NOTE: The following materials are presented for timely dissemination of academic and technical work. Copyright and all other rights therein are reserved by authors and/or other copyright holders. Persoanl use of the following materials is permitted and, however, people using the materials or information are expected to adhere to the terms and constraints invoked by the related copyright.

Person Re-identification with Joint Verification and Identification of Identity-Attribute Labels


One of the major challenges in person Re-Identification (ReID) is the inconsistent visual appearance of a person. Current works on visual feature and distance metric learning have achieved significant achievements, but still suffer from the limited robustness to pose variations, viewpoint changes, etc. This makes person ReID among multiple cameras still challenging. This work is motivated to learn midlevel human attributes which are robust to visual appearance variations and could be used as efficient features for person matching. We propose a supervised multi-task learning framework which considers attribute label information with joint identification-verification network to simultaneously learn an attribute-semantic and identity-discriminative feature representation. Specifically, this framework adopts the part-based deep neural network and learn three different tasks simultaneously: person identification, person verifications and attribute identification, so as to discover and capture concurrently complementary discriminative information about a person image from global and local image features and mid-level attribute features in one deep neural network.With the multi-task learning architecture, we obtain a discriminative model that reaches a synergy in distinguishing different person images, as manifested with the competitive accuracy on three person ReID datasets: Market1501, DukeMTMC-reID and VIPeR.

Click Access19.pdf for full text