NOTE: The following materials are presented for timely dissemination of academic and technical work. Copyright and all other rights therein are reserved by authors and/or other copyright holders. Persoanl use of the following materials is permitted and, however, people using the materials or information are expected to adhere to the terms and constraints invoked by the related copyright.

Combining Linear Discriminant Functions with Neural Networks for Supervised Learning


ABSTRACT

A novel supervised learning method is presented by combining linear discriminant functions with neural networks. The proposed method results in a tree-structured hybrid architecture. Due to constructive learning, the binary tree hierarchical architecture is automatically generated by a controlled growing process for a specific supervised learning task. Unlike the classic decision tree, the linear discriminant functions are merely employed in the intermediate level of the tree for heuristically partitioning a large and complicated task into several smaller and simpler subtasks in the proposed method. These subtasks are dealt with by component neural networks at the leaves of the tree accordingly. For constructive learning, growing and credit-assignment algorithms are developed to serve for the hybrid architecture. The proposed architecture provides an efficient way to apply existing neural networks (e.g. multi-layered perceptron) for solving a large scale problem. We have already applied the proposed method to a universal approximation problem and several benchmark classification problems in order to evaluate its performance. Simulation results have shown that the proposed method yields better results and faster training in comparison with the multi-layered perceptron.


Click nca97.pdf for full text