, the decision-making in NFL
is to find this nearest distance such that a tested
pattern can be labeled by the corresponding pro-
totypes’ owner identity. Therefore, recognition
results are identical regardless of distance calcu-
lation algorithms. Thus, we shall not differentiate
the improved NFL from the original one herein-
after while we report recognition rates of the NFL.

3. Methodology

In this section, we present our experimental
methodology. First, we give a brief description on
two benchmark databases, Ti46 and KING. Then
the acoustic analysis for different operating modes
is presented. It is followed by the NFL classifica-
tion including an utterance partitioning strategy

Fig. 2. A new distance calculation algorithm for NFL.
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for the text consisting of multiple phonemes in
text-dependent speaker identification.

3.1. Database

Ti46 database is a benchmark corpus for text-
dependent speaker recognition. It contains isolated
speech words from 16 speakers, eight males and
eight females, and moreover, is divided into two
sets: Ti20 and Ti_alpha. Digits (from ‘‘0’’ to ‘‘9’’)
and ten simple English words (such as ‘‘go’’,
‘‘help’’) uttered by these speakers are collected in
Ti20, and 26 alphabet letters are collected in
Ti_alpha. In the Ti46 database, all utterances have
been divided by its designers into two sets; i.e.,
training and test. For each word/alphabet, the
training set contains at least five utterances uttered
by each speaker at different times and there are ten
utterances for each speaker in the testing set.
The KING corpus is used in text-independent

speaker identification. There are only 49 speakers
who own the complete data in 10 recording ses-
sions, labeled by S01; S02; . . . ; S10, and all speak-
ers are male. Each session was recorded in both a
wide-band and a narrow-band channel. We em-
ploy only the wide-band set in the simulations re-
ported in this paper.

3.2. Acoustic analysis

Prior to feature extraction, the speech data are
pre-emphasized with the weight 0.95 and are
blocked into frames. Each frame has 256 samples
(around 23 ms) with 11.5 ms frame shift. The
feature used is the statistical parameters of 19-
order Mel-scaled ceptrum coefficients (MFCCs).
The 19-order adaptive component weighted cep-
trum coefficients (Assaleh and Mammone, 1994)
are superposed on MFCCs. Adaptive component
weighted ceptrum is a robust feature to discrimi-
nate the speakers through emphasizing the for-
mants of speaker. Then the means and standard
deviations of all the feature vectors corresponding
to a piece of speech are estimated to form a 38-
dimensional feature vector. In other words, the set
of feature vectors corresponding to the piece of
speech are further processed to form an integra-

tion feature vector through the use of their statis-
tics in our simulations.

3.3. NFL classification

For an utterance for text-dependent mode or an
acoustic segment for text-independent mode, the
corresponding integration feature vector based on
its statistics forms a prototype in the feature space.
As reviewed in Section 2, the NFL approach de-
mands at least two prototypes belonging to a
specific class. Thus, we construct feature lines by
exhaustively combining any pair of prototypes
belonging to a speaker, which creates an NFL
speaker model. For text-independent mode, in
particular, a codeword would be viewed as a
prototype if the VQ procedure operates on feature
vectors prior to the NFL classification. Thus, the
ultimate task of decision-making in the NFL is to
find the NFL.
For text-dependent mode, our empirical studies

indicate that the above NFL classification may not
produce good performance for a text consisting of
multiple phonemes. The possible explanation to
the phenomenon is that the use of one prototype
based on statistics may not represent the utterance
of more than one phoneme well. Thus, we propose
an utterance partitioning strategy for such an ut-
terance; that is, we tend to partition an utterance
into a number of acoustic segments consistent with
the number of phonemes if it contains more than
one phoneme. Moreover, each acoustic segment
forms a prototype after acoustic analysis and,
thus, such an utterance would be represented by a
number of prototypes and feature lines are con-
structed on the basis of those prototypes. As well
known, it is a non-trivial task to extract phonemes
from speech, which is difficult and time-consuming
(Huang et al., 2000; Rabiner and Juang, 1993). To
avoid introducing a higher computational load, we
do not use a precise phoneme extraction proce-
dure. Instead we simply partition each utterance
of multiple phonemes into several clips of equal
length to form prototypes. To some extent, we
expect that such an utterance partitioning strategy,
which can be regarded as an approximate proce-
dure of phoneme extraction, could be helpful to
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facilitate the NFL classification for such utter-
ances.

4. Simulation results

In this section, we report comparative results on
the Ti46 and KING corpuses. The text-dependent
results are first presented. It follows by text-inde-
pendent results. For evaluating performance, we
use two testing methods; that is, an unknown voice
token is identified by either the one best testing
procedure, where the identity is inferred by the
NFL based on the top candidate, or the three best
testing procedure, where the identity is determined
in terms of top three candidates produced by the
NFL. All the simulations are performed by means
of ANSI C programs on a personal computer
(Microsoft Window 98 platform and 800 MHz
Pentium III).

4.1. Text-dependent results

In order to investigate the performance of NFL,
we use three, four, and five utterances of a text,
respectively, to construct the feature-line space.
Those utterances of a single word/alphabet for
training are randomly selected from the training
sets in Ti46 to form three, four, and five proto-
types. Multiple trials are performed in our simu-
lations for reliability; that is, the same experiment
is repeated three times and the averaging result is
reported here. In the testing phase, all of ten ut-
terances in the testing sets for each word/alphabet
are used. As a result, the overall averaging recog-
nition rates of one-best-test and three-best-test on
Ti_alpha and Ti20 subsets are illustrated in Fig.
3(a) and (b), respectively. For comparison, we also
apply DTW to the same problem and show its
performance in the same figure. From Fig. 3(a)
and (b), we observe that the performance of NFL

Fig. 3. The text-dependent recognition rates (%) of NFL and DTW in terms of different training utterances on the Ti46 database.

(a) Results of the Ti_alpha set, (b) results of the Ti20 set.
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is better than that of DTW in text-dependent
speaker identification although the temporal in-
formation is not considered in the NFL approach.
On the other hand, the computational cost of NFL
is much less than that of DTW as shown in Table
1, where the total decision-making time taken by
the NFL with our distance calculation algorithm
and the DTW is reported on the Ti46 database. In
terms of CPU time, in general, tens of seconds are
only taken by the NFL to make decisions for all
utterances in the testing set, while the DTW has to
take around a few hours for the same task. For
comparison, the time taken by the original NFL is
also listed in Table 1. The computational cost of
an NFL classifier regardless of the distance cal-
culation algorithm becomes slightly higher as the
number of prototypes increases, but it is still sig-
nificantly lower than that of DTW. From Table 1,
it is also evident that the time taken by our algo-
rithm is roughly three times shorter than that of
the original NFL, which is highly consistent with
our formal analysis presented in Section 2.
For more details, we now report simulation

results for each word/alphabet in the Ti46 data-
base. In our simulations, the proposed partitioning
strategy is applied prior to the NFL decision-
making, and both one-best and three-best tests
have been conducted. Figs. 4 and 5 illustrate rec-
ognition rates of all word/alphabet on the Ti_alpha
and Ti20 sets, respectively, in terms of different
segments and testing methods. In order to inves-
tigate effects of our partitioning strategy, we par-
tition an utterance up to three segments of equal
length without use of any prior knowledge on
phonetics of alphabet/word.
From Fig. 4, it is observed that the recognition

rates of some alphabets of more than one pho-

neme, e.g. ‘‘f’’, ‘‘m’’, and ‘‘s’’, are considerably
lower than that of just one phoneme, e.g. ‘‘a’’, ‘‘e’’,
and ‘‘i’’ without the use of our partitioning
strategy (results corresponding to one segment in
Fig. 4). When our two-segment partitioning
strategy is applied, the recognition rates on those
alphabets of two phonemes, e.g. ‘‘f’’, ‘‘m’’, and
‘‘s’’, have been considerably improved, while the
recognition rates on those alphabets of only one
phoneme, e.g. ‘‘a’’, ‘‘e’’, and ‘‘i’’, slightly decrease.
For alphabet ‘‘f’’, in particular, more than 20%
gain in the one-best test and a gain near 20% in the
three-best test are achieved by our two-segment
partitioning strategy, as illustrated in Fig. 4(a) and
(b). Similarly, the improvement for words of two
phonemes on the Ti20 set has been achieved by the
two-segment partitioning strategy, as illustrated
Fig. 5. In this circumstance, the recognition rates
of these two-phoneme letters are considerably
raised, which demonstrates the effectiveness of our
utterance partitioning strategy. From Figs. 4 and
5, however, further simulations by partitioning
an utterance into three segments of equal length
indicate that over-segmentation causes the per-
formance of NFL to be dramatically degraded for
those alphabet/word of less than three phonemes,
which suggests the necessity in the proper use of
such an utterance partitioning strategy. Issues on
our utterance partitioning strategy will be further
discussed later on.

4.2. Text-independent results

As mentioned above, VQ provides a way to
take advantage of speaker features regardless of
verbal information. In VQ, decision-making is
usually performed with the NN criterion (Linde
et al., 1980). If we treat every codeword of VQ one
prototype in the feature space, then NFL can be
achieved through comparing distances between the
query feature point and feature lines passing
through any pair of codewords. Apparently, the
NFL criterion leads to an alternative way for de-
cision-making in VQ.
In text-independent simulations, we first use the

NFL as a substitute of NN in VQ. We conduct
two simulations with different training sets to in-
vestigate the performance of VQ based on the

Table 1

The CPU time (s) taken by the NFL with our improved algo-

rithm (INFL), the original NFL, and the DTW, respectively,

during decision-making on the Ti46 database in terms of dif-

ferent prototypes

No. of

prototypes

Method

INFL NFL DTW

Three utterances 10 35 9929

Four utterances 12 45 12 639

Five utterances 16 53 20 237
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NFL criterion. All training sets are chosen from
the KING wide-band set. One is to use only S01
session for training and the remaining nine ses-
sions for test. The other is to use three sessions
(S01, S02, and S03) for training and the remain-
ing seven sessions for test. The sophisticated VQ
algorithm (Linde et al., 1980) is employed to ob-
tain the codewords for each speaker. We denote
VQþNFL as VQ with the NFL criterion and
VQþNN as VQ with NN criterion in these two
simulations. Fig. 6(a) and (b) show the compara-
tive results in terms of different capacities of
codewords.
The simulation results in Fig. 6 show that

VQþNFL is better than VQþNN evidently. In
particular, it is observed from Fig. 6(a) that it

performs considerably better when fewer training
samples, often resulting in a small capacity of
codewords, are available. Here, we emphasize that
as a new measure the NFL makes a VQ perform
better against voice aging, as evident in Fig. 6(a)
where the data recorded in a session are merely
used. However, the computational cost of VQþ
NFL is more expensive than that of VQþNN.
The final simulation is to use NFL individually

as a classifier to investigate its performance in the
text-independent case. We also use three wide-
band sessions (S01, S02, and S03) for training.
Since there are about 30 s speech data in one ses-
sion, we divide the speech into K segments. Each
segment can be viewed as independent data to
form a feature point or a prototype. Therefore, the

Fig. 4. The text-dependent recognition rates (%) on each single alphabet using NFL with three training utterances on the Ti_alpha set

in terms of different segments, (a) results of one-best test, (b) results of three-best test.
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total number of prototypes used for training is
3� K. In the testing phase, all audio streams are
partitioned into acoustic segments of the same
length for training. Then every segment in test
produces one recognition result. We use the ma-
jority voting result as the final result of this whole
stream. Fig. 7 shows the accuracy of text-inde-
pendent speaker identification by using the NFL
method directly. In contrast, the performance of
the NFL approach is unsatisfactory while the
identification accuracy of VQþNN reaches 83.5%
in the same training set when the capacity of
codewords is 16 (cf. Fig. 6(b)). Note that for
comparison we only show the performance of the
NFL on the condition that the number of proto-
types resembles that of codewords in VQ. In other
words, Fig. 7 depicts the recognition rates of the

NFL as the number of prototypes is from 15 to 33
corresponding to K ¼ 5; . . . ;11, which covers the
capacities of VQ, 16 and 32, used in our simula-
tions. Further simulations by using less or more
prototypes have been done as well though the re-
sults are not presented in Fig. 7. As a consequence,
the performance of NFL in such circumstances is
worse in general. Like codewords in VQ, too few
number of segments is unlikely to model a speak-
er’s characteristics since speaker’s information
represented by a statistical measure may be blur-
red, while too many number of segments results in
a loss of speaker information since such a segment
is likely too short to carry speaker’s characteristics.
In either of two circumstances, speaker’s charac-
teristics may not be modeled well due to an im-
proper selection of prototypes.

Fig. 5. The text-dependent recognition rates (%) on each single word using NFL with three training utterances on the Ti20 set in terms

of different segments. (a) Results of one-best test, (b) results of three-best test.
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Fig. 6. The text-independent recognition rates (%) of VQþNFL and VQþNN on the KING database (wide-band set) in terms of

different capacities of codewords. (a) Results by the use of only one session for training, (b) results by the use of three sessions for training.

Fig. 7. The text-independent recognition rates (%) on the KING database (wide-band set) through the use of NFL individually.
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5. Discussion

In this section, we discuss some issues on the
NFL performance for different operating modes
and its potentials.
Our studies have shown that the performance of

NFL is consistently better than that of DTW re-
gardless of testing methods. As well known, DTW
takes a temporal alignment to match two sequences
in an accurate way. Thus, it is dedicated to distin-
guish between two different sequences well, which
very much facilitates isolated word speech recog-
nition. Unfortunately, its salient feature causes
DTW to be sensitive to intra-speaker variability,
which violates an ingrained spirit, tolerance of
intra-speaker variability, in speaker recognition.
Thus, the performance of DTW is unsatisfactory in
text-dependent speaker identification especially on
the condition of severe mismatch. In contrast, there
does not exist any temporal alignment in the NFL
and a prototype encoding statistical information is
robust against mismatch. As argued by Chen et al.
(1996), a non-temporal alignment approach might
be more effective in text-dependent speaker recog-
nition since speaker’s information may not uni-
formly distribute in each piece of an utterance.
Here, the NFL provides another evidence to sup-
port this argument.
Our simulation results show that the NFL

approach yields good performance in the text-
dependent case without a strict temporal align-
ment but does not in the text-independent case. A
possible reason is that those prototypes carry not
only the speaker’s characteristics but also the
verbal information. In text-dependent case, both
the characteristics of a speaker and verbal infor-
mation are used simultaneously and, therefore, the
performance of the NFL is satisfactory. On the
contrary, in the text-independent case, we aim to
emphasize the individual characteristics of speak-
ers along with neglecting the verbal information.
Unfortunately, the mismatch in verbal informa-
tion may cause the NFL not to capture the
speakers’ characteristics well in this circumstance.
The motivation of our utterance partitioning

strategy is to capture speaker’s characteristics in
terms of intrinsic acoustic units. As argued by
Nolan (1983), the phonetic information plays a

critical role in speaker recognition. Obviously, our
partitioning strategy tends to facilitate encoding
speaker’s characteristics on the basis of a single
phoneme. It is well known that the exact extraction
of phonemes from voice is a challenging problem
and such an algorithm is often time-consuming.
From a computational viewpoint, our partitioning
strategy is viewed as a preliminary simplification
for extracting an acoustic unit, where an utterance
of alphabet/word is simply partitioned into several
segments of equal length. Apparently, this strategy
does not guarantee that a resulting segment always
corresponds to an acoustic unit. Thus, it becomes
clear on why the three-segment partition strategy
leads to worse performance for most of alphabets
and words in the Ti46 database. As a result, our
utterance partitioning strategy is simply an attempt
towards better representing speakers’ characteris-
tics for a kind of classifiers without temporal
alignment like the NFL, which points out a possi-
ble way to improve the performance of NFL in
text-dependent speaker identification. No doubt,
this topic is worth studying in the future.
Feature extraction is always a central issue in

pattern recognition. In our method, a prototype is
formed based on statistics of feature vectors cor-
responding to an utterance in the text-dependent
case or a segment of the utterance resulting from a
partitioning strategy. The equal-length partition-
ing strategy in our simulations is so simple that
some segments may contain little speakers’ infor-
mation but tend to convey some verbal informa-
tion, in particular, in the text-independent case. In
the current method, unfortunately, all the seg-
ments are treated equal in producing prototypes.
The use of NFL in this way may not make full use
of speakers’ information carried in voice. When
severe mismatch conditions are involved, the NFL
will not perform well as indicated in our text-
independent results. To compensate mismatch in
the verbal aspect, we introduce a VQ method to
text-independent speaker identification, which re-
sults in the improved performance of NFL. Al-
though how to effectively extract and represent
speakers’ characteristics for the NFL is still an
open problem, it can be expected that the NFL
could reach better performance in speaker identi-
fication if prototypes are properly created.
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6. Conclusion

In this paper, we have applied the NFL classi-
fiers to speaker identification where unlike other
problems there are many sources of variability.
To speed up the NFL, we propose an improved
distance calculation algorithm. Both theoretical
analysis and empirical evaluation show that the
NFL along with our algorithm takes shorter time
during decision-making (around three times
shorter than that of the original NFL) without
change of recognition performance. Our simula-
tion results on benchmark databases show that the
NFL performs well for the text-dependent mode,
but fails to yield satisfactory results for the text-
independent mode. For text-dependent mode,
moreover, the proper use of our utterance parti-
tioning strategy yields significant improvement for
those two-phoneme alphabets and words. In con-
trast to DTW, the NFL approach, no matter
whether our distance calculation algorithm is
applied, leads to better performance and, in par-
ticular, takes much shorter time during decision-
making. Our further simulation results indicate
that with the help of the NFL, the performance of
VQ can be improved for text-independent mode
though an additional computational cost is intro-
duced to decision-making. On the basis of our
studies, we suggest that the NFL should be used in
the text-dependent circumstance when only limited
training data are available. As a future topic, how
to extract proper speakers’ features regardless of
verbal information is worth to be studied, which
would critically determine whether the NFL ap-
proach is applicable to text-independent speaker
recognition.
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