
List of Slides

1 Title
2 Chapter 21: Collections
3 Chapter aims
4 Section 2: Example:Reversing a text file
5 Aim
6 Reversing a text file
7 Collections API
8 Collections API: Lists
9 Collections API: Lists: List interface

12 Collections API: Lists: ArrayList
14 Reversing a text file
18 Reversing a text file
19 Trying it
20 Coursework: Sorting election leaflets
21 Section 3: Example:Sorting a text file using an ArrayList
22 Aim

0-0

23 Sorting a text file using an ArrayList
24 The SortList class?
26 The SortList class?
27 Collections API: Collections class
30 The SortList class?
31 The Sort class
35 Coursework: Sorting election leaflets, with compareTo()
36 Section 4: Example:Prime numbers
37 Aim
38 Prime numbers
39 Collections API: Sets
40 Collections API: Sets: Set interface
43 Prime numbers
44 Design: Storing data
45 Design: Storing data: hash table
48 Standard API: Object: hashCode()
50 Collections API: Sets: HashSet
52 Standard API: Integer: as a box for int: works with collections

0-1

53 Prime numbers
55 Prime numbers
56 Prime numbers
57 Trying it
58 Trying it
59 Trying it
60 Trying it
61 Coursework: Finding duplicate voters
62 Section 5: Example:Sorting a text file using a TreeSet
63 Aim
64 Sorting a text file using a TreeSet
65 Design: Storing data: ordered binary tree
68 Collections API: Sets: TreeSet
69 Sorting a text file using a TreeSet
70 Collections API: Iterator interface
73 Collections API: Lists: List interface: iterator()
75 Sorting a text file using a TreeSet
76 Collections API: Sets: Set interface: iterator()

0-2

77 Collections API: Sets: TreeSet: iterator()
79 Design: Sorting a list: tree sort
80 Sorting a text file using a TreeSet
84 Trying it
85 Coursework: Sorting election leaflets, using a TreeSet
86 Section 6: Summary of lists and sets
87 Aim
88 Summary of lists and sets
89 Collections API: Collection interface
95 Collections API: Lists: List interface: extends Collection
96 Collections API: Sets: Set interface: extends Collection
97 Summary of lists and sets
98 Collections API: Lists: add(index) and remove(index)

100 Design: Storing data: linked list
102 Collections API: Lists: LinkedList
103 Summary of lists and sets
104 Summary of lists and sets
105 Summary of lists and sets

0-3

106 Section 7: Example:Word frequency count
107 Aim
108 Word frequency count
109 Collections API: Maps
111 Word frequency count
112 The WordWithFrequency class
113 The WordWithFrequency class
114 Collections API: Maps: Map interface
118 Collections API: Maps: TreeMap
120 The WordFrequencyMap class
121 The WordFrequencyMap class
122 The WordFrequencyMap class
123 Statement: for-each loop: on collections
125 The WordFrequencyMap class
126 The WordFrequencyMap class
127 The WordFrequency class
131 The WordFrequency class
132 Trying it

0-4

133 Section 8: Example:Word frequency count sorted by frequency
134 Aim
135 The WordWithFrequency class
137 The WordWithFrequency class
138 The WordWithFrequency class
139 Standard API: Object: hashCode(): making a good definition
140 The WordWithFrequency class
141 The WordWithFrequency class
142 The WordFrequencyMap class
143 Collections API: Maps: HashMap
145 The WordFrequencyMap class
147 The WordFrequencyMap class
148 Collections API: Collection interface: constructor taking a Collection
149 The WordFrequencyMap class
150 The WordFrequency class
151 Trying it
152 Coursework: Finding duplicate voters, using a HashMap
153 Section 9: Collections of collections

0-5

154 Aim
155 Collections of collections
156 Coursework: Finding duplicate voters, using a HashMap of LinkedLists
157 Concepts covered in this chapter

0-6

Title

Java Just in Time

John Latham

March 4, 2019

March 4, 2019 Java Just in Time - John Latham Page 1(0/0)

Chapter 21

Collections

March 4, 2019 Java Just in Time - John Latham Page 2(0/0)

Chapter aims

• Need to handle collections of objects quite common

– previously seen array used to store things in indexed list.

• Here explore Java’s collections framework

– group of classes and interfaces

– provide various mechanisms for storing collections

– more convenient to use than arrays.

• E.g. ArrayList

– essentially wrapped up array with automatic array extension.

• We look at Lists, Sets and Maps

– specified as interfaces

– implemented by

ArrayList, LinkedList, TreeSet, HashSet, TreeMap and HashMap

March 4, 2019 Java Just in Time - John Latham Page 3(0/0)

Section 2

Example:

Reversing a text file

March 4, 2019 Java Just in Time - John Latham Page 4(0/0)

Aim

AIM: To introduce the Java collections framework, and in

particular the idea of list collections, the List interface

and the ArrayList class.

March 4, 2019 Java Just in Time - John Latham Page 5(0/0)

Reversing a text file

• Program reads lines of text file

– outputs in reverse order to second text file.

• E.g. file of examination results in ascending order of merit

– want them in descending order.

• Read data line by line

– store it all

– output lines in reverse order.

• Could use array

– but don’t know in advance how many lines

– use ArrayList rather than array extension.

March 4, 2019 Java Just in Time - John Latham Page 6(0/0)

Collections API

• Common need to store collections of data

– Java API provides collections framework.

• Group of classes and interfaces designed to store collections

– in various different ways.

• Typically allow elements to be added

without worrying about memory allocation

– automatically grow big enough.

March 4, 2019 Java Just in Time - John Latham Page 7(0/0)

Collections API: Lists

• One kind of collection in collections framework

– list collection

• Collections of data which are lists or sequences.

– Duplicate elements are permitted

– elements stored in some order

– each occurs at particular list index, starting at zero.

• Lists similar to arrays.

March 4, 2019 Java Just in Time - John Latham Page 8(0/0)

Collections API: Lists: List interface

• The interface java.util.List part of collections framework

– specifies instance methods needed to support list collection.

Method definitions in interface List (some of them).

Method Return Arguments Description

size int Returns the size of this List, that is, the

number of elements in it.

add boolean Object Appends the given Object to the end

of the List. Returns true.

March 4, 2019 Java Just in Time - John Latham Page 9(0/0)

Collections API: Lists: List interface

Method definitions in interface List (some of them).

Method Return Arguments Description

get Object int Returns the Object at the speci-

fied list index, which must be legal

(0 <= index < size()) to avoid an

IndexOutOfBoundsException.

set Object int, Object Overwrites an existing element with a

new one: i.e. it replaces the Object

at the given int list index with the

given other Object. Returns the origi-

nal Object. The index must be legal to

avoid an IndexOutOfBoundsException.

March 4, 2019 Java Just in Time - John Latham Page 10(0/0)

Collections API: Lists: List interface

• Since Java 5.0, List is generic interface

– one type parameter – type of objects that can be stored.

• When use parameterized type of List

– all occurrences of Object in above table replaced by type argument.

March 4, 2019 Java Just in Time - John Latham Page 11(0/0)

Collections API: Lists: ArrayList

• The class java.util.ArrayList is part of collections framework

– one implementation of list collection

– implements java.util.List interface.

• Kind of list implemented using private instance variable

– array of type java.lang.Object[].

– Array grown automatically

∗ by array extension.

March 4, 2019 Java Just in Time - John Latham Page 12(0/0)

Collections API: Lists: ArrayList

• Since Java 5.0, ArrayList, and other classes in collections framework

are generic classes

public class ArrayList<E> implements List<E>

{ ... }

• The type parameter is type of objects in list.

March 4, 2019 Java Just in Time - John Latham Page 13(0/0)

Reversing a text file

001: import java.io.BufferedReader;

002: import java.io.FileReader;

003: import java.io.FileWriter;

004: import java.io.IOException;

005: import java.io.PrintWriter;

006: import java.util.ArrayList;

007: import java.util.List;

008:

009: // Program to read lines of a file, line by line, and write them in reverse

010: // order to another. Input file is the first argument, output is the second.

011: public class Reverse

012: {

March 4, 2019 Java Just in Time - John Latham Page 14(0/0)

Reversing a text file

013: public static void main(String[] args)

014: {

015: BufferedReader input = null;

016: PrintWriter output = null;

017: try

018: {

019: if (args.length != 2)

020: throw new IllegalArgumentException

021: ("There must be exactly two arguments: infile outfile");

022:

023: input = new BufferedReader(new FileReader(args[0]));

024: output = new PrintWriter(new FileWriter(args[1]));

025:

026: // The List for storing the lines.

027: List<String> lineList = new ArrayList<String>();

028:

March 4, 2019 Java Just in Time - John Latham Page 15(0/0)

Reversing a text file

029: // Read the lines into lineList.

030: String currentLine;

031: while ((currentLine = input.readLine()) != null)

032: lineList.add(currentLine);

033:

034: // Now output them in reverse.

035: for (int index = lineList.size() - 1; index >= 0; index--)

036: output.println(lineList.get(index));

037: } // try

038: catch (Exception exception)

039: {

040: System.err.println(exception);

041: } // catch

March 4, 2019 Java Just in Time - John Latham Page 16(0/0)

Reversing a text file

042: finally

043: {

044: try { if (input != null) input.close(); }

045: catch (IOException exception)

046: { System.err.println("Could not close input " + exception); }

047: if (output != null)

048: {

049: output.close();

050: if (output.checkError())

051: System.err.println("Something went wrong with the output");

052: } // if

053: } // finally

054: } // main

055:

056: } // class Reverse

March 4, 2019 Java Just in Time - John Latham Page 17(0/0)

Reversing a text file

• Note type of lineList variable

– interface is a type

– also any kind of List would work.

Coffee

time:

Why does the add() instance method of List always re-

turn true? You can find the answer to this by looking at

the API on-line documentation for List and observe that

it extends the Collection interface.

March 4, 2019 Java Just in Time - John Latham Page 18(0/0)

Trying it

Console Input / Output

$ cat input.txt

Bear,Rupert 13.7%

Smith,James 51.5%

Brown,Margaret 68.2%

Jones,Stephen 87.9%

Jackson,Helen 100%

$ java Reverse input.txt output.txt

$ cat output.txt

Jackson,Helen 100%

Jones,Stephen 87.9%

Brown,Margaret 68.2%

Smith,James 51.5%

Bear,Rupert 13.7%

$ java Reverse /dev/null output.txt

$ ls -l output.txt

-rw------- 1 jtl jtl 0 Jul 01 19:12 output.txt

$ _ Run

March 4, 2019 Java Just in Time - John Latham Page 19(0/0)

Coursework: Sorting election leaflets

(Summary only)

Write a program to sort election information leaflets into delivery order.

March 4, 2019 Java Just in Time - John Latham Page 20(0/0)

Section 3

Example:

Sorting a text file using an

ArrayList

March 4, 2019 Java Just in Time - John Latham Page 21(0/0)

Aim

AIM: To reinforce the use of ArrayList, in particular, showing

uses of the set() instance method of a List. We also

note that an array can be created from a List, and

vice versa. Finally, we look at the Collections class and

observe that it has a sort() generic method.

March 4, 2019 Java Just in Time - John Latham Page 22(0/0)

Sorting a text file using an ArrayList

• Revisit program to sort lines of text file

– previously used array with array extension

– here use ArrayList.

• Could develop separate class to sort any List of Comparable items

– as we nearly did for Comparable (Sortable) array.. . .

March 4, 2019 Java Just in Time - John Latham Page 23(0/0)

The SortList class?

001: import java.util.List;

002:

003: // Provides a class method for sorting a List of any Comparable objects.

004: public class SortList

005: {

006: public static <ListType extends Comparable<ListType>>

007: void sort(List<ListType> list)

008: {

009: // Each pass of the sort reduces unsortedLength by one.

010: int unsortedLength = list.size();

011: // If no change is made on a pass, the main loop can stop.

012: boolean changedOnThisPass;

013: do

014: {

015: changedOnThisPass = false;

March 4, 2019 Java Just in Time - John Latham Page 24(0/0)

The SortList class?

016: for (int pairLeftIndex = 0;

017: pairLeftIndex < unsortedLength - 1; pairLeftIndex++)

018: {

019: if (list.get(pairLeftIndex).compareTo(list.get(pairLeftIndex + 1)) > 0)

020: {

021: ListType thatWasAtPairLeftIndex = list.get(pairLeftIndex);

022: list.set(pairLeftIndex, list.get(pairLeftIndex + 1));

023: list.set(pairLeftIndex + 1, thatWasAtPairLeftIndex);

024: changedOnThisPass = true;

025: } // if

026: } // for

027: unsortedLength--;

028: } while (changedOnThisPass);

029: } // sort

030:

031: } // class SortList

March 4, 2019 Java Just in Time - John Latham Page 25(0/0)

The SortList class?

• Could do above, or another way:

– turn List into array

– sort with Arrays.sort()

– turn back into List.

– Java API contains methods for such conversions.

• But don’t even need do that! . . .

March 4, 2019 Java Just in Time - John Latham Page 26(0/0)

Collections API: Collections class

• java.util.Collections provides class methods

to perform manipulations of collections.

• One called sort

– takes List of Objects

– sorts into natural ordering.

– Items in List must all be type java.lang.Comparable

– and be mutually comparable.

– or exception thrown.

• Uses merge sort

– far more efficient than bubble sort (but less simple).

March 4, 2019 Java Just in Time - John Latham Page 27(0/0)

Collections API: Collections class

• At Java 5.0 many methods in Collections became generic methods.

• Collections.sort() has single type parameter

– type of items in given List

– must be Comparable with themselves.

• Would expect heading:

public static <T extends Comparable<T>>

void sort(List<T> list)

March 4, 2019 Java Just in Time - John Latham Page 28(0/0)

Collections API: Collections class

• In fact heading is:

public static <T extends Comparable<? super T>>

void sort(List<T> list)

• <? super T> means

– “any type that is T or a superclass (or superinterface) of it”.

• I.e. any type argument must implement Comparable with itself

– or superclass of itself.

• Many type parameters in API expressed like that

– leads to more flexibility and convenience.

March 4, 2019 Java Just in Time - John Latham Page 29(0/0)

The SortList class?

Coffee

time:

Warning – this one is subtle stuff. If a class, A, imple-

ments Comparable<A>, and a class B extends A, then B

also implements Comparable<A>. But, does it implement

Comparable as well? You might think it does, because

any B can be compared with any other B, via the in-

stance method defined in A. However, perhaps surpris-

ingly, Java regards that it does not: Comparable is not

‘implied’ from Comparable<A> in the same way that int

compareTo(B other) would not override int compareTo(A

other) – it would be an overloaded method instead.

This has surprising implications. The code <T extends

Comparable<? super T>> gets around this problem.

March 4, 2019 Java Just in Time - John Latham Page 30(0/0)

The Sort class

001: import java.io.BufferedReader;

002: import java.io.FileReader;

003: import java.io.FileWriter;

004: import java.io.IOException;

005: import java.io.PrintWriter;

006: import java.util.ArrayList;

007: import java.util.Collections;

008: import java.util.List;

009:

010: // Program to sort lines of a file, line by line, and write to another.

011: // Input file is the first argument, output is the second.

012: public class Sort

013: {

March 4, 2019 Java Just in Time - John Latham Page 31(0/0)

The Sort class

014: public static void main(String[] args)

015: {

016: BufferedReader input = null;

017: PrintWriter output = null;

018: try

019: {

020: if (args.length != 2)

021: throw new IllegalArgumentException

022: ("There must be exactly two arguments: infile outfile");

023:

024: input = new BufferedReader(new FileReader(args[0]));

025: output = new PrintWriter(new FileWriter(args[1]));

026:

027: // The List for storing the lines.

028: List<String> lineList = new ArrayList<String>();

029:

March 4, 2019 Java Just in Time - John Latham Page 32(0/0)

The Sort class

030: // Read the lines into lineList.

031: String currentLine;

032: while ((currentLine = input.readLine()) != null)

033: lineList.add(currentLine);

034:

035: // Sort lineList.

036: Collections.sort(lineList);

037:

038: // Now output them.

039: for (int index = 0; index < lineList.size(); index++)

040: output.println(lineList.get(index));

041: } // try

042: catch (Exception exception)

043: {

044: System.err.println(exception);

045: } // catch

March 4, 2019 Java Just in Time - John Latham Page 33(0/0)

The Sort class

046: finally

047: {

048: try { if (input != null) input.close(); }

049: catch (IOException exception)

050: { System.err.println("Could not close input " + exception); }

051: if (output != null)

052: {

053: output.close();

054: if (output.checkError())

055: System.err.println("Something went wrong with the output");

056: } // if

057: } // finally

058: } // main

059:

060: } // class Sort

March 4, 2019 Java Just in Time - John Latham Page 34(0/0)

Coursework: Sorting election leaflets, with

compareTo()

(Summary only)

Write a program to sort election information leaflets into delivery order, using a

compareTo() instance method.

March 4, 2019 Java Just in Time - John Latham Page 35(0/0)

Section 4

Example:

Prime numbers

March 4, 2019 Java Just in Time - John Latham Page 36(0/0)

Aim

AIM: To introduce the idea of set collections, the Set inter-

face and the HashSet class. For this we explore hash

tables and meet hashCode() from Object. We also see

that the class Integer implements Comparable<Integer>.

March 4, 2019 Java Just in Time - John Latham Page 37(0/0)

Prime numbers

• A prime number is positive integer which can be divided without

remainder by only itself and one.

– their pursuit and understanding has been holy grail for many

mathematicians.

• Program outputs all prime numbers less than or equal to

given command line argument.

• Simple and fast approach

– maintain set of all multiples of prime numbers found so far.

– Consider all numbers from two up to given maximum.

– If number is not multiple of prime number previously found

∗ print it

∗ add all multiples, up to maximum, to set.

• Based on Sieve of Eratosthenes.

March 4, 2019 Java Just in Time - John Latham Page 38(0/0)

Collections API: Sets

• Another kind of collection in collections framework

– set collection.

• Collections of data which are sets

– adding element already present has no effect

– order added not preserved.

• To determine if Objects are equivalent

– uses equals() instance method of elements.

March 4, 2019 Java Just in Time - John Latham Page 39(0/0)

Collections API: Sets: Set interface

• The interface java.util.Set part of collections framework

– specifies instance methods needed to support set collection.

• Including. . .

March 4, 2019 Java Just in Time - John Latham Page 40(0/0)

Collections API: Sets: Set interface

Method definitions in interface Set (some of them).

Method Return Arguments Description

size int Returns the size of this Set, that is, the

number of elements in it.

add boolean Object Inserts the given Object into the Set,

unless an equivalent one is already

present. Returns true if it gets added,

false otherwise.

contains boolean Object Return true if the Set contains an Object

which is equivalent to the given one,

false otherwise.

March 4, 2019 Java Just in Time - John Latham Page 41(0/0)

Collections API: Sets: Set interface

• Since Java 5.0 Set is generic interface

– type parameter is type of objects that can be stored.

• When use parameterized type of Set rather than raw type

– all the occurrences of Object in above table

replaced by type argument.

March 4, 2019 Java Just in Time - John Latham Page 42(0/0)

Prime numbers

• We use HashSet

– implementation based on hash table.

March 4, 2019 Java Just in Time - John Latham Page 43(0/0)

Design: Storing data

• Collections of data need stored in computer memory at run time

– placed in data structure.

• E.g. obvious example: array.

• Common requirement to find data using some kind of

search algorithm

– e.g. linear search

– binary search

• May need data sorted in particular order

– sort algorithm

∗ e.g. bubble sort.

March 4, 2019 Java Just in Time - John Latham Page 44(0/0)

Design: Storing data: hash table

• A hash table is data structure

– stores data so can be retrieved quickly.

• Uses array

– array index based on hash code provided by each item.

• Data items which are equivalent must have same hash code

– and if not equivalent try to have different hash codes.

• To insert item

– take hash code

– divide by size of array, take remainder

– place item at that array index.

• To find item, compute array index and check array.

March 4, 2019 Java Just in Time - John Latham Page 45(0/0)

Design: Storing data: hash table

0 1 2 3 4 5 6 7 8 9 10

nullnull null null nullnull

HC = 22

22 % 11 = 0

HC = 223

223 % 11 = 3

HC = 38

38 % 11 = 5

HC = 119

119 % 11 = 9

HC = 30

30 % 11 = 8

March 4, 2019 Java Just in Time - John Latham Page 46(0/0)

Design: Storing data: hash table

• May get clashes

– two items not equivalent but same array index

– various strategies for coping

∗ e.g. find next available free slot – leads to partial linear search.

• For best efficiency must minimize clash occurrence

– make size of array prime number

– design hash function

so tend to get different hash codes for non-equivalent items.

March 4, 2019 Java Just in Time - John Latham Page 47(0/0)

Standard API: Object: hashCode()

• Every object has instance method hashCode

– defined in java.lang.Object

– designed to help classes that use hash table

∗ e.g. java.util.HashSet.

• Definition in Object gives distinct objects distinct hash code

– (usually) based on memory address of reference.

• Classes that override equals()

– should also override hashCode()

∗ so equivalent objects get same hash code

∗ but non-equivalent tend to have different one.

• So will work properly if need to be used as elements of

– HashSet, etc..

March 4, 2019 Java Just in Time - John Latham Page 48(0/0)

Standard API: Object: hashCode()

MyClass v1 = new MyClass(...);

MyClass v2 = new MyClass(...);

if (v1.equals(v2) && v1.hashCode() != v2.hashCode())

System.out.println("Your hash tables will not work!");

else if (! v1.equals(v2) && v1.hashCode() == v2.hashCode())

System.out.println("Your hash tables may operate slowly.");

March 4, 2019 Java Just in Time - John Latham Page 49(0/0)

Collections API: Sets: HashSet

• java.util.HashSet part of collections framework

– one implementation of set collection.

• It implements java.util.Set interface.

• Uses hash table

– hash codes obtained from hashCode() instance method of elements.

• To work, any objects which are equivalent

– must have same hash code

∗ otherwise multiple copies of equivalent items will be allowed!

• To be efficient non-equivalent objects

should tend to have different hash codes.

March 4, 2019 Java Just in Time - John Latham Page 50(0/0)

Collections API: Sets: HashSet

• Since Java 5.0 HashSet is generic class

– type parameter is type of objects that can be stored.

public class HashSet<E> implements Set<E>

{ ... }

March 4, 2019 Java Just in Time - John Latham Page 51(0/0)

Standard API: Integer: as a box for int: works with

collections

• java.lang.Integer implements java.lang.Comparable<Integer>

– provides compareTo()

– overrides equals()

– hashCode()

so that Integer objects behave properly as

– Comparables

– in hash tables, etc..

March 4, 2019 Java Just in Time - John Latham Page 52(0/0)

Prime numbers

001: import java.util.HashSet;

002: import java.util.Set;

003:

004: // List all the prime numbers less than or equal to the command line argument.

005: // (Warning: this program does not catch RuntimeExceptions.)

006: public class Primes

007: {

008: public static void main(String[] args)

009: {

010: // The maximum number we need to consider.

011: int maxPossiblePrime = Integer.parseInt(args[0]);

012:

013: // The set of all multiples of prime numbers found so far.

014: // These are therefore not prime numbers.

015: Set<Integer> multiplesOfPrimesFound = new HashSet<Integer>();

016:
March 4, 2019 Java Just in Time - John Latham Page 53(0/0)

Prime numbers

017: // Consider every number from 2 up to maximum,
018: // it is a possible prime, output and count it if it is.
019: int noOfPrimesFoundSoFar = 0;
020: for (int possiblePrimeNumber = 2;
021: possiblePrimeNumber <= maxPossiblePrime; possiblePrimeNumber++)
022: if (! multiplesOfPrimesFound.contains(possiblePrimeNumber))

023: {

024: // possiblePrimeNumber really is a prime number.
025: noOfPrimesFoundSoFar++;
026:

System.out.println(noOfPrimesFoundSoFar + " : " + possiblePrimeNumber);
027: // Now add multiples of possiblePrimeNumber to multiplesOfPrimesFound.
028: for (int primeMultiple = possiblePrimeNumber * 2;
029: primeMultiple <= maxPossiblePrime;
030: primeMultiple += possiblePrimeNumber)
031: multiplesOfPrimesFound.add(primeMultiple);

032: } // if

033: } // main

034:
035: } // class Primes

March 4, 2019 Java Just in Time - John Latham Page 54(0/0)

Prime numbers

Coffee

time:

Did you notice the two places where autoboxing wraps

an int inside an Integer?

Coffee

time:

What do you imagine is the hash code for an Integer ob-

ject containing the number n?

Coffee

time:

Suppose the implementers of the Integer class had for-

gotten to override hashCode(), so that every Integer ob-

ject had a unique hash code. What would be the effect

of our Primes program?

March 4, 2019 Java Just in Time - John Latham Page 55(0/0)

Prime numbers

Coffee

time:

Find all the places where we previously wrote an equals()

instance method and devise a suitable hashCode() in-

stance method to go with each one.

March 4, 2019 Java Just in Time - John Latham Page 56(0/0)

Trying it

Console Input / Output

$ java Primes 1000

(Output shown using multiple columns to save space.)

1 : 2 22 : 79 43 : 191 64 : 311 85 : 439 106 : 577 127 : 709 148 : 857

2 : 3 23 : 83 44 : 193 65 : 313 86 : 443 107 : 587 128 : 719 149 : 859

3 : 5 24 : 89 45 : 197 66 : 317 87 : 449 108 : 593 129 : 727 150 : 863

4 : 7 25 : 97 46 : 199 67 : 331 88 : 457 109 : 599 130 : 733 151 : 877

5 : 11 26 : 101 47 : 211 68 : 337 89 : 461 110 : 601 131 : 739 152 : 881

6 : 13 27 : 103 48 : 223 69 : 347 90 : 463 111 : 607 132 : 743 153 : 883

7 : 17 28 : 107 49 : 227 70 : 349 91 : 467 112 : 613 133 : 751 154 : 887

8 : 19 29 : 109 50 : 229 71 : 353 92 : 479 113 : 617 134 : 757 155 : 907

9 : 23 30 : 113 51 : 233 72 : 359 93 : 487 114 : 619 135 : 761 156 : 911

10 : 29 31 : 127 52 : 239 73 : 367 94 : 491 115 : 631 136 : 769 157 : 919

11 : 31 32 : 131 53 : 241 74 : 373 95 : 499 116 : 641 137 : 773 158 : 929

12 : 37 33 : 137 54 : 251 75 : 379 96 : 503 117 : 643 138 : 787 159 : 937

13 : 41 34 : 139 55 : 257 76 : 383 97 : 509 118 : 647 139 : 797 160 : 941

14 : 43 35 : 149 56 : 263 77 : 389 98 : 521 119 : 653 140 : 809 161 : 947

15 : 47 36 : 151 57 : 269 78 : 397 99 : 523 120 : 659 141 : 811 162 : 953

16 : 53 37 : 157 58 : 271 79 : 401 100 : 541 121 : 661 142 : 821 163 : 967

17 : 59 38 : 163 59 : 277 80 : 409 101 : 547 122 : 673 143 : 823 164 : 971

18 : 61 39 : 167 60 : 281 81 : 419 102 : 557 123 : 677 144 : 827 165 : 977

19 : 67 40 : 173 61 : 283 82 : 421 103 : 563 124 : 683 145 : 829 166 : 983

20 : 71 41 : 179 62 : 293 83 : 431 104 : 569 125 : 691 146 : 839 167 : 991

21 : 73 42 : 181 63 : 307 84 : 433 105 : 571 126 : 701 147 : 853 168 : 997

$ _ Run

March 4, 2019 Java Just in Time - John Latham Page 57(0/0)

Trying it

• How fast?

Console Input / Output

$ time java Primes 1000000 > primes.txt

real 0m5.175s

user 0m3.800s

sys 0m1.217s

$ cat primes.txt

1 : 2

2 : 3

(... lines removed to save space.)

78496 : 999961

78497 : 999979

78498 : 999983

$ _ Run

March 4, 2019 Java Just in Time - John Latham Page 58(0/0)

Trying it

• But does need lot of space.. . .

Console Input / Output

$ time java Primes 10000000 > primes.txt

Exception in thread "main" java.lang.OutOfMemoryError: Java heap space

at java.util.HashMap.addEntry(HashMap.java:753)

at java.util.HashMap.put(HashMap.java:385)

at java.util.HashSet.add(HashSet.java:200)

at Primes.main(Primes.java:31)

real 0m59.125s

user 0m55.945s

sys 0m1.110s

$ cat primes.txt

1 : 2

2 : 3

$ _ Run

March 4, 2019 Java Just in Time - John Latham Page 59(0/0)

Trying it

Coffee

time:

The Primes program has been a suitable introduction to

the use of set collections, but actually, there may be a

better way to implement the same algorithm. Consider

this: the set contains all the non-prime numbers up to

the maximum, and as the maximum gets bigger, the dif-

ference between this set and all the numbers up to the

maximum, gets proportionally smaller. With this in mind,

what even simpler way could we use to implement the

set of non-primes?

March 4, 2019 Java Just in Time - John Latham Page 60(0/0)

Coursework: Finding duplicate voters

(Summary only)

Write a program to detect people voting more than once in voting records.

March 4, 2019 Java Just in Time - John Latham Page 61(0/0)

Section 5

Example:

Sorting a text file using a

TreeSet

March 4, 2019 Java Just in Time - John Latham Page 62(0/0)

Aim

AIM: To introduce the TreeSet class, for which we explore

ordered binary trees and tree sort. We also meet the

Iterator interface, together with how it is used on a

List and a Set, especially a TreeSet.

March 4, 2019 Java Just in Time - John Latham Page 63(0/0)

Sorting a text file using a TreeSet

• Seen two ways of sorting text file

– using array

– using ArrayList

• Here use TreeSet

– causes interesting twist:

multiple copies of line in input produce only one copy in output.

March 4, 2019 Java Just in Time - John Latham Page 64(0/0)

Design: Storing data: ordered binary tree

• An ordered binary tree (OBT)

– data structure for quick storage / retrieval of data.

• Data stored in tree

– each branch having possible left subtree

– and/or right subtree (binary)

– data kept in some total order from left to right across tree.

∗ For every item in tree

all items in left subtree are less than

all items in right subtree are greater than.

March 4, 2019 Java Just in Time - John Latham Page 65(0/0)

Design: Storing data: ordered binary tree

12

19

49

81

995334

2717 75

March 4, 2019 Java Just in Time - John Latham Page 66(0/0)

Design: Storing data: ordered binary tree

• Do not have to search entire tree to find item

– start at top

– if not yet found

∗ go left if search item less than item here

∗ else right.

• OBT searching similar efficiency to binary search

– (essentially) halve search space each stage as proceed down tree.

• Not as fast as hash table with good (and quick) hash code function

– but OBT useful when wish to retrieve data in order.

March 4, 2019 Java Just in Time - John Latham Page 67(0/0)

Collections API: Sets: TreeSet

• java.util.TreeSet part of collections framework

– another implementation of set collection

– implements java.util.Set interface.

• Uses ordered binary tree

– has to be possible to order elements stored in it.

– Simplest way: ensure class of elements implements

java.lang.Comparable.

• Since Java 5.0, TreeSet is generic class

– type parameter is type of objects that can be stored.

public class TreeSet<E> implements Set<E>

{ ... }

March 4, 2019 Java Just in Time - John Latham Page 68(0/0)

Sorting a text file using a TreeSet

• Program will

– insert lines into TreeSet

– use Iterator to access in order.

March 4, 2019 Java Just in Time - John Latham Page 69(0/0)

Collections API: Iterator interface

• The interface java.util.Iterator part of collections framework

– specifies instance methods for

∗ accessing elements in collection

∗ one by one.

Method definitions in interface Iterator (some of them).

Method Return Arguments Description

hasNext boolean Returns true if the iteration has more ele-

ments, false otherwise.

next Object Returns the next element in the iteration,

and moves the iteration on to the element

following that one.

March 4, 2019 Java Just in Time - John Latham Page 70(0/0)

Collections API: Iterator interface

• When new Iterator object obtained from collection

– hasNext() will return true, unless collection is empty.

• First call to next() gets first element from iteration if is one

– second call gets second, and so on.

• Sooner or later hasNext() will return false

– because next() been called as many times as are elements.

• Typically use hasNext() to control loop

– next() inside loop.

March 4, 2019 Java Just in Time - John Latham Page 71(0/0)

Collections API: Iterator interface

• All list collections and set collections have instance method iterator()

– returns object, instance of some class that implements Iterator.

• Supports iteration through elements of collection

– order depends on kind of collection.

• Since Java 5.0, Iterator is generic interface

– type parameter is type of objects stored in collection.

• I.e. if collection was given type argument

– next() returns object of that type.

March 4, 2019 Java Just in Time - John Latham Page 72(0/0)

Collections API: Lists: List interface: iterator()

• The instance method iterator() specified in interface java.util.List

– returns object that implements java.util.Iterator

∗ supports iteration of elements in ascending order of list index.

• E.g. print elements of List:

public static <ListType> void printList(List<ListType> list)

{

Iterator<ListType> iterator = list.iterator();

while (iterator.hasNext())

{

ListType item = iterator.next();

System.out.println(item);

} // while

} // printList

March 4, 2019 Java Just in Time - John Latham Page 73(0/0)

Collections API: Lists: List interface: iterator()

• For ArrayList this way of scanning just as efficient as using list index of

each element.

• For some kinds of Lists accessing by index not efficient

– but scanning using Iterator always will be

∗ because designed for that purpose.

• Rule of thumb:

– whenever need to scan through elements of list in

∗ arbitrary order

∗ or from first to last

use Iterator rather than indices.

March 4, 2019 Java Just in Time - John Latham Page 74(0/0)

Sorting a text file using a TreeSet

Coffee

time:

Identify all the places in this chapter before this point,

where we used indices to scan through the elements of a

List, and devise the changes needed to make them use

an Iterator instead.

March 4, 2019 Java Just in Time - John Latham Page 75(0/0)

Collections API: Sets: Set interface: iterator()

• The instance method iterator() specified in interface java.util.Set

– returns object that implements java.util.Iterator

– supports iteration of elements:

∗ order depends on kind of set

∗ may be arbitrary order.

March 4, 2019 Java Just in Time - John Latham Page 76(0/0)

Collections API: Sets: TreeSet: iterator()

• The iterator() instance method of java.util.TreeSet

– returns object that implements java.util.Iterator

∗ supports iteration of elements in order they appear in tree,

from left to right.

• With simplest use of TreeSet

– get natural ordering of elements.

March 4, 2019 Java Just in Time - John Latham Page 77(0/0)

Collections API: Sets: TreeSet: iterator()

• Rule of thumb: java.util.HashSet should be used in preference to TreeSet

– when not desired to obtain values from set collection in specific order.

• If little or no hash code clashing

– HashSet operates in nearly constant time per addition

and membership test

∗ TreeSet operates in time proportional to logarithm of size of set.

March 4, 2019 Java Just in Time - John Latham Page 78(0/0)

Design: Sorting a list: tree sort

• Another algorithm for sorting – tree sort

– items from list inserted into ordered binary tree

– tree scanned from left to right.

• If data to be sorted has no duplicates

(or desired to exclude multiple elements in result)

– tree sort can be achieved in Java using instance of java.util.TreeSet

∗ iterator() produces Iterator giving access to elements

in order from smallest to largest.

• Duplicate items removed because set has no duplicates.

March 4, 2019 Java Just in Time - John Latham Page 79(0/0)

Sorting a text file using a TreeSet

001: import java.io.BufferedReader;

002: import java.io.FileReader;

003: import java.io.FileWriter;

004: import java.io.IOException;

005: import java.io.PrintWriter;

006: import java.util.Iterator;

007: import java.util.TreeSet;

008:

009: // Program to sort lines of a file, line by line, and write to another.

010: // Input file is the first argument, output is the second.

011: // Duplicate lines are removed.

012: public class Sort

013: {

March 4, 2019 Java Just in Time - John Latham Page 80(0/0)

Sorting a text file using a TreeSet

014: public static void main(String[] args)

015: {

016: BufferedReader input = null;

017: PrintWriter output = null;

018: try

019: {

020: if (args.length != 2)

021: throw new IllegalArgumentException

022: ("There must be exactly two arguments: infile outfile");

023:

024: input = new BufferedReader(new FileReader(args[0]));

025: output = new PrintWriter(new FileWriter(args[1]));

026:

027: // The Set for storing the lines: TreeSet so it has an ordered Iterator.

028: TreeSet<String> lineSet = new TreeSet<String>();

029:

March 4, 2019 Java Just in Time - John Latham Page 81(0/0)

Sorting a text file using a TreeSet

030: // Read the lines into lineSet.

031: String currentLine;

032: while ((currentLine = input.readLine()) != null)

033: lineSet.add(currentLine);

034:

035: // Now output them in natural ordering.

036: Iterator<String> iterator = lineSet.iterator();

037: while (iterator.hasNext())

038: output.println(iterator.next());

039: } // try

040: catch (Exception exception)

041: {

042: System.err.println(exception);

043: } // catch

March 4, 2019 Java Just in Time - John Latham Page 82(0/0)

Sorting a text file using a TreeSet

044: finally

045: {

046: try { if (input != null) input.close(); }

047: catch (IOException exception)

048: { System.err.println("Could not close input " + exception); }

049: if (output != null)

050: {

051: output.close();

052: if (output.checkError())

053: System.err.println("Something went wrong with the output");

054: } // if

055: } // finally

056: } // main

057:

058: } // class Sort

Coffee

time:

What do you think our Sort program would do, if we used

a HashSet instead of a TreeSet?

March 4, 2019 Java Just in Time - John Latham Page 83(0/0)

Trying it

• Program sorts input and removes duplicate lines.

Console Input / Output

$ cat input.txt

Smith,James 87.9%

Jackson,Helen 100%

Jones,Stephen 51.5%

Jackson,Helen 100%

$ java Sort input.txt output.txt

$ cat output.txt

Jackson,Helen 100%

Jones,Stephen 51.5%

Smith,James 87.9%

$ _ Run

March 4, 2019 Java Just in Time - John Latham Page 84(0/0)

Coursework: Sorting election leaflets, using a

TreeSet

(Summary only)

Write a program to sort election information leaflets into delivery order, using a

TreeSet.

March 4, 2019 Java Just in Time - John Latham Page 85(0/0)

Section 6

Summary of lists and sets

March 4, 2019 Java Just in Time - John Latham Page 86(0/0)

Aim

AIM: To summarize the collections framework explored so

far, and introduce the Collection interface and the

LinkedList class, for which we explore linked lists. We

also revisit List.

March 4, 2019 Java Just in Time - John Latham Page 87(0/0)

Summary of lists and sets

• So far met

– interface List

∗ with ArrayList implementation

– interface Set

∗ implemented by HashSet and TreeSet.

• Also common type

of which all list collections and set collections are members.

March 4, 2019 Java Just in Time - John Latham Page 88(0/0)

Collections API: Collection interface

• The interface java.util.Collection part of collections framework

– specifies instance methods to support collection

∗ such as list collection / set collection.

Method definitions in interface Collection (some of them).

Method Return Arguments Description

size int Returns the size of this Collection, that is,

the number of elements in it.

March 4, 2019 Java Just in Time - John Latham Page 89(0/0)

Collections API: Collection interface

Method definitions in interface Collection (some of them).

Method Return Arguments Description

add boolean Object Ensures that this Collection contains the

given Object, or an equivalent one if ap-

propriate. It returns true if the Collection

was modified, false otherwise. For exam-

ple, a List always appends the element

on the end and returns true, whereas a

Set will do nothing if it already contains an

equivalent element.

March 4, 2019 Java Just in Time - John Latham Page 90(0/0)

Collections API: Collection interface

Method definitions in interface Collection (some of them).

Method Return Arguments Description

remove boolean Object Removes one element equivalent to the

given Object, and returns true if the

Collection was changed (i.e. there was

at least one element matching the given

one).

addAll boolean Collection Adds all the elements of the given

Collection to this one, and returns true if

this collection was changed. (E.g. the

given collection could be empty, or this

one could be a Set and already contain

the elements.)

March 4, 2019 Java Just in Time - John Latham Page 91(0/0)

Collections API: Collection interface

Method definitions in interface Collection (some of them).

Method Return Arguments Description

removeAll boolean Collection Removes all the elements of the given

Collection from this one, and returns

true if this collection was changed.

retainAll boolean Collection Removes all elements of this collection

which are not contained in the given

Collection, and returns true if this collec-

tion was changed.

March 4, 2019 Java Just in Time - John Latham Page 92(0/0)

Collections API: Collection interface

Method definitions in interface Collection (some of them).

Method Return Arguments Description

contains boolean Object Returns true if the Collection contains

at least one Object which is equiva-

lent to the given one, false otherwise.

containsAll boolean Collection Returns true if this Collection con-

tains at least one equivalent Object

for each element in the given collec-

tion, false otherwise.

March 4, 2019 Java Just in Time - John Latham Page 93(0/0)

Collections API: Collection interface

Method definitions in interface Collection (some of them).

Method Return Arguments Description

iterator Iterator Returns an object that implements

java.util.Iterator, giving access to

all the elements of the Collection. The

order depends on the kind of collection.

• Since Java 5.0, Collection is generic interface

– type parameter represents type of objects that can be stored.

• When use parameterized type of Collection

– all occurrences of Object above replaced by type argument.

March 4, 2019 Java Just in Time - John Latham Page 94(0/0)

Collections API: Lists: List interface: extends

Collection

• The interface java.util.List is extension of java.util.Collection.

public interface List<E> extends Collection<E>

{

...

} // interface List

March 4, 2019 Java Just in Time - John Latham Page 95(0/0)

Collections API: Sets: Set interface: extends

Collection

• The interface java.util.Set is extension of java.util.Collection.

public interface Set<E> extends Collection<E>

{

...

} // interface Set

March 4, 2019 Java Just in Time - John Latham Page 96(0/0)

Summary of lists and sets

• So instance of ArrayList<T>

– is an ArrayList<T>

– is a List<T>

– is a Collection<T>.

Coffee

time:

Consider the instance methods addAll(), removeAll()

and retainAll() as they apply to Sets. What is the rela-

tionship between these and the notions of set union, set

intersection and set difference?

• Lists also have instance methods not specified in Collection

– based on use of list index

– already seen get() and set().

March 4, 2019 Java Just in Time - John Latham Page 97(0/0)

Collections API: Lists: add(index) and

remove(index)

• java.util.List specifies instance methods for adding / removing elements

at particular list index

– in addition to those defined in java.util.Collection

∗ for adding element (at the end)

∗ or removing element equivalent to given one.

March 4, 2019 Java Just in Time - John Latham Page 98(0/0)

Collections API: Lists: add(index) and

remove(index)

Method definitions in interface List (some more of them).

Method Return Arguments Description

add int, Object Inserts the given Object at the specified

list index, shifting any elements after that

position up by one place. To avoid an

IndexOutOfBoundsException, the index must

be legal (0 <= index <= size()).

remove Object int Removes the element at the given list

index, shifting elements after that posi-

tion down by one place. To avoid an

IndexOutOfBoundsException, the index must

be legal (0 <= index < size()).

March 4, 2019 Java Just in Time - John Latham Page 99(0/0)

Design: Storing data: linked list

• A linked list is data structure

– holds data in chain of link objects

∗ each containing (reference to) one data element

∗ and reference to next link object.

• A doubly linked list has links in both directions.

data0 data1 data2 data3 data4

first

last
null

null

0 1 2 3 4

March 4, 2019 Java Just in Time - John Latham Page 100(0/0)

Design: Storing data: linked list

• To access element at particular list index

– chain must be followed from front, counting links until index reached

– or from back if nearer.

• Not efficient if many random accesses of elements needed.

• Can be more efficient than array

– e.g. adding at back without needing array extension

– adding / removing at front / middle

without need to shuffle elements.

March 4, 2019 Java Just in Time - John Latham Page 101(0/0)

Collections API: Lists: LinkedList

• java.util.LinkedList part of collections framework

– another implementation of list collection

– implements java.util.List interface

– uses doubly linked list.

• Since Java 5.0, LinkedList, is generic class

– type parameter is type of objects that can be stored.

public class LinkedList<E> implements List<E>

{ ... }

March 4, 2019 Java Just in Time - John Latham Page 102(0/0)

Summary of lists and sets

Coffee

time:

Could we have used a LinkedList for our Reverse pro-

gram from Section 11 on page 14? How about if we

had added each line at the front of the list, using add(0)?

Would we still use a list index for printing the result?

Coffee

time:

Add the following instance methods to a (copy of?) this

diagram. remove(), addAll(), removeAll(), retainAll(),

containsAll(), add(index) and remove(index).

March 4, 2019 Java Just in Time - John Latham Page 103(0/0)

Summary of lists and sets

Collection

+ size(): int
+ add(o: Object): boolean
+ contains(o: Object): boolean
+ iterator(): Iterator

List

+ get(index: int): Object
+ set(index: int, element: Object): Object

Set

ArrayList

+ ArrayList()
+ size(): int
+ add(o: Object): boolean
+ contains(elem: Object): boolean
+ iterator(): Iterator
+ get(index: int): Object
+ set(index: int, element: Object): Object

HashSet

+ HashSet()
+ size(): int
+ add(o: Object): boolean
+ contains(o: Object): boolean
+ iterator(): Iterator

LinkedList

+ LinkedList()
+ size(): int
+ add(o: Object): boolean
+ contains(elem: Object): boolean
+ iterator(): Iterator
+ get(index: int): Object
+ set(index: int, element: Object): Object

TreeSet

+ TreeSet()
+ size(): int
+ add(o: Object): boolean
+ contains(o: Object): boolean
+ iterator(): Iterator

March 4, 2019 Java Just in Time - John Latham Page 104(0/0)

Summary of lists and sets

Coffee

time:

Why do you think that Collection, List and Set are inter-

faces, rather than abstract classes?

March 4, 2019 Java Just in Time - John Latham Page 105(0/0)

Section 7

Example:

Word frequency count

March 4, 2019 Java Just in Time - John Latham Page 106(0/0)

Aim

AIM: To introduce the idea of maps, the Map interface and

the TreeMap class. In particular we observe that a

TreeMap makes it easy to obtain the values from the

map in key order. We also see that the for-each loop

can be used with collections.

March 4, 2019 Java Just in Time - John Latham Page 107(0/0)

Word frequency count

• Read text file

– produce alphabetically sorted list of words on standard output

– each with number of occurrences.

• Use map.

March 4, 2019 Java Just in Time - John Latham Page 108(0/0)

Collections API: Maps

• Another kind of collection in collections framework

– map.

• Could view arrays and list collections as functions

from key to corresponding element

– key is array index / list index.

• Maps more general

– key can be any type of object.

– For every key in map there is associated value.

– Two different keys may map on to same value

∗ but each possible key maps on to at most one value.

March 4, 2019 Java Just in Time - John Latham Page 109(0/0)

Collections API: Maps

• Another view: set of pairs

– containing key and value

– keys unique within particular map

– values may be duplicated.

• Map is many-to-one association

– i.e. function.

March 4, 2019 Java Just in Time - John Latham Page 110(0/0)

Word frequency count

• Program will

– Separate input into words

– build map from word on to

∗ pair containing word and frequency found so far.

March 4, 2019 Java Just in Time - John Latham Page 111(0/0)

The WordWithFrequency class

001: // A pairing of a word with its frequency count so far.

002: public class WordWithFrequency

003: {

004: // The word, occurrences of which are being counted.

005: private final String word;

006:

007: // The frequency count of this word so far.

008: private int frequencySoFar;

009:

010:

011: // Create a pairing with the given word, and frequency of one.

012: public WordWithFrequency(String requiredWord)

013: {

014: word = requiredWord;

015: frequencySoFar = 1;

016: } // WordWithFrequency

March 4, 2019 Java Just in Time - John Latham Page 112(0/0)

The WordWithFrequency class

019: // Count another occurrence of this word.

020: public void incrementFrequency()

021: {

022: frequencySoFar++;

023: } // incrementFrequency

024:

025:

026: // A String showing the word and its frequency.

027: @Override

028: public String toString()

029: {

030: return word + " " + frequencySoFar;

031: } // toString

032:

033: } // class WordWithFrequency

March 4, 2019 Java Just in Time - John Latham Page 113(0/0)

Collections API: Maps: Map interface

• The interface java.util.Map part of collections framework

– specifies instance methods needed to support map.

Method definitions in interface Map (some of them).

Method Return Arguments Description

put Object Object, Object Takes a key and a value, and adds that

association to the map. If the map pre-

viously contained a mapping for this key

(or an equivalent one), the old value is

replaced with the new one. Returns the

null reference, if this is a new key, or re-

turns the old value otherwise.

March 4, 2019 Java Just in Time - John Latham Page 114(0/0)

Collections API: Maps: Map interface

Method definitions in interface Map (some of them).

Method Return Arguments Description

get Object Object Takes a key and returns the value as-

sociated with it, or the null reference

if the map does not contain a map-

ping with a key which equivalent to the

given one.

March 4, 2019 Java Just in Time - John Latham Page 115(0/0)

Collections API: Maps: Map interface

Method definitions in interface Map (some of them).

Method Return Arguments Description

values Collection Returns a Collection of the values

(not keys) in the map. The iterator()

instance method of the resulting

Collection may support iterating

through the values in a particular

order, or not, depending on the kind of

Map.

keySet Set Returns a Set of the keys (not values) in

the map.

March 4, 2019 Java Just in Time - John Latham Page 116(0/0)

Collections API: Maps: Map interface

• Since Java 5.0, Map is generic interface

– two type parameters

∗ type of objects used as keys

∗ type of objects stored as values.

• When use parameterized type of Map

– all occurrences of Object in above table replaced by

corresponding type argument.

March 4, 2019 Java Just in Time - John Latham Page 117(0/0)

Collections API: Maps: TreeMap

• java.util.TreeMap part of collections framework

– implementation of map

– implements java.util.Map interface.

• Uses ordered binary tree

– has to be possible to order keys.

– Simplest way: ensure class of keys implements java.lang.Comparable.

• values() gives Collection

– iterator() of this gives object

∗ implements java.util.Iterator

∗ supports iteration over values of map in key order.

March 4, 2019 Java Just in Time - John Latham Page 118(0/0)

Collections API: Maps: TreeMap

• Since Java 5.0, TreeMap is generic class

– type parameters are type of objects used as keys and values.

public class TreeMap<K, V> implements Map<K, V>

{ ... }

March 4, 2019 Java Just in Time - John Latham Page 119(0/0)

The WordFrequencyMap class

001: import java.util.Collection;

002: import java.util.TreeMap;

003:

004: // A map from word to WordWithFrequency.

005: public class WordFrequencyMap

006: {

007: // The map uses a TreeMap, so that we can obtain the values in natural

008: // ordering of the keys. I.e., in order by word.

009: private final TreeMap<String, WordWithFrequency>

010: wordMappedToWordWithFrequency = new TreeMap<String, WordWithFrequency>();

011:

012:

013: // Empty constructor, nothing needs doing.

014: public WordFrequencyMap()

015: {

016: } // WordFrequencyMap

March 4, 2019 Java Just in Time - John Latham Page 120(0/0)

The WordFrequencyMap class

019: // Count an occurrence of the given word by either incrementing the

020: // frequency of an existing WordWithFrequency or creating a new one if

021: // this is the first occurrence of the word.

022: public void countWord(String word)

023: {

024: WordWithFrequency wordWithFrequency

025: = wordMappedToWordWithFrequency.get(word);

026: if (wordWithFrequency != null)

027: wordWithFrequency.incrementFrequency();

028: else

029: {

030: wordWithFrequency = new WordWithFrequency(word);

031: wordMappedToWordWithFrequency.put(word, wordWithFrequency);

032: } // else

033: } // countWord

March 4, 2019 Java Just in Time - John Latham Page 121(0/0)

The WordFrequencyMap class

• toString() exploits fact that

– values() of TreeMap yields Collection

∗ with Iterator that presents elements in key order.

• I.e. Iterator goes through values

in lexicographic order of words used as keys.

• Use for-each loop rather than explicitly creating Iterator.

March 4, 2019 Java Just in Time - John Latham Page 122(0/0)

Statement: for-each loop: on collections

• The enhanced for statement

– introduced in Java 5.0

– more commonly called for-each loop.

• Can be used with collections as well as arrays.

• E.g. Wish to process each element of some Collection:

Collection<T> c = ...

Iterator<T> i = c.iterator();

while (i.hasNext())

... Statement with one use of i.next().

March 4, 2019 Java Just in Time - John Latham Page 123(0/0)

Statement: for-each loop: on collections

• Could use for-each loop:

Collection<T> c = ...

for (T e : c)

... Statement using e.

• Shorthand for:

Collection<T> c = ...

for (Iterator<T> i = c.iterator(); i.hasNext();)

{

T e = i.next();

... Statement using e.

} // for

• For-each loop suitable if processing all elements using one loop.

March 4, 2019 Java Just in Time - John Latham Page 124(0/0)

The WordFrequencyMap class

036: // Show the words and frequencies in word order.

037: @Override

038: public String toString()

039: {

040: // Obtain the WordWithFrequency values in word iterable order.

041: Collection<WordWithFrequency> wordWithFrequencyValues

042: = wordMappedToWordWithFrequency.values();

043:

044: String result = "";

045: for (WordWithFrequency wordWithFrequency : wordWithFrequencyValues)

046: result += String.format("%s%n", wordWithFrequency);

047:

048: return result;

049: } // toString

050:

051: } // class WordFrequencyMap

March 4, 2019 Java Just in Time - John Latham Page 125(0/0)

The WordFrequencyMap class

• For-each loop shorter than long way of writing it.

Iterator<WordWithFrequency> iterator = wordWithFrequencyValues.iterator();

while (iterator.hasNext())

result += String.format("%s%n", iterator.next());

• Could have made even shorter.

for (WordWithFrequency wordWithFrequency

: wordMappedToWordWithFrequency.values())

result += String.format("%s%n", wordWithFrequency);

March 4, 2019 Java Just in Time - John Latham Page 126(0/0)

The WordFrequency class

• The main method reads input one character at time

– builds into groups.

∗ either sequence of letters and/or apostrophe

∗ or sequence of non-letters.

001: import java.io.FileReader;

002: import java.io.IOException;

003:

004: // Read a text document from the file named by the first argument,

005: // and report frequency count of each word on standard output.

006: public class WordFrequency

007: {

008: public static void main(String[] args)

009: {

March 4, 2019 Java Just in Time - John Latham Page 127(0/0)

The WordFrequency class

010: // We see the data as a character stream.
011: FileReader input = null;
012: try

013: {

014: if (args.length != 1)
015: throw new IllegalArgumentException
016: ("There must be exactly one argument: input-file");
017:
018: input = new FileReader(args[0]);
019:
020: // A store of all the words found so far.
021: WordFrequencyMap wordFrequencyMap = new WordFrequencyMap();
022:
023: // Remember whether we are reading a word or characters between words.
024: boolean currentGroupIsAWord = false;
025:
026: // The group of characters we are currently reading.
027: String currentGroup = "";
028:

March 4, 2019 Java Just in Time - John Latham Page 128(0/0)

The WordFrequency class

029: int currentCharAsInt;
030: while ((currentCharAsInt = input.read()) != -1)

031: {

032: char currentChar = (char)currentCharAsInt;
033:
034: // We change group if the kind of the current character
035: // is not the same as the kind of the current group.

036: if ((Character.isLetter(currentChar) || currentChar == ’\’’)

037: != currentGroupIsAWord)

038: {

039: // We are starting a new group.
040: if (currentGroupIsAWord)
041: wordFrequencyMap.countWord(currentGroup.toLowerCase());
042: currentGroup = "";
043: currentGroupIsAWord = !currentGroupIsAWord;

044: } // if

045: // Whether new or old group, add the current character to it.
046: currentGroup += currentChar;

047: } // while

048:

March 4, 2019 Java Just in Time - John Latham Page 129(0/0)

The WordFrequency class

049: // We have a trailing word if the last character was a letter or ’.
050: if (currentGroupIsAWord && ! currentGroup.equals(""))
051: wordFrequencyMap.countWord(currentGroup.toLowerCase());
052:
053: // The toString of wordFrequencyMap already has a new line at the end.
054: System.out.print(wordFrequencyMap);

055: } // try
056: catch (Exception exception)

057: {

058: System.err.println(exception);

059: } // catch

060: finally

061: {

062: try { if (input != null) input.close(); }

063: catch (IOException exception)

064: { System.err.println("Could not close input " + exception); }

065: } // finally

066: } // main

067:
068: } // class WordFrequency

March 4, 2019 Java Just in Time - John Latham Page 130(0/0)

The WordFrequency class

Coffee

time:

Are you happy with the condition of the first if statement

inside the while loop? How would you have written that?

Also, for the if statement after the while loop, could we

replace the condition with just currentGroupIsAWord?

March 4, 2019 Java Just in Time - John Latham Page 131(0/0)

Trying it

Console Input / Output

$ java WordFrequency RomeoAndJuliet.txt

(Output shown using multiple columns to save space.)

’tis 1 be 1 enemy 1 it 1 not 2 romeo 3 thee 1 were 1

a 4 belonging 1 face 1 man 1 o 1 rose 1 thou 1 what’s 2

all 1 but 1 foot 1 montague 2 of 1 smell 1 though 1 which 3

and 1 by 1 for 1 my 1 other 3 so 1 thy 3 without 1

any 2 call 1 hand 1 myself 1 owes 1 some 1 thyself 1 would 2

arm 1 call’d 1 he 2 name 6 part 2 sweet 1 title 1

art 1 dear 1 in 1 no 1 perfection 1 take 1 to 1

as 1 doff 1 is 3 nor 5 retain 1 that 4 we 1

$ _ Run

Coffee

time:

Now that you know about TreeMap, can you think how we

could have a tree sort that does not lose duplicate input

items?

March 4, 2019 Java Just in Time - John Latham Page 132(0/0)

Section 8

Example:

Word frequency count sorted

by frequency

March 4, 2019 Java Just in Time - John Latham Page 133(0/0)

Aim

AIM: To introduce the HashMap class, and the fact that a col-

lection can be built to initially contain the same val-

ues as some other collection. We also take a look at

how we can go about making a good override of the

hashCode() instance method of Object.

March 4, 2019 Java Just in Time - John Latham Page 134(0/0)

The WordWithFrequency class

001: // A pairing of a word with its frequency count so far.

002: public class WordWithFrequency implements Comparable<WordWithFrequency>

003: {

004: // The word, occurrences of which are being counted.

005: private final String word;

006:

007: // The frequency count of this word so far.

008: private int frequencySoFar;

009:

010:

011: // Create a pairing with the given word, and frequency of one.

012: public WordWithFrequency(String requiredWord)

013: {

014: word = requiredWord;

015: frequencySoFar = 1;

016: } // WordWithFrequency

017:

018:

March 4, 2019 Java Just in Time - John Latham Page 135(0/0)

The WordWithFrequency class

019: // Count another occurrence of this word.

020: public void incrementFrequency()

021: {

022: frequencySoFar++;

023: } // incrementFrequency

024:

025:

026: // A String showing the word and its frequency.

027: @Override

028: public String toString()

029: {

030: return word + " " + frequencySoFar;

031: } // toString

March 4, 2019 Java Just in Time - John Latham Page 136(0/0)

The WordWithFrequency class

034: // Compare this with the given other, returning negative, zero or positive.

035: // Order first on descending frequency, then on ascending word.

036: @Override

037: public int compareTo(WordWithFrequency other)

038: {

039: if (frequencySoFar != other.frequencySoFar)

040: return other.frequencySoFar - frequencySoFar;

041: else

042: return word.compareTo(other.word);

043: } // compareTo

Coffee

time:

Howwould we change this to make it order by ascending

frequency?

March 4, 2019 Java Just in Time - John Latham Page 137(0/0)

The WordWithFrequency class

046: // Return true if and only if the given object is equivalent to this one.

047: @Override

048: public boolean equals(Object other)

049: {

050: if (other instanceof WordWithFrequency)

051: return compareTo((WordWithFrequency)other) == 0;

052: else

053: return super.equals(other);

054: } // equals

• Also override hashCode()

– even though not strictly needed for this program.

March 4, 2019 Java Just in Time - John Latham Page 138(0/0)

Standard API: Object: hashCode(): making a good

definition

• Classes that override equals() ought to also override hashCode()

– return same value for equivalent objects

– function based on

same instance variables used to define equivalence in equals().

• Good hash code function should tend to

give different hash codes for objects that are not equivalent

– otherwise hash tables have too many clashes.

• One way of achieving good spread

– turn instance variables into numbers

if not already number – e.g. use their hashCode()

– multiply each by different prime number

– add products.

March 4, 2019 Java Just in Time - John Latham Page 139(0/0)

The WordWithFrequency class

057: // A hash code for this object: equivalent ones have the same hash code.

058: @Override

059: public int hashCode()

060: {

061: return frequencySoFar * 31 + word.hashCode() * 37;

062: } // hashCode

063:

064: } // class WordWithFrequency

March 4, 2019 Java Just in Time - John Latham Page 140(0/0)

The WordWithFrequency class

• Many professional Java programmers make every class have

– equals(), matching hashCode()

– and if class implements Comparable

∗ matching compareTo().

• Even if not intending to need them now

– in case are needed in future version of program

– or in another program that reuses class.

• Failing to implement these properly at initial implementation

– could lead to strange bugs at later time.

Coffee

time:

In some previous examples we had an equals(), but no

hashCode(). Are you tempted to go back and add one

in?

March 4, 2019 Java Just in Time - John Latham Page 141(0/0)

The WordFrequencyMap class

• Still have map from words onto WordWithFrequency objects

– but do not use natural ordering of keys in toString().

• So (probably) more efficient to use HashMap than TreeMap.

March 4, 2019 Java Just in Time - John Latham Page 142(0/0)

Collections API: Maps: HashMap

• java.util.HashMap part of collections framework

– another implementation of map

– implements java.util.Map interface.

• Uses hash table

– each key must have appropriate implementation of hashCode()

∗ for HashMap to work correctly.

• values() gives Collection containing values of map

– can yield object implementing java.util.Iterator

∗ supports iteration over values in no specific order.

March 4, 2019 Java Just in Time - John Latham Page 143(0/0)

Collections API: Maps: HashMap

• Rule of thumb: HashMap should be used in preference to java.util.TreeMap

– when not desired to obtain values in key order.

– If little or no hash code clashing

∗ HashMap operates in nearly constant time

∗ TreeMap operates in logarithmic time.

• Since Java 5.0, HashMap is generic class

– two type parameters for type of keys and values.

public class HashMap<K, V> implements Map<K, V>

{ ... }

March 4, 2019 Java Just in Time - John Latham Page 144(0/0)

The WordFrequencyMap class

001: import java.util.Collection;

002: import java.util.HashMap;

003: import java.util.Map;

004: import java.util.TreeSet;

005:

006: // A map from word to WordWithFrequency.

007: public class WordFrequencyMap

008: {

009: // The map uses a HashMap to efficiently store the WordWithFrequency objects.

010: private final Map<String, WordWithFrequency>

011: wordMappedToWordWithFrequency = new HashMap<String, WordWithFrequency>();

012:

013: // Empty constructor, nothing needs doing.

014: public WordFrequencyMap()

015: {

016: } // WordFrequencyMap

March 4, 2019 Java Just in Time - John Latham Page 145(0/0)

The WordFrequencyMap class

017:

018:

019: // Count an occurrence of the given word by either incrementing the

020: // frequency of an existing WordWithFrequency or creating a new one if

021: // this is the first occurrence of the word.

022: public void countWord(String word)

023: {

024: WordWithFrequency wordWithFrequency

025: = wordMappedToWordWithFrequency.get(word);

026: if (wordWithFrequency != null)

027: wordWithFrequency.incrementFrequency();

028: else

029: {

030: wordWithFrequency = new WordWithFrequency(word);

031: wordMappedToWordWithFrequency.put(word, wordWithFrequency);

032: } // else

033: } // countWord

March 4, 2019 Java Just in Time - John Latham Page 146(0/0)

The WordFrequencyMap class

• For toString()

– build new TreeSet containing values

– iterate through in natural ordering of values

– i.e. use compareTo() from WordWithFrequency

∗ values covered in descending order of frequency.

March 4, 2019 Java Just in Time - John Latham Page 147(0/0)

Collections API: Collection interface: constructor

taking a Collection

• API documentation for java.util.Collection interface states

– any class which implements it should provide two constructor methods

∗ one with no method arguments builds empty Collection

∗ other takes existing Collection and builds new one containing same

elements.

• No way for this to be enforced in Java

– interfaces cannot specify constructor methods!

• Arguably is deficiency in use of interfaces as means of contractual

obligation.

• All standard implementations do satisfy requirement.

March 4, 2019 Java Just in Time - John Latham Page 148(0/0)

The WordFrequencyMap class

036: // Show the words and frequencies in frequency order.

037: @Override

038: public String toString()

039: {

040: // Obtain the WordWithFrequency values in an unpredictable order,

041: // and put them into a TreeSet so we can extract them in frequency order.

042: TreeSet<WordWithFrequency> wordWithFrequencyValues

043: = new TreeSet<WordWithFrequency>(wordMappedToWordWithFrequency.values());

044:

045: String result = "";

046: for (WordWithFrequency wordWithFrequency : wordWithFrequencyValues)

047: result += String.format("%s%n", wordWithFrequency);

048:

049: return result;

050: } // toString

051:

052: } // class WordFrequencyMap

March 4, 2019 Java Just in Time - John Latham Page 149(0/0)

The WordFrequency class

• Same as previous version!

Coffee

time:

What would happen if String did not override hashCode()

– would our program here work? What would it do in-

stead?

March 4, 2019 Java Just in Time - John Latham Page 150(0/0)

Trying it

Console Input / Output

$ java WordFrequency input.txt

(Output shown using multiple columns to save space.)

name 6 any 2 ’tis 1 but 1 foot 1 no 1 so 1 title 1

nor 5 he 2 all 1 by 1 for 1 o 1 some 1 to 1

that 5 montague 2 and 1 call 1 hand 1 of 1 sweet 1 we 1

a 4 not 2 arm 1 call’d 1 in 1 owes 1 take 1 were 1

is 3 part 2 art 1 dear 1 it 1 perfection 1 thee 1 without 1

other 3 thy 2 as 1 doff 1 man 1 retain 1 thou 1

romeo 3 what’s 2 be 1 enemy 1 my 1 rose 1 though 1

which 3 would 2 belonging 1 face 1 myself 1 smell 1 thyself 1

$ _ Run

Coffee

time:

Now that you know about maps, are you tempted to

re-implement some of the program for translating doc-

uments, perhaps in particular the way that Dictionary

works, in Section ?? on page ???

March 4, 2019 Java Just in Time - John Latham Page 151(0/0)

Coursework: Finding duplicate voters, using a

HashMap

(Summary only)

Write a program to detect people voting more than once in voting records,

using a HashMap.

March 4, 2019 Java Just in Time - John Latham Page 152(0/0)

Section 9

Collections of collections

March 4, 2019 Java Just in Time - John Latham Page 153(0/0)

Aim

AIM: To explore the idea that the elements of a collection

can themselves be collections, and so quite complex

data structures can be built.

March 4, 2019 Java Just in Time - John Latham Page 154(0/0)

Collections of collections

• No example here

– just idea

– and coursework.

• Idea might be obvious

– collections can contain any kinds of object

∗ including collections.

• E.g. ArrayList of ArrayLists

– collections framework’s answer to two-dimensional arrays

• E.g. TreeMap of LinkedLists, if say

– making index of all occurrences of identifiers in directory of Java

source code files.

• Etc..

March 4, 2019 Java Just in Time - John Latham Page 155(0/0)

Coursework: Finding duplicate voters, using a

HashMap of LinkedLists

(Summary only)

Write a program to detect people voting more than once in voting records,

using a HashMap of objects containing a LinkedList.

March 4, 2019 Java Just in Time - John Latham Page 156(0/0)

Concepts covered in this chapter

• Each book chapter ends with a list of concepts covered in it.

• Each concept has with it

– a self-test question,

– and a page reference to where it was covered.

• Please use these to check your understanding before we start the next

chapter.

March 4, 2019 Java Just in Time - John Latham Page 157(0/0)

	Title
	Chapter 21: Collections
	Chapter aims
	Section 2: Example: Reversing a text file
	Aim
	Reversing a text file
	Collections API
	Collections API

	Collections API: Lists
	Collections API: Lists

	Collections API: Lists: List interface
	Collections API: Lists: List interface

	Collections API: Lists: ArrayList
	Collections API: Lists: ArrayList

	Reversing a text file
	Reversing a text file
	Trying it
	Coursework: Sorting election leaflets
	Section 3: Example: Sorting a text file using an ArrayList
	Aim
	Sorting a text file using an ArrayList
	The SortList class?
	The SortList class?
	Collections API: Collections class
	Collections API: Collections class

	The SortList class?
	The Sort class
	Coursework: Sorting election leaflets, with compareTo()
	Section 4: Example: Prime numbers
	Aim
	Prime numbers
	Collections API: Sets
	Collections API: Sets

	Collections API: Sets: Set interface
	Collections API: Sets: Set interface

	Prime numbers
	Design: Storing data
	Design: Storing data

	Design: Storing data: hash table
	Design: Storing data: hash table

	Standard API: Object: hashCode()
	Standard API: Object: hashCode()

	Collections API: Sets: HashSet
	Collections API: Sets: HashSet

	Standard API: Integer: as a box for int: works with collections
	Standard API: Integer: as a box for int: works with collections

	Prime numbers
	Prime numbers
	Prime numbers
	Trying it
	Trying it
	Trying it
	Trying it
	Coursework: Finding duplicate voters
	Section 5: Example: Sorting a text file using a TreeSet
	Aim
	Sorting a text file using a TreeSet
	Design: Storing data: ordered binary tree
	Design: Storing data: ordered binary tree

	Collections API: Sets: TreeSet
	Collections API: Sets: TreeSet

	Sorting a text file using a TreeSet
	Collections API: Iterator interface
	Collections API: Iterator interface

	Collections API: Lists: List interface: iterator()
	Collections API: Lists: List interface: iterator()

	Sorting a text file using a TreeSet
	Collections API: Sets: Set interface: iterator()
	Collections API: Sets: Set interface: iterator()

	Collections API: Sets: TreeSet: iterator()
	Collections API: Sets: TreeSet: iterator()

	Design: Sorting a list: tree sort
	Design: Sorting a list: tree sort

	Sorting a text file using a TreeSet
	Trying it
	Coursework: Sorting election leaflets, using a TreeSet
	Section 6: Summary of lists and sets
	Aim
	Summary of lists and sets
	Collections API: Collection interface
	Collections API: Collection interface

	Collections API: Lists: List interface: extends Collection
	Collections API: Lists: List interface: extends Collection

	Collections API: Sets: Set interface: extends Collection
	Collections API: Sets: Set interface: extends Collection

	Summary of lists and sets
	Collections API: Lists: add(index) and remove(index)
	Collections API: Lists: add(index) and remove(index)

	Design: Storing data: linked list
	Design: Storing data: linked list

	Collections API: Lists: LinkedList
	Collections API: Lists: LinkedList

	Summary of lists and sets
	Summary of lists and sets
	Summary of lists and sets
	Section 7: Example: Word frequency count
	Aim
	Word frequency count
	Collections API: Maps
	Collections API: Maps

	Word frequency count
	The WordWithFrequency class
	The WordWithFrequency class
	Collections API: Maps: Map interface
	Collections API: Maps: Map interface

	Collections API: Maps: TreeMap
	Collections API: Maps: TreeMap

	The WordFrequencyMap class
	The WordFrequencyMap class
	The WordFrequencyMap class
	Statement: for-each loop: on collections
	Statement: for-each loop: on collections

	The WordFrequencyMap class
	The WordFrequencyMap class
	The WordFrequency class
	The WordFrequency class
	Trying it
	Section 8: Example: Word frequency count sorted by frequency
	Aim
	The WordWithFrequency class
	The WordWithFrequency class
	The WordWithFrequency class
	Standard API: Object: hashCode(): making a good definition
	Standard API: Object: hashCode(): making a good definition

	The WordWithFrequency class
	The WordWithFrequency class
	The WordFrequencyMap class
	Collections API: Maps: HashMap
	Collections API: Maps: HashMap

	The WordFrequencyMap class
	The WordFrequencyMap class
	Collections API: Collection interface: constructor taking a Collection
	Collections API: Collection interface: constructor taking a Collection

	The WordFrequencyMap class
	The WordFrequency class
	Trying it
	Coursework: Finding duplicate voters, using a HashMap
	Section 9: Collections of collections
	Aim
	Collections of collections
	Coursework: Finding duplicate voters, using a HashMap of LinkedLists
	Concepts covered in this chapter

