
List of Slides

1 Title
2 Chapter 20: Interfaces, including generic interfaces
3 Chapter aims
4 Section 2: Example:Summing valuables
5 Aim
6 Summing valuables
7 The Building class and its subclasses
8 Summing valuables

10 The Vehicle class and its subclasses
11 Summing valuables
13 The ValuableHouse and ValuableCar classes
14 The ValuableHouse and ValuableCar classes
15 The ValuableHouse and ValuableCar classes
16 ValuablesFragment.java
17 The ValuableHouse and ValuableCar classes
18 The Valuable class

0-0

19 The Valuable class
20 The Valuable class
21 The Valuable class
22 The Valuable class
23 Inheritance: multiple inheritance
30 The Valuable interface
31 The Valuable interface
32 Interface: definition
37 The Valuable interface
38 Class: is a type: and has three components
40 Interface: is a type
41 The Valuable interface
42 The ValuableHouse class
43 Interface: method implementation
44 The ValuableHouse class
45 The ValuableCar class
46 The ValuableCar class
47 The Valuables class

0-1

48 The Valuables class
49 The Valuables class
50 The Valuables class
51 The Valuables class
53 Trying it
54 Section 3: Example:Sorting a text file using an array
55 Aim
56 Sorting a text file using an array
57 Design: Sorting a list: total order
59 The Sortable interface?
60 Sortable.java
61 The SortArray class?
62 SortArray.java
64 The SortArray class?
65 The SortArray class?
66 Standard API: Arrays
67 Standard API: Arrays: sort()
68 The Sort class

0-2

69 Trying it
70 Coursework: Sort a text file
71 Section 4: Example:Translating documents
72 Aim
73 Translating documents
74 Translating documents
75 The DictionaryEntry class
76 Interface: generic interface
77 Standard API: Comparable interface
79 Standard API: String: implements Comparable
80 The DictionaryEntry class
81 The DictionaryEntry class
82 The DictionaryEntry class
83 The DictionaryEntry class
84 The DictionaryEntry class
85 Standard API: Object: equals()
86 Standard API: Comparable interface: compareTo() and equals()
87 The DictionaryEntry class

0-3

88 The DictionaryEntry class
89 The DictionaryEntry class
90 The Dictionary class
91 Method: generic methods
94 Standard API: Arrays: copyOf()
97 The Dictionary class
98 The Dictionary class

100 The Dictionary class
101 The Dictionary class
102 The Dictionary class
103 Design: Searching a list: binary search
105 The SearchArray class
106 Interface: extending another interface
107 Class: generic class: bound type parameter: extends some interface
108 Method: generic methods: bound type parameter
111 The SearchArray class
112 The SearchArray class
114 The Translate class

0-4

118 The Translate class
119 Trying it
120 Trying it
121 Coursework: Minimum and maximum Comparable
122 Section 5: Example:Sorting valuables
123 Aim
124 Sorting valuables
125 The ValuableHouse class?
126 Interface: a class can implement many interfaces
128 The ValuableHouse class?
129 ValuableHouse.java-fragment
130 The ValuableHouse class?
131 The Valuable interface
132 The Valuable interface
133 The ValuableHouse class
135 The ValuableHouse class
136 The ValuableHouse class
137 The ValuableHouse class

0-5

138 The ValuableCar class
139 The Valuables class
142 The Valuables class
143 The Valuables class
145 Trying it
146 Coursework: Analysis of compareTo() and equals()
147 Concepts covered in this chapter

0-6

Title

Java Just in Time

John Latham

February 22, 2019

February 22, 2019 Java Just in Time - John Latham Page 1(0/0)

Chapter 20

Interfaces, including generic

interfaces

February 22, 2019 Java Just in Time - John Latham Page 2(0/0)

Chapter aims

• Sometimes programs appear to need multiple inheritance

– would like class to be subclass of more than one superclass.

• Class in Java has only one superclass.

• Multiple inheritance is permitted in limited way

– through use of interfaces.

• We explore these here

– including generic interfaces.

• We also meet generic methods.

February 22, 2019 Java Just in Time - John Latham Page 3(0/0)

Section 2

Example:

Summing valuables

February 22, 2019 Java Just in Time - John Latham Page 4(0/0)

Aim

AIM: To introduce the idea of multiple inheritance and take

a proper look at interfaces. We look closely at what

it means for a class to be a type, compare this with

interfaces, and revisit method implementation.

February 22, 2019 Java Just in Time - John Latham Page 5(0/0)

Summing valuables

• Outline example which requires multiple inheritance

– would like class to be subclass of more than one superclass.

• Wish to keep track of valuables of a person, calculate total value of

assets.

– E.g. houses, cars, jewellery, artwork, etc..

• In unrelated project have inheritance hierarchy modelling buildings

– including subclass House.

• In another unrelated project have inheritance hierarchy of vehicles

– including subclass Car.

• House and Car contain much information of use in new project

– so reuse them.

February 22, 2019 Java Just in Time - John Latham Page 6(0/0)

The Building class and its subclasses

001: // Representation of an abstract building.

002: public abstract class Building

003: {

004:

005: // ... Lots of stuff here about buildings in general.

006:

007: } // class Building

001: // Representation of an office block.

002: public class OfficeBlock extends Building

003: {

004:

005: // ... Lots of stuff here specific to an office block.

006:

007: } // class OfficeBlock

February 22, 2019 Java Just in Time - John Latham Page 7(0/0)

Summing valuables

001: // Representation of a house.

002: public class House extends Building

003: {

004: // The number of bedrooms in the house.

005: private int noOfBedrooms;

006:

007:

008: // Construct a house with a given number of bedrooms.

009: public House(int requiredNoOfBedrooms)

010: {

011: noOfBedrooms = requiredNoOfBedrooms;

012: } // House

013:

014:

February 22, 2019 Java Just in Time - John Latham Page 8(0/0)

Summing valuables

015: // Return the number of bedrooms in the house.

016: public int getNoOfBedrooms()

017: {

018: return noOfBedrooms;

019: } // getNoOfBedrooms

020:

021:

022: // ... Lots more stuff here specific to a house.

023:

024: } // class House

February 22, 2019 Java Just in Time - John Latham Page 9(0/0)

The Vehicle class and its subclasses

001: // Representation of an abstract vehicle.

002: public abstract class Vehicle

003: {

004:

005: // ... Lots of stuff here about vehicles in general.

006:

007: } // class Vehicle

001: // Representation of a tractor.

002: public class Tractor extends Vehicle

003: {

004:

005: // ... Lots of stuff here specific to a tractor.

006:

007: } // class Tractor

February 22, 2019 Java Just in Time - John Latham Page 10(0/0)

Summing valuables

001: // Representation of a car.

002: public class Car extends Vehicle

003: {

004: // The number of doors on the car.

005: private final int noOfDoors;

006:

007:

008: // Construct a car with a given number of doors.

009: public Car(int requiredNoOfDoors)

010: {

011: noOfDoors = requiredNoOfDoors;

012: } // Car

013:

014:

February 22, 2019 Java Just in Time - John Latham Page 11(0/0)

Summing valuables

015: // Return the number of doors on the car.

016: public int getNoOfDoors()

017: {

018: return noOfDoors;

019: } // getNoOfDoors

020:

021:

022: // ... Lots more stuff here specific to a car.

023:

024: } // class Car

February 22, 2019 Java Just in Time - John Latham Page 12(0/0)

The ValuableHouse and ValuableCar classes

• Other projects have lots of detail useful to calculating value of things

– but were not actually interested in values

– did not provide value() instance method.

• Shall add one to classes we are going to reuse

– don’t want to change existing classes

∗ could interfere with previous projects.

– Instead make new subclasses of House and Car

∗ ValuableHouse and ValuableCar.

February 22, 2019 Java Just in Time - John Latham Page 13(0/0)

The ValuableHouse and ValuableCar classes

OfficeBlock House

ValuableHouse

+ value(): int

ValuableCar

+ value(): int

Car Tractor

Building Vehicle

February 22, 2019 Java Just in Time - John Latham Page 14(0/0)

The ValuableHouse and ValuableCar classes

• Also have other classes for other kinds of valuables

– ValuableBoat, ValuableArtWork, ValuableJewellery. . . .

• Have capability to calculate value of house and car

– but do not have right relationship between them

– and other kinds of valuable items.

• To calculate total value of some valuables

– like to have array of objects each modelling valuable item

– each with value() instance method.

• The type of such array would have to be Object[]

– Object is only link between ValuableHouse and ValuableCar.

– Not every instance of Object has value() instance method!

• So code to add up values of items would look something like this.. . .

February 22, 2019 Java Just in Time - John Latham Page 15(0/0)

ValuablesFragment.java

...

099: Object[] valuables;

100: // Code here to create and populate this array. ...

...

199: int total = 0;

200: for (Object someValuable : valuables)

201: if (someValuable instanceof ValuableHouse)

202: total += ((ValuableHouse)someValuable).value();

203: else if (someValuable instanceof ValuableCar)

204: total += ((ValuableCar)someValuable).value();

205: else if (someValuable instanceof ValuableArtWork)

206: total += ((ValuableArtWork)someValuable).value();

207: else if // One of these for every kind of valuable, ho hum! ...

...

February 22, 2019 Java Just in Time - John Latham Page 16(0/0)

The ValuableHouse and ValuableCar classes

Coffee

time:

Does this surprise you? Would it be a nice idea to be

able to say to the compiler in some simple way “trust me,

someValuable has got a value() instance method, and I

want to use it”? Or even more liberal, would it be nice if

the compiler trusted us in the first place and just allowed

us to write code to invoke the value() instancemethod of

someValuable without moaning at us that the class Object

does not have such an instance method?!

• Every time we add new kind of valuable

– have to remember to add another bit of code in places like above

– not acceptable position!

February 22, 2019 Java Just in Time - John Latham Page 17(0/0)

The Valuable class

• Instead want Valuable class

– store Valuable objects in array of Valuable[].

• Question: where should Valuable live in inheritance hierarchy?

• Could change approach completely

– put Valuable at top of Building and Vehicle.

February 22, 2019 Java Just in Time - John Latham Page 18(0/0)

The Valuable class

OfficeBlock House Car Tractor

Vehicle

+ value(): int

Valuable

Building

February 22, 2019 Java Just in Time - John Latham Page 19(0/0)

The Valuable class

• Removed need for classes ValuableHouse and ValuableCar

– but two bad things.

• Second bad thing is now have to consider meaning of value for

– OfficeBlock, Tractor, . . .

– but only care about value for House and Car.

Coffee

time:

What is the first bad thing about this proposed inheri-

tance hierarchy? (Hint: it would require us to do some-

thing which we have previously said we do not want to

do.)

February 22, 2019 Java Just in Time - John Latham Page 20(0/0)

The Valuable class

• So, go back to idea of having classes ValuableHouse and ValuableCar.

• To get them related in most appropriate way

– like to make them subclasses of Valuable

– but not do that for other subclasses of Building and Vehicle.. . .

February 22, 2019 Java Just in Time - John Latham Page 21(0/0)

The Valuable class

OfficeBlock House

ValuableHouse

+ value(): int

ValuableCar

+ value(): int

Car Tractor

Building Vehicle

+ value(): int

Valuable

February 22, 2019 Java Just in Time - John Latham Page 22(0/0)

Inheritance: multiple inheritance

• When class is subclass of another

– models is a relationship.

• Sometimes can appear natural to view class

as subclass of more than one superclass.

– subclass inherits properties from each of its superclasses

– known as multiple inheritance.

February 22, 2019 Java Just in Time - John Latham Page 23(0/0)

Inheritance: multiple inheritance

• But, problematic when two or more superclasses contain instance method

with same name and method parameters.

• E.g.:

public class Super1

{

...

public void methodA()

{

...

} // methodA

...

} // class Super1

February 22, 2019 Java Just in Time - John Latham Page 24(0/0)

Inheritance: multiple inheritance

• And separately:

public class Super2

{

...

public void methodA()

{

...

} // methodA

...

} // class Super2

February 22, 2019 Java Just in Time - John Latham Page 25(0/0)

Inheritance: multiple inheritance

• Sometime later, could make subclass of both:

public class Sub extends Super1, Super2

{

...

public void methodB()

{

...

methodA();

...

} // methodB

...

} // class Sub

February 22, 2019 Java Just in Time - John Latham Page 26(0/0)

Inheritance: multiple inheritance

• Two issues – first ambiguity.

• Which methodA() is to be called from inside methodB()?

• Many people regard potential for this problem as basis for view that

multiple inheritance is bad idea

– problematic inheritance hierarchy designs.

• Superclasses are unrelated, each has method with unrelated intention

– but just happen to have same name.

February 22, 2019 Java Just in Time - John Latham Page 27(0/0)

Inheritance: multiple inheritance

• Second issue – run time efficiency.

• When virtual machine performing dynamic method binding

– needs to search inheritance hierarchy for every superclass

– hoping there is no conflict – or dealing with any found.

– Takes more time than searching single inheritance hierarchy.

February 22, 2019 Java Just in Time - John Latham Page 28(0/0)

Inheritance: multiple inheritance

• In practice, full multiple inheritance not very often required.

• So, Java does not permit class to have more than one superclass

– every class, except java.lang.Object, has exactly one superclass

– Object has none.

February 22, 2019 Java Just in Time - John Latham Page 29(0/0)

The Valuable interface

• So how implement our design?

• Java does permit partial multiple inheritance

– met it in context of graphical user interfaces.

Coffee

time:

You may recall that in Section ?? on page ?? we

had a class StopClock that was both a JFrame and

an ActionListener. How was that multiple inheritance

achieved?

February 22, 2019 Java Just in Time - John Latham Page 30(0/0)

The Valuable interface

• Our class Valuable contains just one instance method, value()

– and way we calculate value of house

very different to way we do for car.

– Would expect this of all subclasses of Valuable

– so value() will be abstract method.

– So Valuable have to be abstract class.

• Java has special kind of piece of code – alternative to abstract class

– contains only abstract methods.

February 22, 2019 Java Just in Time - John Latham Page 31(0/0)

Interface: definition

• An interface is like class

– except all instance methods must be abstract methods

– only method interfaces are declared.

• The method implementations must be provided

by each non-abstract class that implements interface.

• E.g.. . . .

February 22, 2019 Java Just in Time - John Latham Page 32(0/0)

Interface: definition

import java.awt.event.ActionListener;

import javax.swing.JFrame;

public class StopClock extends JFrame implements ActionListener

{

...

public void actionPerformed(ActionEvent event)

{

...

} // actionPerformed

...

} // class StopClock

• An instance of StopClock is polymorphic

– it is a StopClock, is a JFrame and is an ActionListener.

February 22, 2019 Java Just in Time - John Latham Page 33(0/0)

Interface: definition

• Definition of interface has reserved word interface instead of class.

• Can contain list of instance method headings

– each with no body – just semi-colon.

• Can write reserved word abstract in heading

– and in instance method headings.

• But discouraged from doing so by Java language standard

– because all instance methods must be abstract.

• And all instance methods must be public

– also discouraged from writing that modifier.

February 22, 2019 Java Just in Time - John Latham Page 34(0/0)

Interface: definition

• E.g. What ActionListener interface might look like.

public interface ActionListener

{

void actionPerformed(ActionEvent e);

} // interface ActionListener

February 22, 2019 Java Just in Time - John Latham Page 35(0/0)

Interface: definition

• Interfaces cannot contain constructor methods

– nor class methods.

• Any variables defined must be public static and final variables

– can omit those modifiers.

• Can be no private instance methods or variables

– obviously?

February 22, 2019 Java Just in Time - John Latham Page 36(0/0)

The Valuable interface

Coffee

time:

Obviously? Why would it not make sense to have a pri-

vate instance method or variable in an interface?

• Both classes and interfaces are types.. . .

February 22, 2019 Java Just in Time - John Latham Page 37(0/0)

Class: is a type: and has three components

• Type comprises three components

– set of values

– operations which can be performed on those values

– operation interface to those operations.

• E.g. int is collection of numbers

– operations such as addition and multiplication

– operators such as + and *.

• Distinction between operation and operation interface not pedantic

– they are not same thing.

• E.g. one day Java designers might permit proper multiplication symbol (×)

as alternative to *

– without altering meaning of multiplication.

February 22, 2019 Java Just in Time - John Latham Page 38(0/0)

Class: is a type: and has three components

• Each class is type

– set of all (references to) objects which are instances of class

– operations are method implementations of instance methods of class

– operation interfaces are method interfaces.

February 22, 2019 Java Just in Time - John Latham Page 39(0/0)

Interface: is a type

• An interface is type

– set of all (references to) objects

which are instances of any class that implements the interface.

– Operations are method implementations of instance methods of

interface

∗ provided by each class which implements interface.

– And operation interfaces is method interfaces defined in interface

∗ (and, in effect, redefined in each class that implements it).

• An interface defines only operation interfaces of type

– hence name – interface.

• Can think of as interface contract

– any class that claims to implement it

obliged to supply operation implementations.

February 22, 2019 Java Just in Time - John Latham Page 40(0/0)

The Valuable interface

001: // Objects which have a value obtained via a value() method.

002: public interface Valuable

003: {

004: // The value of this Valuable.

005: int value();

006:

007: } // interface Valuable

February 22, 2019 Java Just in Time - John Latham Page 41(0/0)

The ValuableHouse class

001: // Representation of a Valuable which is a house.

002: public class ValuableHouse extends House implements Valuable

003: {

004: // A measure of the value of the area the house is in.

005: private double locationDesirabilityIndex;

006:

007:

008: // Construct a ValuableHouse with a given number of bedrooms

009: // and location desirability.

010: public ValuableHouse(int requiredNoOfBedrooms,

011: double requiredLocationDesirabilityIndex)

012: {

013: super(requiredNoOfBedrooms);

014: locationDesirabilityIndex = requiredLocationDesirabilityIndex;

015: } // ValuableHouse

February 22, 2019 Java Just in Time - John Latham Page 42(0/0)

Interface: method implementation

• Non-abstract class which implements interface

– must supply method implementations

for abstract methods in interface.

• As with making override of instance method in superclass

– danger of getting method parameter type wrong

∗ thus introducing overloaded method instead

– or mistyping method name.

• The override annotation @Override extended in Java 6.0

– enables us to tell compiler we believe instance method is override or

implementation of one from superclass or interface.

• E.g. detects when have got method implementation correct

– but forgot to say that class implements interface we had in mind!

February 22, 2019 Java Just in Time - John Latham Page 43(0/0)

The ValuableHouse class

018: // Calculate and return the value of this valuable item.

019: @Override

020: public int value()

021: {

022: return (int) (getNoOfBedrooms() * 50000 * locationDesirabilityIndex);

023: } // valuable

024:

025:

026: // Return a short description of this as a valuable item.

027: @Override

028: public String toString()

029: {

030: return "House worth " + value();

031: } // toString

032:

033: } // class ValuableHouse

February 22, 2019 Java Just in Time - John Latham Page 44(0/0)

The ValuableCar class

001: // Representation of a Valuable which is a car.

002: public class ValuableCar extends Car implements Valuable

003: {

004: // A measure of the value of the car in general.

005: private double streetCredibilityIndex;

006:

007:

008: // Construct a ValuableCar with a given number of doors

009: // and general desirability.

010: public ValuableCar(int requiredNoOfDoors,

011: double requiredStreetCredibilityIndex)

012: {

013: super(requiredNoOfDoors);

014: streetCredibilityIndex = requiredStreetCredibilityIndex;

015: } // ValuableCar

February 22, 2019 Java Just in Time - John Latham Page 45(0/0)

The ValuableCar class

018: // Calculate and return the value of this valuable item.

019: @Override

020: public int value()

021: {

022: return (int) (getNoOfDoors() * 2000 * streetCredibilityIndex);

023: } // valuable

024:

025:

026: // Return a short description of this as a valuable item.

027: @Override

028: public String toString()

029: {

030: return "Car worth " + value();

031: } // toString

032:

033: } // class ValuableCar

February 22, 2019 Java Just in Time - John Latham Page 46(0/0)

The Valuables class

001: // Representation of a collection of Valuables.

002: public class Valuables

003: {

004: // The Valuables, stored in a partially filled array, together with size.

005: private final Valuable[] valuableArray;

006: private int noOfValuables;

007:

008:

009: // Create a collection with the given maximum size.

010: public Valuables(int maxNoOfValuables)

011: {

012: valuableArray = new Valuable[maxNoOfValuables];

013: noOfValuables = 0;

014: } // Valuables

February 22, 2019 Java Just in Time - John Latham Page 47(0/0)

The Valuables class

017: // Add a given Valuable to the collection (ignore if full).

018: public void addValuable(Valuable valuable)

019: {

020: if (noOfValuables < valuableArray.length)

021: {

022: valuableArray[noOfValuables] = valuable;

023: noOfValuables++;

024: } // if

025: } // addValuable

February 22, 2019 Java Just in Time - John Latham Page 48(0/0)

The Valuables class

• No casting needed – all objects definitely of type Valuable

028: // Calculate and return the total value of the collection.

029: public int totalValue()

030: {

031: int result = 0;

032: for (int index = 0; index < noOfValuables; index++)

033: result += valuableArray[index].value();

034: return result;

035: } // totalValue

February 22, 2019 Java Just in Time - John Latham Page 49(0/0)

The Valuables class

038: // Return a short description of the collection.

039: @Override

040: public String toString()

041: {

042: if (noOfValuables == 0)

043: return "Nothing valuable";

044:

045: String result = valuableArray[0].toString();

046: for (int index = 1; index < noOfValuables; index++)

047: result += String.format("%n%s", valuableArray[index]);

048: return result;

049: } // toString

February 22, 2019 Java Just in Time - John Latham Page 50(0/0)

The Valuables class

052: // Create a Valuables collection, add Valuable items and show result.

053: // Purely for testing during development.

054: public static void main(String[] args)

055: {

056: Valuables valuables = new Valuables(5);

057:

058: // My first house -- I was so proud of its spare bedroom

059: // and ‘value for money’ area.

060: valuables.addValuable(new ValuableHouse(2, 0.5));

061:

062: // My first car, not quite a ‘head turner’,

063: // but its third door was handy when the main 2 got stuck.

064: valuables.addValuable(new ValuableCar(3, 0.25));

065:

February 22, 2019 Java Just in Time - John Latham Page 51(0/0)

The Valuables class

066: // It was nice to have a new car when I started work.

067: valuables.addValuable(new ValuableCar(4, 1.0));

068:

069: // Then I won the lottery! (Yeah, right.)

070: valuables.addValuable(new ValuableHouse(6, 2.0));

071: valuables.addValuable(new ValuableCar(12, 4.0));

072:

073: System.out.println("My valuables are worth " + valuables.totalValue());

074:

075: System.out.println(valuables);

076: } // main

077:

078: } // class Valuables

February 22, 2019 Java Just in Time - John Latham Page 52(0/0)

Trying it

Console Input / Output

$ java Valuables

My valuables are worth 755500

House worth 50000

Car worth 1500

Car worth 8000

House worth 600000

Car worth 96000

$ _ Run

February 22, 2019 Java Just in Time - John Latham Page 53(0/0)

Section 3

Example:

Sorting a text file using an array

February 22, 2019 Java Just in Time - John Latham Page 54(0/0)

Aim

AIM: To introduce the idea of total order and the Comparable

interface. We also meet the Arrays class.

February 22, 2019 Java Just in Time - John Latham Page 55(0/0)

Sorting a text file using an array

• Program takes input text file

– produces text sorted line by line to another file.

• Not write yet another implementation of sort specific to this program

– instead generalize idea of sorting

– use something which can sort any array of any sortable items!

February 22, 2019 Java Just in Time - John Latham Page 56(0/0)

Design: Sorting a list: total order

• A total order over some data

– relationship between pairs of data enables it to be sorted.

• Every total order, �, has three properties:

[Antisymmetric:] if x � y and y � x, then x = y

[Transitive:] if x � y and y � z, then x � z

[Total:] x � y or y � x

February 22, 2019 Java Just in Time - John Latham Page 57(0/0)

Design: Sorting a list: total order

• One way of modelling

– function takes a pair, (x,y) yields one of three states:

∗ x comes before y.

∗ x and y have same placing.

∗ x comes after y.

• Typically implemented in Java by instance method compareTo()

– compares current instance with given other

– yields int: negative, zero, or positive.

February 22, 2019 Java Just in Time - John Latham Page 58(0/0)

The Sortable interface?

• Could provide type – an interface –

for all kinds of things that can be sorted.

• Each class that implements it

would provide own implementation for comparing pairs of that kind.

• Could look like this.. . .

February 22, 2019 Java Just in Time - John Latham Page 59(0/0)

Sortable.java

001: // A type for all things which can be sorted.

002: public interface Sortable

003: {

004: // This method must provide a total order, and return:

005: // a negative int if this should be ordered before the given other,

006: // zero if they should have the same ordering or

007: // a positive int if this should be ordered after the given other.

008: int compareTo(Sortable other);

009:

010: } // interface Sortable

February 22, 2019 Java Just in Time - John Latham Page 60(0/0)

The SortArray class?

• Next would write general sorting class

– sort items in any kind of array of objects

– as long as implement Sortable interface.

• Could look like this.. . .

• Notice method parameter type: Sortable[].

February 22, 2019 Java Just in Time - John Latham Page 61(0/0)

SortArray.java

001: // Provides a class method for sorting an array of any Sortable objects.

002: public class SortArray

003: {

004: // Sort the given array from indices 0 to noOfItemsToSort - 1.

005: public static void sort(Sortable[] anArray, int noOfItemsToSort)

006: throws NullPointerException, ArrayIndexOutOfBoundsException

007: {

008: // Each pass of the sort reduces unsortedLength by one.

009: int unsortedLength = noOfItemsToSort;

010: // If no change is made on a pass, the main loop can stop.

011: boolean changedOnThisPass;

012: do

013: {

February 22, 2019 Java Just in Time - John Latham Page 62(0/0)

SortArray.java

014: changedOnThisPass = false;

015: for (int pairLeftIndex = 0;

016: pairLeftIndex < unsortedLength - 1; pairLeftIndex++)

017: {

018: if (anArray[pairLeftIndex].compareTo(anArray[pairLeftIndex + 1]) > 0)

019: {

020: Sortable thatWasAtPairLeftIndex = anArray[pairLeftIndex];

021: anArray[pairLeftIndex] = anArray[pairLeftIndex + 1];

022: anArray[pairLeftIndex + 1] = thatWasAtPairLeftIndex;

023: changedOnThisPass = true;

024: } // if

025: } // for

026: unsortedLength--;

027: } while (changedOnThisPass);

028: } // sort

029:

030: } // SortArray

February 22, 2019 Java Just in Time - John Latham Page 63(0/0)

The SortArray class?

Coffee

time:

Any class could implement Sortable, and obviously ob-

jects of different classes are different sizes. So, how does

the compiler know how big to make a variable of type

Sortable? (A tricky question, or a trick one?)

February 22, 2019 Java Just in Time - John Latham Page 64(0/0)

The SortArray class?

• Idea of having interface for any types that can be sorted is so good

– Java already has similar thing in standard API

– called Comparable rather than Sortable.

• So no need for us to write own Sortable interface.

• Ordering provided by compareTo() in class that implements Comparable

– known as natural ordering for that class.

• And API has beaten us to idea

of having class method to sort array of Comparable items!

February 22, 2019 Java Just in Time - John Latham Page 65(0/0)

Standard API: Arrays

• java.util.Arrays provides various class methods to perform complex

manipulations of arrays.

February 22, 2019 Java Just in Time - John Latham Page 66(0/0)

Standard API: Arrays: sort()

• One class method in java.util.Arrays called sort

– takes array of Objects and sorts them into natural ordering.

– Items in array must all be type Comparable

∗ and be mutually comparable

– or exception is thrown. (Sadly, parameter type is Object[].)

• Uses merge sort algorithm or quick sort

– both much more efficient than bubble sort.

• The class has several more class methods called sort

– one for each array of primitive type.

• And second version for each type, takes three method parameters

– array, and pair of int indices, f rom and to.

– Enables sorting of partially filled arrays.

February 22, 2019 Java Just in Time - John Latham Page 67(0/0)

The Sort class

• Program works by

– reading lines from input into String array

– sort array

– print to output file.

• Can use Arrays.sort() because class String implements Comparable.

• Use array extension when storing lines.

• Most of program similar to previous examples

– so leave as coursework!

February 22, 2019 Java Just in Time - John Latham Page 68(0/0)

Trying it

• Not thorough test: small file of examination results.

Console Input / Output

$ cat input.txt

Bear,Rupert 13.7%

Smith,James 51.5%

Brown,Margaret 68.2%

Jones,Stephen 87.9%

Jackson,Helen 100%

$ java Sort input.txt output.txt

$ cat output.txt

Bear,Rupert 13.7%

Brown,Margaret 68.2%

Jackson,Helen 100%

Jones,Stephen 87.9%

Smith,James 51.5%

$ _ Run

February 22, 2019 Java Just in Time - John Latham Page 69(0/0)

Coursework: Sort a text file

(Summary only)

Implement the program to sort a text file.

February 22, 2019 Java Just in Time - John Latham Page 70(0/0)

Section 4

Example:

Translating documents

February 22, 2019 Java Just in Time - John Latham Page 71(0/0)

Aim

AIM: To explore generic interfaces, observe that Comparable

is generic, see that String implements it, meet

equals() from Object and talk about consistency with

compareTo(). We also introduce generic methods, bi-

nary search, revisit Arrays and note that an interface

can extend another.

February 22, 2019 Java Just in Time - John Latham Page 72(0/0)

Translating documents

• Program translates documents from any language to any other!

– Okay, just changes each word for corresponding one,

according to dictionary file.

February 22, 2019 Java Just in Time - John Latham Page 73(0/0)

Translating documents

Class list for Translate

Class Description

Translate The main class containing the main method. It makes an instance of

Dictionary, from the file named as the first command line argument, then

reads the input document from the file named as the second argument,

and outputs the translated document to the file named by the third.

DictionaryEntry This contains a pair of words, the first is in the source language, and the

second is its translation in the target language.

Dictionary This contains an array of DictionaryEntry objects, and provides an in-

stance method to translate a single word.

SearchArray This contains a class method to search any kind of Comparable array – it is

used by Dictionary to find the DictionaryEntry corresponding to a word

that needs translating.

February 22, 2019 Java Just in Time - John Latham Page 74(0/0)

The DictionaryEntry class

• DictionaryEntry pairs two words

– first from source language, second is translation.

• Dictionary will use efficient search mechanism

– requires DictionaryEntry array to be sorted

– so DictionaryEntry needs to implement Comparable.

February 22, 2019 Java Just in Time - John Latham Page 75(0/0)

Interface: generic interface

• A generic interface is interface

– with type parameters.

• Type parameters may be used as types

in declaration of abstract methods.

• Works in same way as generic classes

– interface itself is raw type

– when supply type arguments identify parameterized type.

February 22, 2019 Java Just in Time - John Latham Page 76(0/0)

Standard API: Comparable interface

• java.lang.Comparable provides type for objects

which can be compared with similar items

– enables general algorithms to be implemented

∗ e.g. sorting and efficient array searching.

• Introduced in Java 1.2

– Java 5.0: became generic interface.

• Has one instance method definition.

public interface Comparable<T>

{

int compareTo(T o);

} // Comparable

February 22, 2019 Java Just in Time - John Latham Page 77(0/0)

Standard API: Comparable interface

• Any non-abstract class that implements java.lang.Comparable

– must contain compareTo() method implementation

– providing total order for its objects.

• The type parameter, T: type of objects that can be compared

– classes that (directly) implement Comparable

typically supply own class name as type argument.

• E.g. if SomeClass implements Comparable<SomeClass>

– means SomeClass provides compareTo()

enabling SomeClass objects to compare with given other.

• If class implements Comparable

– order defined by compareTo() known as natural ordering.

February 22, 2019 Java Just in Time - John Latham Page 78(0/0)

Standard API: String: implements Comparable

• java.lang.String implements java.lang.Comparable

– compareTo() provides lexicographic ordering

∗ dictionary order, based on values of characters.

• Since Java 5.0 String implements Comparable<String>.

public final class String implements Comparable<String>

{

...

@Override

public int compareTo(String other)

{

...

} // compareTo

...

} // class String

February 22, 2019 Java Just in Time - John Latham Page 79(0/0)

The DictionaryEntry class

Coffee

time:

Why do you think that String is a final class?

• Generics is good!

– method parameter of compareTo() in String defined to be String

– compiler checks any argument is String.

• E.g., say, try to compare String with Integer

– get compile time error

– prior to Java 5.0 compareTo() could only test at run time, using cast!

February 22, 2019 Java Just in Time - John Latham Page 80(0/0)

The DictionaryEntry class

• Define DictionaryEntry to implement Comparable<DictionaryEntry>

– DictionaryEntry objects can be compared with each other

– comparison provides total order.

• Have to provide implementation within class.

• Also, extend Pair<String, String>!

February 22, 2019 Java Just in Time - John Latham Page 81(0/0)

The DictionaryEntry class

001: // A word from one language, paired with the equivalent one from another.

002: public class DictionaryEntry extends Pair<String, String>

003: implements Comparable<DictionaryEntry>

004: {

005: // Constructor is given the words.

006: public DictionaryEntry(String sourceLanguageWord, String targetLanguageWord)

007: {

008: super(sourceLanguageWord, targetLanguageWord);

009: } // DictionaryEntry

February 22, 2019 Java Just in Time - John Latham Page 82(0/0)

The DictionaryEntry class

• The compareTo() method implementation based only on first word

– every word in input searched for in Dictionary

– search requires DictionaryEntry objects sorted by word looking for.

012: // Return negative if this first word is less than other’s first word,

013: // zero if they are the same, or positive if this one is the greater.

014: @Override

015: public int compareTo(DictionaryEntry other)

016: {

017: return getFirst().compareTo(other.getFirst());

018: } // compareTo

February 22, 2019 Java Just in Time - John Latham Page 83(0/0)

The DictionaryEntry class

• compareTo() helps efficiently find location of certain DictionaryEntry

– but also have equals().

February 22, 2019 Java Just in Time - John Latham Page 84(0/0)

Standard API: Object: equals()

• java.lang.Object contains instance method equals()

– designed to model equivalence between two objects.

public boolean equals(Object other)

{

return this == other;

} // equals

• Is inherited by all other classes

– by default all objects have finest notion of equivalence

∗ two objects are equivalent if and only if are equal

∗ i.e. are same object.

• Often too fine

– many classes override with appropriate equivalence.

February 22, 2019 Java Just in Time - John Latham Page 85(0/0)

Standard API: Comparable interface: compareTo()
and equals()

• A class that implements java.lang.Comparable

– ought to have method implementation of compareTo()

consistent with equals().

• I.e.

x.equals(y)

always same as

x.compareTo(y) == 0

February 22, 2019 Java Just in Time - John Latham Page 86(0/0)

The DictionaryEntry class

• Follow recommendation: equivalence consistent with compareTo().

• Two DictionaryEntry objects equivalent if and only if first words equivalent

– regardless of second words

– deliberately circumstances for getting zero from compareTo().

February 22, 2019 Java Just in Time - John Latham Page 87(0/0)

The DictionaryEntry class

021: // Return true if and only if this and other have the same first word.

022: // Unless other is not a DictionaryEntry,

023: // in which case delegate to superclass.

024: @Override

025: public boolean equals(Object other)

026: {

027: if (other instanceof DictionaryEntry)

028: return compareTo((DictionaryEntry)other) == 0;

029: else

030: return super.equals(other);

031: } // equals

032:

033: } // class DictionaryEntry

February 22, 2019 Java Just in Time - John Latham Page 88(0/0)

The DictionaryEntry class

Coffee

time:

If we changed the method parameter of equals() to be

of type DictionaryEntry instead of Object, would it still

override the one from Object as we intended? Or would it

instead be an overloaded method? What have we writ-

ten that would cause a compile time error if we made

that mistake?

February 22, 2019 Java Just in Time - John Latham Page 89(0/0)

The Dictionary class

• Dictionary uses partially filled array to store DictionaryEntry objects

– data read from BufferedReader passed to constructor method.

• Some code similar to previous examples

– but use generic method Arrays.copyOf()

to make new bigger array when existing one full.

February 22, 2019 Java Just in Time - John Latham Page 90(0/0)

Method: generic methods

• A generic method is method

– with type parameters

– written in angled brackets before return type.

• Similar to generic class type parameters

– but apply only to method.

• When write method call

– supply type arguments for type parameters.

• Generic methods may be defined inside generic or non-generic class.

• May be instance methods or class methods

– of most use as class methods:

– generic features of instance methods

usually best achieved via generic class type parameters.

February 22, 2019 Java Just in Time - John Latham Page 91(0/0)

Method: generic methods

• E.g.

public static <T1, T2> void myGenericMethod(T1[] anArray, T2 aValue)

{

... Code here that uses T1 and T2 as types.

... Some restrictions apply,

... such as we cannot make instances of T1, or T2.

} // myGenericMethod

• So:

Date[] aDateArray = ...

String aString = ...

MyClassWithGenericMethod.<Date, String>myGenericMethod(aDateArray, aString);

• Note type arguments written after dot:

– not class type parameters.

February 22, 2019 Java Just in Time - John Latham Page 92(0/0)

Method: generic methods

• Peculiarity – if calling method from within same class

– have to use class name and dot (class method)

– or this reference (instance method).

• But good news!

– usually can omit type arguments completely

– compiler can nearly always work them out. ;-)

February 22, 2019 Java Just in Time - John Latham Page 93(0/0)

Standard API: Arrays: copyOf()

• java.util.Arrays provides (since Java 6.0) another class method copyOf

– makes copy of array.

• Is generic method

– can handle any kind of reference type array.

• The new array returned can be bigger / smaller than original

– array elements same as original for array index positions in common.

February 22, 2019 Java Just in Time - John Latham Page 94(0/0)

Standard API: Arrays: copyOf()

public static <T> T[] copyOf(T[] original, int newLength)

{

T[] result = ... make a new array of length newLength,

... where result[i] = original[i]

... for all 0 <= i < min(original.length, newLength)

return result;

} // copyOf

• The type parameter, T – type of array elements.

• (Uses reflection to get around restrictions on use of type parameters.)

• Class also has more class methods copyOf

– one for each array of primitive type.

February 22, 2019 Java Just in Time - John Latham Page 95(0/0)

Standard API: Arrays: copyOf()

• Useful for array extension:

SomeType[] myArray = new SomeType[INITIAL_SIZE];

...

if ... myArray is now full and I need more room

myArray = Arrays.copyOf(myArray, myArray.length * RESIZE_FACTOR);

...

February 22, 2019 Java Just in Time - John Latham Page 96(0/0)

The Dictionary class

001: import java.io.BufferedReader;

002: import java.io.IOException;

003: import java.util.Arrays;

004:

005: // Reads a translation dictionary from a given BufferedReader,

006: // and provides a translateWord method.

007: public class Dictionary

008: {

009: // We store the DictionaryEntries in a partially filled array,

010: // and use array extension as required.

011: // The initial size and resize factor of that array.

012: private static final int INITIAL_ARRAY_SIZE = 50, ARRAY_RESIZE_FACTOR = 2;

013:

014: // The array for storing the entries, and a count of the number of them.

015: private final DictionaryEntry[] dictionaryEntries;

016: private final int noOfDictionaryEntries;

February 22, 2019 Java Just in Time - John Latham Page 97(0/0)

The Dictionary class

019: // Read lines from the given BufferedReader, split each into tab separated
020: // pairs, create a DictionaryEntry for it and add to dictionaryEntries.
021: public Dictionary(BufferedReader input) throws IOException, RuntimeException

022: {

023: DictionaryEntry[] dictionaryEntriesSoFar
024: = new DictionaryEntry[INITIAL_ARRAY_SIZE];
025: int noOfDictionaryEntriesSoFar = 0;

026: String currentLine;

027: while ((currentLine = input.readLine()) != null)

028: {

029: String[] lineInParts = currentLine.split("\t");
030: DictionaryEntry dictionaryEntry
031: = new DictionaryEntry(lineInParts[0], lineInParts[1]);

032: if (noOfDictionaryEntriesSoFar == dictionaryEntriesSoFar.length)

033: dictionaryEntriesSoFar
034: = Arrays.copyOf(dictionaryEntriesSoFar,
035: dictionaryEntriesSoFar.length * ARRAY_RESIZE_FACTOR);

036: dictionaryEntriesSoFar[noOfDictionaryEntriesSoFar] = dictionaryEntry;

037: noOfDictionaryEntriesSoFar++;

038: } // while

February 22, 2019 Java Just in Time - John Latham Page 98(0/0)

The Dictionary class

039:

040: // Sort the array to allow for efficient searching of it.

041: Arrays.sort(dictionaryEntriesSoFar, 0, noOfDictionaryEntriesSoFar);

042: noOfDictionaryEntries = noOfDictionaryEntriesSoFar;

043: dictionaryEntries = dictionaryEntriesSoFar;

044: } // Dictionary

February 22, 2019 Java Just in Time - John Latham Page 99(0/0)

The Dictionary class

• The compiler able to figure out type parameter for generic method

– method call equivalent to

dictionaryEntriesSoFar

= Arrays.<DictionaryEntry>copyOf

(dictionaryEntriesSoFar,

dictionaryEntriesSoFar.length * ARRAY_RESIZE_FACTOR);

Coffee

time:

Why did we use two local variables in the constructor

method which we copied into the instance variables at

the end of it – could we instead have used the instance

variables directly throughout the constructor method?

February 22, 2019 Java Just in Time - John Latham Page 100(0/0)

The Dictionary class

• Translating given word

– array search for matching DictionaryEntry

– if found, return paired second word

– else return given word with square brackets around.

• Generalise efficient array search to work for array of any Comparable type

– write in separate reusable SearchArray class

– class method search(), takes three method parameters:

∗ array, number of items in array, entry to look for.

∗ Returns array index of object matching

∗ or negative number if no such object in array.

• For efficient searching to work, array must be sorted by natural ordering

– ensured so at end of constructor method.

February 22, 2019 Java Just in Time - John Latham Page 101(0/0)

The Dictionary class

047: // Translate one word.

048: public String translateWord(String word)

049: {

050: int dictionaryEntryIndex

051: = SearchArray.search(dictionaryEntries, noOfDictionaryEntries,

052: new DictionaryEntry(word, null));

053: if (dictionaryEntryIndex < 0)

054: return "[" + word + "]";

055: else

056: return dictionaryEntries[dictionaryEntryIndex].getSecond();

057: } // translateWord

058:

059: } // class Dictionary

February 22, 2019 Java Just in Time - John Latham Page 102(0/0)

Design: Searching a list: binary search

• Searching for item in list, previously seen linear search

– if items sorted in known total order can use binary search

∗ far more efficient

∗ but more complicated.

• Two indices low and high

– start off indexing first and last elements of data

– item looking for always between low and high, if present.

– Look half way between

∗ may be what looking for?

∗ If less than wanted one, move low up

∗ otherwise move high down.

∗ If low and high meet – item is not there.

February 22, 2019 Java Just in Time - John Latham Page 103(0/0)

Design: Searching a list: binary search

list = ... items are stored in the list in ascending order

searchItem = .. the item we wish to find in list

int lowIndex = 0

int highIndex = list.length - 1

int midIndex = (lowIndex + highIndex) / 2

while lowIndex < highIndex && list[midIndex] != searchItem

if list[midIndex] < searchItem

lowIndex = midIndex + 1

else

highIndex = midIndex - 1

midIndex = (lowIndex + highIndex) / 2

end-while

if list[midIndex] == searchItem

... you found it

else

... searchItem is not in the list

February 22, 2019 Java Just in Time - John Latham Page 104(0/0)

The SearchArray class

• Class method intended to handle any type of Comparable items

– so generic method

– single type parameter – ArrayType.

– Require that type argument supplied (or implied)

∗ is class / interface that implements / extends Comparable.

February 22, 2019 Java Just in Time - John Latham Page 105(0/0)

Interface: extending another interface

• An interface can extend another

– abstract methods and class constants in superinterface

∗ inherited in subinterface.

• For polymorphism:

– (references to) instances of class which implements subinterface

∗ members of superinterface type as well.

• Interfaces can extend many other interfaces.

February 22, 2019 Java Just in Time - John Latham Page 106(0/0)

Class: generic class: bound type parameter:

extends some interface

• A type parameter may be declared to extend some known type

– may be class or interface.

• Use reserved word extends even if known type is interface.

• An interface is type just as class is.

– Type can be extension of another through inheritance

∗ by being subclass of another class

∗ subinterface of another interface

∗ or class that implements an interface.

• If known type is interface

– compiler checks supplied type argument is

∗ class which implements the interface

∗ or is that interface

∗ or interface that extends it.

February 22, 2019 Java Just in Time - John Latham Page 107(0/0)

Method: generic methods: bound type parameter

• The type parameters of generic method can be bound type parameters.

• E.g. class method: return largest element of array

– of items Comparable with themselves.. . .

February 22, 2019 Java Just in Time - John Latham Page 108(0/0)

Method: generic methods: bound type parameter

public class MaxArray
{

public static <ArrayType extends Comparable<ArrayType>>
ArrayType getMax(ArrayType[] anArray)
throws IllegalArgumentException

{
try

{
ArrayType result = anArray[0];
for (int index = 1; index < anArray.length; index++)

if (result.compareTo(anArray[index]) < 0)
result = anArray[index];

return result;
} // try
catch (ArrayIndexOutOfBoundsException e)
{ throw new IllegalArgumentException("Array must be non-empty", e); }
catch (NullPointerException e)
{ throw new IllegalArgumentException("Array must exist", e); }

} // getMax

} // class MaxArray

February 22, 2019 Java Just in Time - John Latham Page 109(0/0)

Method: generic methods: bound type parameter

• And called:

String[] aStringArray = { "the", "cat", "vaporized", "on", "the", "mat" };
String maxInAStringArray = MaxArray.getMax(aStringArray);

• The compiler figured out type argument

– above method call equivalent to

String maxInAStringArray = MaxArray.<String>getMax(aStringArray);

February 22, 2019 Java Just in Time - John Latham Page 110(0/0)

The SearchArray class

Coffee

time:

Why ‘vaporized’ and not ‘sat’? (There is a good reason –

look at the ‘test data’ carefully.)

February 22, 2019 Java Just in Time - John Latham Page 111(0/0)

The SearchArray class

001: // Provides an efficient search for a Comparable in a sorted Comparable[].

002: public class SearchArray

003: {

004: // Use binary search to find searchItem in anArray which must be sorted.

005: // Returns a negative number if not present, or array index.

006: public static <ArrayType extends Comparable<ArrayType>>

007: int search(ArrayType[] anArray, int noOfItems, ArrayType searchItem)

008: throws IllegalArgumentException

009: {

010: if (anArray == null)

011: throw new IllegalArgumentException("Array must exist");

012: if (noOfItems > anArray.length)

013: throw new IllegalArgumentException("Data length > array length: "

014: + noOfItems + " " + anArray.length);

015: if (noOfItems == 0)

016: return -1;

017:

February 22, 2019 Java Just in Time - John Latham Page 112(0/0)

The SearchArray class

018: int lowIndex = 0;

019: int highIndex = noOfItems - 1;

020: int midIndex = (lowIndex + highIndex) / 2;

021: while (lowIndex < highIndex && ! anArray[midIndex].equals(searchItem))

022: {

023: if (anArray[midIndex].compareTo(searchItem) < 0)

024: lowIndex = midIndex + 1;

025: else

026: highIndex = midIndex - 1;

027: midIndex = (lowIndex + highIndex) / 2;

028: } // while

029: if (anArray[midIndex].equals(searchItem))

030: return midIndex;

031: else

032: return -1;

033: } // search

034:

035: } // SearchArray

February 22, 2019 Java Just in Time - John Latham Page 113(0/0)

The Translate class

001: import java.io.BufferedReader;

002: import java.io.FileReader;

003: import java.io.FileWriter;

004: import java.io.IOException;

005: import java.io.PrintWriter;

006:

007: // Program to translate a document from one language to another.

008: // Translation dictionary file is first argument.

009: // Input file is the second argument, output is the third.

010: public class Translate

011: {

012: // The main method reads lines from the dictionary and stores them,

013: // via the Dictionary constructor. Then it reads lines from the input file,

014: // translates each word and writes it to the output file.

February 22, 2019 Java Just in Time - John Latham Page 114(0/0)

The Translate class

015: public static void main(String[] args)

016: {

017: BufferedReader input = null;

018: PrintWriter output = null;

019: try

020: {

021: if (args.length != 3)

022: throw new IllegalArgumentException

023: ("There must be exactly three arguments:"

024: + " dictfile infile outfile");

025:

026: // The dictionary.

027: Dictionary dictionary

028: = new Dictionary(new BufferedReader(new FileReader(args[0])));

029:

030: input = new BufferedReader(new FileReader(args[1]));

031: output = new PrintWriter(new FileWriter(args[2]));

February 22, 2019 Java Just in Time - John Latham Page 115(0/0)

The Translate class

032:

033: // Read the lines and translate each word.

034: String currentLine;

035: while ((currentLine = input.readLine()) != null)

036: {

037: String wordDelimiter = "";

038: for (String word : currentLine.split(" "))

039: {

040: output.print(wordDelimiter);

041: if (! word.equals(""))

042: output.print(dictionary.translateWord(word));

043: wordDelimiter = " ";

044: } // for

045: output.println();

046: } // while

047:

048: } // try

February 22, 2019 Java Just in Time - John Latham Page 116(0/0)

The Translate class

049: catch (Exception exception)

050: {

051: System.err.println(exception);

052: } // catch

053: finally

054: {

055: try { if (input != null) input.close(); }

056: catch (IOException exception)

057: { System.err.println("Could not close input " + exception); }

058: if (output != null)

059: {

060: output.close();

061: if (output.checkError())

062: System.err.println("Something went wrong with the output");

063: } // if

064: } // finally

065: } // main

066:

067: } // class Translate

February 22, 2019 Java Just in Time - John Latham Page 117(0/0)

The Translate class

Coffee

time:

The binary search idea was a good one – it is so much

faster than the linear search we used in earlier chapters.

Do you think that the idea has already made it to the

Java API? Check out the Arrays class.

February 22, 2019 Java Just in Time - John Latham Page 118(0/0)

Trying it

• For fun – use a ‘dictionary of opposites’.

Console Input / Output

$ cat opposites.txt

(Output shown using multiple columns to save space.)

the a boy girl many no pennies pounds

after before light heavy all none will wont

dull bright jack jill and nor play work

make destroy look listen themselves others no yes

makes destroys a many pounds pennies

hands feet you me work play

$ _ Run

February 22, 2019 Java Just in Time - John Latham Page 119(0/0)

Trying it

• ‘Translate’ some well known cliches.

Console Input / Output

$ cat input.txt

all work and no play makes jack a dull boy

while many hands make light work

if you look after the pennies

the pounds will look after themselves

$ java Translate opposites.txt input.txt output.txt

$ cat output.txt

none play nor yes work destroys jill many bright girl

[while] no feet destroy heavy play

[if] me listen before a pounds

a pennies wont listen before others

$ _ Run

Coffee

time:

Would it be difficult to improve the program by making it

able to handle capitalization and punctuation?

February 22, 2019 Java Just in Time - John Latham Page 120(0/0)

Coursework: Minimum and maximum Comparable

(Summary only)

Write a generic method to find the minimum and maximum items in an array

of Comparable items.

February 22, 2019 Java Just in Time - John Latham Page 121(0/0)

Section 5

Example:

Sorting valuables

February 22, 2019 Java Just in Time - John Latham Page 122(0/0)

Aim

AIM: To introduce the idea that a class can implementmany

interfaces, and explore what it means for an interface

to extend another. We also take another look at having

consistency between compareTo() and equals().

February 22, 2019 Java Just in Time - John Latham Page 123(0/0)

Sorting valuables

• Revisit valuables example

– add instance method to Valuables

sort array into descending order by value.

• The classes, Building, Car, House OfficeBlock, Tractor and Vehicle

same as in previous version.

February 22, 2019 Java Just in Time - John Latham Page 124(0/0)

The ValuableHouse class?

• Can state ValuableHouse implements Comparable<Valuable>

as well as Valuable

– so can sort with respect to other Valuables.

February 22, 2019 Java Just in Time - John Latham Page 125(0/0)

Interface: a class can implement many interfaces

• A class can extend at most one other class

– but may implement any number of interfaces

– interfaces listed, with commas between,

after reserved word implements.

• E.g. StopClock which automatically stops and starts

when mouse moved out of / back in to window.. . .

February 22, 2019 Java Just in Time - John Latham Page 126(0/0)

Interface: a class can implement many interfaces

import java.awt.ActionListener;
import java.awt.MouseListener;
import javax.swing.JFrame;
...
public class StopClock extends JFrame

implements ActionListener, MouseListener
{

...
// actionPerformed is specified in the interface ActionListener
public void actionPerformed(ActionEvent event)
{

...
} // actionPerformed

... Various methods here, as specified in MouseListener.

} // class StopClock

February 22, 2019 Java Just in Time - John Latham Page 127(0/0)

The ValuableHouse class?

• Want ValuableHouse to be comparable with any other Valuable

– make it implement Comparable<Valuable>.

– Give definition of compareTo().

– . . .

February 22, 2019 Java Just in Time - John Latham Page 128(0/0)

ValuableHouse.java-fragment

001: // Representation of a Valuable which is a house.

002: public class ValuableHouse extends House

003: implements Valuable, Comparable<Valuable>

004: ...

February 22, 2019 Java Just in Time - John Latham Page 129(0/0)

The ValuableHouse class?

• Dong!!!! This isn’t going to work!

Coffee

time:

Why not?

February 22, 2019 Java Just in Time - John Latham Page 130(0/0)

The Valuable interface

• How does Java know every Valuable implements Comparable<Valuable>?

• Make change to all Valuable classes

– but that won’t satisfy Java:

∗ in future another class could be written that implements Valuable

but not Comparable<Valuable>.

• Want to state every Valuable must implement Comparable<Valuable>

– make Valuable extend Comparable<Valuable>.

February 22, 2019 Java Just in Time - John Latham Page 131(0/0)

The Valuable interface

001: // Objects which have a value obtained via a value() method.

002: public interface Valuable extends Comparable<Valuable>

003: {

004: // The value of this Valuable.

005: int value();

006:

007: } // interface Valuable

• Every class that implements Valuable

must also provide method implementation for compareTo().

February 22, 2019 Java Just in Time - John Latham Page 132(0/0)

The ValuableHouse class

001: // Representation of a Valuable which is a house.

002: public class ValuableHouse extends House implements Valuable

003: {

004: // A measure of the value of the area the house is in.

005: private double locationDesirabilityIndex;

006:

007:

008: // Construct a ValuableHouse with a given number of bedrooms

009: // and location desirability.

010: public ValuableHouse(int requiredNoOfBedrooms,

011: double requiredLocationDesirabilityIndex)

012: {

013: super(requiredNoOfBedrooms);

014: locationDesirabilityIndex = requiredLocationDesirabilityIndex;

015: } // ValuableHouse

016:

017:

February 22, 2019 Java Just in Time - John Latham Page 133(0/0)

The ValuableHouse class

018: // Calculate and return the value of this valuable item.

019: @Override

020: public int value()

021: {

022: return (int) (getNoOfBedrooms() * 50000 * locationDesirabilityIndex);

023: } // valuable

024:

025:

026: // Return a short description of this as a valuable item.

027: @Override

028: public String toString()

029: {

030: return "House worth " + value();

031: } // toString

February 22, 2019 Java Just in Time - John Latham Page 134(0/0)

The ValuableHouse class

034: // Return negative if this value is greater than other’s value,

035: // zero if they are the same, or positive if this value is the lesser.

036: @Override

037: public int compareTo(Valuable other)

038: {

039: return other.value() - value();

040: } // compareTo

• Override equals()

– make consistent with method implementation of compareTo().

• Note method parameter of equals() has to be type Object.

• Two Valuables equivalent if have same value

– regardless of kind of valuable and/or inner details

∗ appropriate for this program.

February 22, 2019 Java Just in Time - John Latham Page 135(0/0)

The ValuableHouse class

043: // Return true if and only if this and other have the same value.

044: // Unless other is not a Valuable, in which case delegate to superclass.

045: @Override

046: public boolean equals(Object other)

047: {

048: if (other instanceof Valuable)

049: return compareTo((Valuable)other) == 0;

050: else

051: return super.equals(other);

052: } // equals

053:

054: } // class ValuableHouse

February 22, 2019 Java Just in Time - John Latham Page 136(0/0)

The ValuableHouse class

• That was simple way of ensuring equals()

consistent with compareTo() for Valuables

– two Valuables equivalent if have same value.

• But if compare ValuableHouse with OfficeBlock

– will get definition of equivalence from (probably) Building.

February 22, 2019 Java Just in Time - John Latham Page 137(0/0)

The ValuableCar class

• Same modifications made to ValuableCar.

• Also other classes that implement Valuable

– ValuableBoat, ValuableArtWork, ValuableJewellery etc..

February 22, 2019 Java Just in Time - John Latham Page 138(0/0)

The Valuables class

001: import java.util.Arrays;

002:

003: // Representation of a collection of Valuables.

004: public class Valuables

005: {

006: // The Valuables, stored in a partially filled array, together with size.

007: private final Valuable[] valuableArray;

008: private int noOfValuables;

009:

010:

011: // Create a collection with the given maximum size.

012: public Valuables(int maxNoOfValuables)

013: {

014: valuableArray = new Valuable[maxNoOfValuables];

015: noOfValuables = 0;

016: } // Valuables

017:

018:

February 22, 2019 Java Just in Time - John Latham Page 139(0/0)

The Valuables class

019: // Add a given Valuable to the collection (ignore if full).

020: public void addValuable(Valuable valuable)

021: {

022: if (noOfValuables < valuableArray.length)

023: {

024: valuableArray[noOfValuables] = valuable;

025: noOfValuables++;

026: } // if

027: } // addValuable

028:

029:

030: // Calculate and return the total value of the collection.

031: public int totalValue()

032: {

033: int result = 0;

034: for (int index = 0; index < noOfValuables; index++)

035: result += valuableArray[index].value();

036: return result;

037: } // totalValue

February 22, 2019 Java Just in Time - John Latham Page 140(0/0)

The Valuables class

038:

039:

040: // Return a short description of the collection.

041: @Override

042: public String toString()

043: {

044: if (noOfValuables == 0)

045: return "Nothing valuable";

046:

047: String result = valuableArray[0].toString();

048: for (int index = 1; index < noOfValuables; index++)

049: result += String.format("%n%s", valuableArray[index]);

050: return result;

051: } // toString

February 22, 2019 Java Just in Time - John Latham Page 141(0/0)

The Valuables class

054: // Sort the collection into order by value.

055: public void sort()

056: {

057: Arrays.sort(valuableArray, 0, noOfValuables);

058: } // sort

• Works because array elements of valuableArray mutually comparable.

February 22, 2019 Java Just in Time - John Latham Page 142(0/0)

The Valuables class

060: // Create a Valuables collection, add Valuable items, sort, and show result.

061: // Purely for testing during development.

062: public static void main(String[] args)

063: {

064: Valuables valuables = new Valuables(5);

065:

066: // My first house -- I was so proud of its spare bedroom

067: // and ‘value for money’ area.

068: valuables.addValuable(new ValuableHouse(2, 0.5));

069:

070: // My first car, not quite a ‘head turner’,

071: // but its third door was handy when the main 2 got stuck.

072: valuables.addValuable(new ValuableCar(3, 0.25));

073:

074: // It was nice to have a new car when I started work.

075: valuables.addValuable(new ValuableCar(4, 1.0));

076:

February 22, 2019 Java Just in Time - John Latham Page 143(0/0)

The Valuables class

077: // Then I won the lottery! (Yeah, right.)

078: valuables.addValuable(new ValuableHouse(6, 2.0));

079: valuables.addValuable(new ValuableCar(12, 4.0));

080:

081: System.out.println("My valuables are worth " + valuables.totalValue());

082:

083: valuables.sort();

084:

085: System.out.println(valuables);

086: } // main

087:

088: } // class Valuables

February 22, 2019 Java Just in Time - John Latham Page 144(0/0)

Trying it

Console Input / Output

$ java Valuables

My valuables are worth 755500

House worth 600000

Car worth 96000

House worth 50000

Car worth 8000

Car worth 1500

$ _ Run

February 22, 2019 Java Just in Time - John Latham Page 145(0/0)

Coursework: Analysis of compareTo() and

equals()

(Summary only)

Undertake an analysis of previous uses of compareTo() and equals() instance

methods.

February 22, 2019 Java Just in Time - John Latham Page 146(0/0)

Concepts covered in this chapter

• Each book chapter ends with a list of concepts covered in it.

• Each concept has with it

– a self-test question,

– and a page reference to where it was covered.

• Please use these to check your understanding before we start the next

chapter.

February 22, 2019 Java Just in Time - John Latham Page 147(0/0)

	Title
	Chapter 20: Interfaces, including generic interfaces
	Chapter aims
	Section 2: Example: Summing valuables
	Aim
	Summing valuables
	The Building class and its subclasses
	Summing valuables
	The Vehicle class and its subclasses
	Summing valuables
	The ValuableHouse and ValuableCar classes
	The ValuableHouse and ValuableCar classes
	The ValuableHouse and ValuableCar classes
	ValuablesFragment.java
	The ValuableHouse and ValuableCar classes
	The Valuable class
	The Valuable class
	The Valuable class
	The Valuable class
	The Valuable class
	Inheritance: multiple inheritance
	Inheritance: multiple inheritance

	The Valuable interface
	The Valuable interface
	Interface: definition
	Interface: definition

	The Valuable interface
	Class: is a type: and has three components
	Class: is a type: and has three components

	Interface: is a type
	Interface: is a type

	The Valuable interface
	The ValuableHouse class
	Interface: method implementation
	Interface: method implementation

	The ValuableHouse class
	The ValuableCar class
	The ValuableCar class
	The Valuables class
	The Valuables class
	The Valuables class
	The Valuables class
	The Valuables class
	Trying it
	Section 3: Example: Sorting a text file using an array
	Aim
	Sorting a text file using an array
	Design: Sorting a list: total order
	Design: Sorting a list: total order

	The Sortable interface?
	Sortable.java
	The SortArray class?
	SortArray.java
	The SortArray class?
	The SortArray class?
	Standard API: Arrays
	Standard API: Arrays

	Standard API: Arrays: sort()
	Standard API: Arrays: sort()

	The Sort class
	Trying it
	Coursework: Sort a text file
	Section 4: Example: Translating documents
	Aim
	Translating documents
	Translating documents
	The DictionaryEntry class
	Interface: generic interface
	Interface: generic interface

	Standard API: Comparable interface
	Standard API: Comparable interface

	Standard API: String: implements Comparable
	Standard API: String: implements Comparable

	The DictionaryEntry class
	The DictionaryEntry class
	The DictionaryEntry class
	The DictionaryEntry class
	The DictionaryEntry class
	Standard API: Object: equals()
	Standard API: Object: equals()

	Standard API: Comparable interface: compareTo() and equals()
	Standard API: Comparable interface: compareTo() and equals()

	The DictionaryEntry class
	The DictionaryEntry class
	The DictionaryEntry class
	The Dictionary class
	Method: generic methods
	Method: generic methods

	Standard API: Arrays: copyOf()
	Standard API: Arrays: copyOf()

	The Dictionary class
	The Dictionary class
	The Dictionary class
	The Dictionary class
	The Dictionary class
	Design: Searching a list: binary search
	Design: Searching a list: binary search

	The SearchArray class
	Interface: extending another interface
	Interface: extending another interface

	Class: generic class: bound type parameter: extends some interface
	Class: generic class: bound type parameter: extends some interface

	Method: generic methods: bound type parameter
	Method: generic methods: bound type parameter

	The SearchArray class
	The SearchArray class
	The Translate class
	The Translate class
	Trying it
	Trying it
	Coursework: Minimum and maximum Comparable
	Section 5: Example: Sorting valuables
	Aim
	Sorting valuables
	The ValuableHouse class?
	Interface: a class can implement many interfaces
	Interface: a class can implement many interfaces

	The ValuableHouse class?
	ValuableHouse.java-fragment
	The ValuableHouse class?
	The Valuable interface
	The Valuable interface
	The ValuableHouse class
	The ValuableHouse class
	The ValuableHouse class
	The ValuableHouse class
	The ValuableCar class
	The Valuables class
	The Valuables class
	The Valuables class
	Trying it
	Coursework: Analysis of compareTo() and equals()
	Concepts covered in this chapter

