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Abstract. This paper presents a work-in-progress DSP architecture1 building
from the basis of the Differentiable Digital Signal Processing (DDSP) library
by Engel et al. (2020). The architecture is designed to process polyphonic mu-
sical audio in real-time, making use of classical DSP methods for greater inter-
pretability. Utilising recent advancements in lightweight polyphonic pitch detec-
tion models, multiple input audio streams can be processed simultaneously, and
with a novel stochastic latent dimension, the model can generate novel audio tim-
bres outside of the training dataset. Due to its lightweight nature, the proposed
architecture is designed to be used for live audio transformations with minimal
input latency. The paper also discusses the limitations of the existing state-of-
the-art model, which is deterministic and restricted to monophonic processing.
Throughout, the paper explores potential applications of the proposed model.
These include not only versatile timbre transfer between distinct instruments but
interpolation between timbres, resulting in the creation of new sounds that can ex-
pand the aural pallet of musicians, sound designers, and experimental composers
using live electronics. Furthermore, the model extends the library’s toolkit, such
as natural pitch shifting and room acoustic reverb modelling to previously unus-
able polyphonic inputs.
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1 Introduction

Digital signal processing (DSP) refers to the utilisation of algorithms and methodolo-
gies to process and analyse signals, including but not limited to audio and video. The
use of DSP is a cornerstone in creative expression for the digital artist, using technol-
ogy to explore sounds otherwise not possible acoustically. These techniques are often
developed based on a solid foundation of knowledge and theory, enabling the creation
of processes that can effectively extract desirable features or reduce unwanted noise,

1 Code and audio examples at https://github.com/TeeJayBaker/PolyDDSP

This work is licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0).
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among other applications. This theoretical basis enables the creation of efficient mod-
els that can generalise well over the relevant domain. This approach is also reflected in
the use of structural priors within neural networks, such as convolution and recurrence,
which are designed to take advantage of underlying patterns and relationships in the
data being processed.

For Musical audio, we can exploit many structures straight from music theory and
spectral analysis. Given its harmonic nature, we can approximate music as a combina-
tion of two components: harmonic - a series of sinusoids with integer multiples of a
fundamental frequency, and noise - any remaining elements not so clearly defined in
the frequency domain. We can leverage this decomposition to construct a decoder us-
ing classical synthesis techniques, resulting in lightweight, robust, and expressive audio
generation. While the DDSP [1] library’s current state-of-the-art (SOTA) work offers
an excellent implementation of these techniques, it has a significant limitation: it cannot
handle polyphonic audio.

In music, polyphony denotes the act of playing or singing multiple distinct notes at
the same time. While some instruments, such as most woodwind instruments, are mono-
phonic and can generally only play one note at a time2, many others are polyphonic and
rely on playing multiple notes at once for creative expression. The CREPE [2] pitch
encoder is a critical component for gathering pitch information within the DDSP li-
brary, and while CREPE is both lightweight and state-of-the-art for pitch accuracy, it is
limited by its monophonic nature. Consequently, the DDSP library is only capable of
reproducing monophonic audio signals, which restricts its applicability to polyphonic
musical audio.

In this paper, we introduce the PolyDDSP model, which combines the modular and
classical techniques from the DDSP architecture with state-of-the-art polyphonic pitch
detection models. This new architecture is designed to handle polyphonic audio while
maintaining lightweight performance and modular interpretability through the incorpo-
ration of multiple audio channels throughout the model. In addition, incorporating a
stochastic latent dimension that closely resembles that of a traditional VAE will enable
a more organic variation in the generated sounds, including the ability to interpolate
between various timbres that have been learned. This allows the creation of new novel
hybrid instrument sounds, broadening the possibilities of musical expression in the digi-
tal studio. The lightweight design of the proposed model also creates the opportunity for
the development of a real-time audio plugin, similar to DDSP-VST, which can be used
for live audio transformations within a digital audio workstation powered by machine
learning.

The main feature of the DDSP toolkit is its timbre transfer capability, creating a
unique tool for the digital studio to surpass the limitations of acoustic instruments by
facilitating novel routes for real-time timbral hybridisation. However, its capabilities ex-
tend far beyond this. Through the complete reconstruction of audio from fundamental
elements, the toolkit can accomplish tasks such as transposing audio while maintain-
ing accurate instrument timbre, modifying performance dynamics, and even manipulat-
ing reverb characteristics, including complete dereverberation. The generalisation work

2 They are capable of polyphonic expression using contempory extended techniques such as
multiphonics.
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presented in this paper extends the applicability of this toolkit to polyphonic audio, sig-
nificantly expanding the potential usage by accommodating audio inputs with multiple
simultaneous notes.

2 Related Work

Transcription: Automatic Music Transcription (AMT) has been a long-standing prob-
lem in music, with Klapuri et al.’s probabilistic model for polyphonic pitch estimation
setting the baseline in 2006 [4]. Recently, the CREPE model [2] achieved state-of-the-
art accuracy for monophonic pitch estimation and was utilised in the original DDSP
paper [1]. However, there has been no model that has matched CREPE’s monophonic
accuracy in the polyphonic domain. Bittner et al. proposed a deep learning-based ap-
proach for polyphonic pitch estimation in their paper on deep salience representations
[5], laying the groundwork for further development. In their latest work, Basic-Pitch [6],
Bittner et al. split the pitch detection pipeline into three tasks and created a lightweight,
instrument-agnostic model that accurately detects pitch deviations and relates them to
score-level note continuity. The accuracy of frame-level pitch detection is only slightly
less than that of more computationally intensive, instrument-specific models.

Style/Timbre Transfer In the relatively young field of timbre transfer, earlier ap-
proaches such as the Universal Music Translation Network [7] relied on multiple sepa-
rately trained decoders for domain transfer. This led to the timbre reconstruction falling
entirely on the decoder, causing costly training. In contrast, Engel et al. [1] split the en-
coding between a fundamental pitch encoder, a residual encoder for timbre, and a raw
extracted loudness envelope. Their model has a strong pre-baked music theory foun-
dation, which allows it to require less training time and data to specialise to a specific
domain and generate high-quality audio. However, the model’s restrictive monophonic
pitch detector and lack of latent interpolation leave significant room for improvement.

Audio Generation Audio generative modelling encompasses various disciplines, such
as music, speech, and sound design. Various methods have been developed to address
the complexity and controllability of generating high-quality audio. WaveNet [8] is a
pioneering autoregressive generative model that produces realistic audio. However, it
comes at a high computational cost, particularly for long output sequences. Recently,
models based on techniques such as Diffusion [9] and Language Modelling [10] have
been developed that produce excellent audio quality from minimal input. However,
these models are also computationally costly and lack fine user control.

In contrast, Spectral Modelling Synthesis (SMS) [11] is a lightweight and modular
approach that splits audio into harmonic and noise components [12]. These components
can be generated separately using simpler techniques like additive and subtractive syn-
thesis, driven by simple parameters. SMS provides greater control over the synthesis
process, avoiding issues such as phasing alignment and spectral leakage and offering
fully parametric flexibility. Thus, it is capable of producing quality audio from minimal
training.



4 T. Baker, R. Climent and K. Chen

3 Methodology

x

Basic-Pitch
Encoder

Z - Encoder

Loudness
Extractor

F

V

Z

L

Latent

Additive
Harmonic

Synthesiser

Filtered Noise

FIR Reverb x̂+c

MLPs

A

H

Fig. 1: Pathway through the model, with deterministic elements in red, trainable ele-
ments in blue, and the pre-trained elements in green. Tensor operations are labelled in
yellow (with c being concatenation and + being addition) and dashed lines indicate op-
tional components.

In this section we will discuss the methodology currently implemented within the
proposed audio generative approach as well as the DDSP components that have been
modified for multi-channel operation. Within this paper, each audio channel within the
model will be referred to as a voice, in line with more traditional synthesis vocabulary.

3.1 Encoders

Pitch encoder: The model utilises a pre-trained basic pitch encoder developed by Bit-
tner et al. [6]. Unlike most AMT models, this fully-convolutional model generates three
distinct posteriorgrams (Yo, Yp, Yn), each representing a different aspect of musical
transcription. Yo captures note onsets, Yp tracks fine pitch, and Yn records note events.
This approach enables the model to achieve precise frequency quantised note-tracking
while retaining detailed pitch information necessary for expressive performance, such
as bends and vibrato.

To ensure continuous reproduction for each note during the synthesis step, we use
the note-tracking Yn to allocate each full note instance to a single voice in the pitch
encoding F . As new notes appear, we assign them to the next inactive voice to ensure
multiple non-overlapping voices. Finally, we apply fine pitch changes from Yp to more
closely match the input pitch and create a matching array within V with relevant note
velocity values for each note in F .

Z-Encoder In certain musical instruments like the violin and piano, each performed
note is typically played with a consistent timbre3. However, with instruments like the

3 This is in the context of the general performer. Virtuoso performers will often use many tech-
niques to explore the timbral aspects of their instrument for expressive performance.
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guitar, a single pitch can be and is often produced with a diverse range of timbres, in-
fluenced by factors like the neck position and use of extended techniques. To accurately
reproduce the audio in these cases, it is important to extract additional timbre informa-
tion from the input and therefore we employ the optional Z-Encoder.

The Z-Encoder extracts this extra timbre information from the input audio in the
form of Mel Frequency Cepstrum Coefficients (MFCCs). These coefficients are ex-
tracted by analysing the spectral envelope of the audio through a log mel-scaled spec-
trogram and they represent the distribution of spectral energy across the frequency scale.
To utilise these coefficients, they are passed through a scalable normalisation layer, fol-
lowed by a 512 unit Gated Recurrent Unit (GRU), then finally each time-step is fed
through a linear layer to obtain Z, a frame-wise timbre representation for the input
audio.

To improve the accuracy of timbre construction and reduce model complexity in re-
construction steps further into the model, we are developing a novel convolution based,
pitch-informed source separation step. Utilising the temporally aligned transcription of
the audio input provided by our pitch encoder, we can more easily separate individ-
ual voices by fundamental frequency from input spectrograms using simple lightweight
convolution steps. This will allow for individual voices to have unique MFCCs and
loudness envelopes to more closely reconstruct each voices timbre at later stages in the
model, more closely to the much simpler monophonic case.

Loudness Extraction: To extract a loudness envelope, we also utilise the same steps as
Hantrakul et al. [13] based on a simple psychometric model of perceived loudness. An
A-Weighting of the power spectrum of input audio is log-scaled and centred according
to the mean and standard deviation of the whole dataset. This specific weighting places
higher value on higher frequencies to more closely match human perception.

3.2 Decoders

Latent Spaces and Envelopes: The majority of the control parameters driving the out-
put synthesisers are contained in filter envelopes, A and H as shown in Figure 1. The
tensor A contains a concatenation of both the global output amplitude envelope AG,
functionally controlling the ADSR envelope of each note generated, and each voice’s
harmonic spectra amplitude envelope Av,i, responsible for creating the correct har-
monic balance for each instrument. The envelope H controls the individual frequency
bands in our filtered noise.

The multi-voice operation of the model requires the use of more complex latent
space structure. Some components of the model perform better with limited input in-
formation, while other aspects require global information to function. Extracting each
envelope from the latent space involves a two-step process: the specific features are fed
through a GRU layer, followed by a dense linear layer. However, there is a distinction
in the choice of features. In the case of Av,i, the GRU layer for each voice only receives
input related to the pitch, velocity, loudness, and timbre encoding of that specific voice.
On the other hand, for the global amplitude envelope AG and noise filter envelopes H ,
their respective GRU layers are fed with inputs consisting of encoding for the pitch and
velocity of every voice, as well as the global amplitude and timbre.
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Additive Harmonic Synthesiser: An Additive Harmonic Synthesiser is a type of syn-
thesizer that generates complex waveforms by adding multiple simpler waveforms, typ-
ically sinusoidal waves. All acoustic instruments produce sound by using a resonating
body, which is often a string or an air chamber. Due to the physics of standing-wave
oscillations in resonant bodies, the timbre’s generated by these instruments are char-
acterised by a spectrum of harmonics. These harmonics start with a fundamental fre-
quency denoted by f0 and are followed by an infinite series of integer multiples of that
frequency i∗f0. The key to recreating an instruments timbre lies in accurately recreating
the correct balance of these harmonics via our harmonic amplitude envelope Av,i.

In this model, the sinusoidal oscillator is constructed as a bank of V ∗H oscillators,
where V is number of voices and H is our set harmonic cutoff, that outputs signal x(n)
of discrete time steps n:

x(n) = AG(n)

V∑
v=1

H∑
i=1

Av,i(n) sin(ϕv,i(n))

Where AG(n) is our global amplitude envelope, Av,i(n) is our specific harmonic am-
plitude envelope, ϕv,i(n) is the instantaneous phase at timestep n, obtained from the
frequency embedding Fv as follows: ϕv,i(n) = 2π

∑n
m=0 i ∗ Fv(m)

In summary, the whole harmonic oscillator is parameterised by the three time depen-
dent parameter sets: Fv(n) the fundamental frequencies, AG(n) the global amplitude
envelope and Av,i(n) the harmonic distribution for each voice.

Filtered Noise: Subtractive synthesis works in the opposite way to additive synthesis.
Rather than compounding simple waveforms to create more complex sounds, it starts
with a colourful audio signal such as white noise and filters it until it reaches the desired
sound. In this work, we implement a filtered noise technique similar to that of Engel et
al. [1] by applying a Linear Time-Variant Finite Impulse Response (LTV-FIR) filter to
a stream of uniform noise. To process this efficiently, we use frame-wise convolution
through multiplication in the Fourier domain. Our extracted envelope tensor, denoted
as H , represents our filter convolution function for each frequency band. We then apply
this filter to the Inverse Discrete Fourier Transform (IDFT) of uniform noise, N , to
obtain Y . We convert back to the audio domain by taking the IDFT of Y , resulting
in the framed audio output, y, from which we construct the full audiorate signal using
overlap-add.

Reverb: In most neural synthesis models, the room reverb is baked into generative pro-
cess, as it is an essential component of producing realistic sounding audio. In contrast,
this model applies room reverb after synthesis using a convolution step. This approach
offers several benefits: it allows for greater transparency by enabling the extraction of
dry audio from the model, and it offers more control over the room acoustics in the
generated audio. However, standard convolution via matrix multiplication is computa-
tionally intensive and can hinder training and performance. To address this, we utilise
the same techniques as those used in the filtered noise model - explicit convolution via
multiplication in the frequency domain, which has been found to produce sufficiently
accurate reproduction.



PolyDDSP 7

3.3 Other Methodology

Upsampling: The information contained within audio data is very dense, and at pure
audiorate, it has a resolution that is too high to work with in real-time, even at the
reduced 16kbps used in this model. To solve this problem, the model employs audio
frames with a 64-bit length, and the encoder only extracts information at this frame rate
level before upsampling it back up to audiorate much later in the model for resynthesis.
Each frame lasts for 4ms, which is fine enough to fully track changes in important
attributes such as F0 and loudness envelopes while reducing the temporal dimension of
a second of audio from 16,000 to 250.

Bilinear interpolation is sufficient to upsample discrete variables, such as F0, for
parameterising the additive synthesizer. However, when it comes to smoothing the up-
sampling of various continuous envelopes and preventing artifacting, we use overlap-
ping Hamming windows centered at each frame.

Spectral reconstruction loss: For our training objective we utilise spectral reconstruc-
tion loss. This will allow for comparisons without considering audio phase differences
between input and output, as these will not affect how the reconstruction sounds and
therefore are not important to consider during the training process.

For input spectrogram S and reconstruction Ŝ, the L1 loss for a given spectrogram
is as given:

L = ||S − Ŝ||1 − α|| logS − log Ŝ||1,

where α is log weighting term. This is summed over multiple FFT window sizes i to
get a multi-scale loss Lmulti−scale =

∑
i Li. Calculating the sum of different windows

sizes produces a better match over multiple resolutions, some fine detail matching with-
out loss of the overall picture.

4 Experiments

The proposed polyphonic model’s effectiveness hinges on two key contributions: ex-
tending the DDSP model for polyphonic use ensuring no loss in performance compared
to the monophonic case, and the effectiveness of a stochastic latent space for learn-
ing various timbres within one model. To evaluate, tests mirroring the original DDSP
paper will be conducted, assessing timbre and loudness accuracy through MFCC and
Loudness L1 deviations on GuitarSet and the Solo Violin dataset. GuitarSet allows for
complex timbre test on a polyphonic dataset, while Solo Violin allows a direct compar-
ison to the older model. The models performance on both sets combined will showcase
the abilities of the stochastic latent space.

4.1 Datasets

GuitarSet [14] is a dataset of 360 audio recordings of guitars, each lasting approxi-
mately 30 seconds, featuring six different players playing 30 musical leadsheets across
various genres and tempos in both comping and soloing styles. The recordings were
played on the same guitar with consistent room acoustics to ensure uniform timbre.
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Solo Violin comprises 13 minutes of monophonic solo violin performances by John
Garner from the MusOpen royalty-free music library. All performed on a single violin
in a consistent room environment.

4.2 Evaluation Metrics

MFCC L1 Distance: An important measure of the models reconstruction accuracy
is it’s ability to match input and output timbre. Mel Frequency Cepstrum Coefficients
are used as part of the timbral encoder (z-encoder) step as they are an accurate rep-
resentation of timbral quality and so two indentical timbres at the same pitch should
produce identical MFCCs. The L1 distance between input and output MFCC vectors
should provide a representative measure of the models ability to match timbre.

Loudness L1 Distance: Similarly to MFCCs, the reconstructed track should produce
an identical loudness envelope if it is reproduced accurately. Again, this is computed by
computing the L1 distance between the ground truth audio and the synthesised audio’s
loudness encoding L. Please note that neither of these metrics are used by the model to
evaluate during training, so there should be no inherent training bias.
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