
List of Slides

1 Title
2 Chapter 19: Generic classes
3 Chapter aims
4 Section 2: Example:A pair of any objects
5 Aim
6 A pair of any objects
7 The Pair class
8 The Pair class
9 The longest argument program

10 The LongestString class
11 Standard API: Integer : as a box for int
12 The LongestString class
14 The LongestString class
15 The LongestArgument class
16 Trying it
17 The LongestArgumentOops class

0-0

18 The LongestArgumentOops class
19 The LongestArgumentOops class
20 Coursework: A triple
21 Section 3: Example:A generic pair of specified types
22 Aim
23 A generic pair of specified types
24 Class: generic class
27 The Pair class
28 The Pair class
29 The Pair class
30 The LongestString class
32 The LongestArgument class
33 The LongestArgumentOops class
34 The LongestArgumentOops class
35 The LongestArgumentOops class
36 Coursework: A generic triple
37 Section 4: Autoboxing and auto-unboxing of primitive values
38 Aim

0-1

39 Autoboxing and auto-unboxing of primitive values
40 Standard API: Integer : as a box for int : autoboxing
43 Autoboxing and auto-unboxing of primitive values
44 Autoboxing and auto-unboxing of primitive values
45 Coursework: A generic triple, used with autoboxing
46 Section 5: Example:A conversation of persons
47 Aim
48 A conversation of persons
49 A conversation of persons
50 Class: generic class: bound type parameter
51 Class: generic class: bound type parameter: extends some class
54 The Conversation class
55 The Conversation class
56 The Conversation class
57 The Conversation class
58 The Conversation class
59 The Conversation class
60 The Conversation class

0-2

61 The TestConversation class
62 The TestConversation class
63 The TestConversation class
64 Trying it
65 The TestConversationOops class
66 The TestConversationOops class
67 The TestConversationOops class
68 Coursework: A moody group
69 Section 6: What we cannot do with type parameters
70 Aim
71 Class: generic class: where type parameters cannot be used
73 What we cannot do with type parameters
75 Trying it
76 Section 7: Using a generic class without type parameters
77 Aim
78 Class: generic class: used as a raw type
80 Using a generic class without type parameters
81 Trying it

0-3

82 Trying it
83 Trying it
84 The TestConversationMajorOops class
85 The TestConversationMajorOops class
86 Concepts covered in this chapter

0-4

Title

Java Just in Time

John Latham

February 19, 2019

February 19, 2019 Java Just in Time - John Latham Page 1(0/0)

Chapter 19

Generic classes

February 19, 2019 Java Just in Time - John Latham Page 2(0/0)

Chapter aims

• Often wish to have object contained within another

– e.g. may want whole collection of items grouped into one object

– list, set, etc..

• Often want collections able to contain any kind of object

– run risk of forgetting what kind of thing are in them

– like sealing box without labelling it.

• Here introduce idea of applying such labels

– called type arguments.

• Start by exploring problems if don’t use such labelling.

February 19, 2019 Java Just in Time - John Latham Page 3(0/0)

Section 2

Example:

A pair of any objects

February 19, 2019 Java Just in Time - John Latham Page 4(0/0)

Aim

AIM: To explore potential problems of having a container

object that can hold instances of any class, in particu-

lar that we need protection against us erroneously get-

ting the type wrong when we extract items from the

container. We also introduce the idea of boxing an int

within an Integer .

February 19, 2019 Java Just in Time - John Latham Page 5(0/0)

A pair of any objects

• Introduce example used in next section looking at generic classes.

• Have pair of objects

– two items paired together

– later extracted apart.

• E.g. when desire method to return two results

– often use class variables or instance variables just to receive results

– or use array of length two

∗ lack of robustness – e.g. attempt to obtain third item from array

– run time rather than compile time error

• Pair avoids above problems and more elegant.

February 19, 2019 Java Just in Time - John Latham Page 6(0/0)

The Pair class

001: // Two Objects grouped into a pair.

002: public class Pair

003: {

004: // The two objects.

005: private final Object first, second;

006:

007:

008: // Constructor is given the two objects.

009: public Pair(Object requiredFirst, Object requiredSecond)

010: {

011: first = requiredFirst;

012: second = requiredSecond;

013: } // Pair

February 19, 2019 Java Just in Time - John Latham Page 7(0/0)

The Pair class

016: // Return the first object.

017: public Object getFirst()

018: {

019: return first;

020: } // getFirst

021:

022:

023: // Return the second object.

024: public Object getSecond()

025: {

026: return second;

027: } // getSecond

028:

029: } // class Pair

February 19, 2019 Java Just in Time - John Latham Page 8(0/0)

The longest argument program

• Contrived but simple example

– finds longest string in command line arguments

– reports it with its position (counting from one).

– Finds first occurrence if two or more same greatest length.

• For flexibility/reuse have separate class LongestString

– class method to find longest string in array.

February 19, 2019 Java Just in Time - John Latham Page 9(0/0)

The LongestString class

001: // Contains a method to find the position of the longest strin g in an array.

002: public class LongestString

003: {

• Our class method will return Pair containing

– longest string

– its array index.

• But index is int – primitive type

– Pair requires two Object s.

February 19, 2019 Java Just in Time - John Latham Page 10(0/0)

Standard API: Integer: as a box for int

• java.lang.Integer can be used to wrap up int values as objects.

• One constructor method given int

– creates instance wrapping up that number.

– Known as boxing.

• The instance method intValue() used to retrieve boxed number.

• Allows int which is primitive type

– to be treated as object.

February 19, 2019 Java Just in Time - John Latham Page 11(0/0)

The LongestString class

004: // Find the longest string in the given array.

005: // Return a Pair containing it and its position.

006: // Throw IllegalArgumentException if array is null or empty .

007: public static Pair findLongestString(String[] array)

008: throws IllegalArgumentException

009: {

010: if (array == null || array.length == 0)

011: throw new IllegalArgumentException("Array must exist and be non-em pty");

012:

February 19, 2019 Java Just in Time - John Latham Page 12(0/0)

The LongestString class

013: String longestString = array[0];

014: int longestIndex = 0;

015: for (int index = 1; index < array.length; index++)

016: if (longestString.length() < array[index].length())

017: {

018: longestString = array[index];

019: longestIndex = index;

020: } // if

021:

022: return new Pair(longestString, new Integer(longestIndex));

023: } // findLongestString

024:

025: } // class LongestString

February 19, 2019 Java Just in Time - John Latham Page 13(0/0)

The LongestString class

Coffee

time:

What would happen if we swapped the operands of the

conditional or operator in the first if statement above?

Coffee

time:

Our Pair constructor method expects to be given two

Object s but we are supplying a String and an Integer .

Is that okay?

February 19, 2019 Java Just in Time - John Latham Page 14(0/0)

The LongestArgument class

• Observe casts and intValue() .

001: // Find the longest command line argument and report it and it s position.
002: // (Warning: this program does not catch RuntimeExceptions .)
003: public class LongestArgument

004: {

005: public static void main(String[] args) throws RuntimeException

006: {

007: Pair result = LongestString.findLongestString(args);
008: String longestArg = (String) result.getFirst();
009: int longestIndex = ((Integer)result.getSecond()).intValue ();
010:
011: System.out.println("A longest argument was ‘" + longestAr g + "’");
012: System.out.println("of length " + longestArg.length());
013: System.out.println("found at position " + (longestIndex + 1));

014: } // main

015:
016: } // class LongestArgument

February 19, 2019 Java Just in Time - John Latham Page 15(0/0)

Trying it

Console Input / Output

$ java LongestArgument A stitch in time saves nine

A longest argument was ‘stitch’

of length 6

found at position 2

$ java LongestArgument A stitch in time will become very painful

A longest argument was ‘painful’

of length 7

found at position 8

$ _ Run

Coffee

time:

What other tests should we perform?

February 19, 2019 Java Just in Time - John Latham Page 16(0/0)

The LongestArgumentOops class

001: // Find the longest command line argument and report it and it s position.

002: // (Warning: this program does not catch RuntimeExceptions .)

003: public class LongestArgumentOops

004: {

005: public static void main(String[] args)

006: {

007: Pair result = LongestString.findLongestString(args);

008: int longestIndex = ((Integer)result.getFirst()).intValue();

009: String longestArg = (String) result.getSecond();

010:

011: System.out.println("A longest argument was ‘" + longestAr g + "’");

012: System.out.println("of length " + longestArg.length());

013: System.out.println("found at position " + (longestIndex + 1));

014: } // main

015:

016: } // class LongestArgumentOops

February 19, 2019 Java Just in Time - John Latham Page 17(0/0)

The LongestArgumentOops class

Console Input / Output

$ javac LongestArgumentOops.java

$ _ Run

• The compiler believes us

– we think type casts are okay.

• But it does plant run time checks. . . .

Console Input / Output

$ java LongestArgumentOops A stitch in time saves nine

Exception in thread "main" java.lang.ClassCastException : java.lang.String cannot

be cast to java.lang.Integer

at LongestArgumentOops.main(LongestArgumentOops.java :8)

$ _ Run

February 19, 2019 Java Just in Time - John Latham Page 18(0/0)

The LongestArgumentOops class

Coffee

time:

How common do you expect this sort of simple mistake

is? Are you happy that the error is only detected at run

time? What if the error was made in an obscure part of

the code that only executes under highly unusual circum-

stances that were unfortunately not tested for, perhaps

during an emergency, such as a sudden close proximity

of another aircraft in an auto pilot control program?

February 19, 2019 Java Just in Time - John Latham Page 19(0/0)

Coursework: A triple

(Summary only)

Write a class that can store a triple of objects, and use it.

February 19, 2019 Java Just in Time - John Latham Page 20(0/0)

Section 3

Example:

A generic pair of specified

types

February 19, 2019 Java Just in Time - John Latham Page 21(0/0)

Aim

AIM: To introduce the idea of generic classes, and show

how it can be used to avoid the problems explored in

the previous section.

February 19, 2019 Java Just in Time - John Latham Page 22(0/0)

A generic pair of specified types

• When build instance of Pair

– compiler knows what types of object go into it.

• But when get them out have to tell compiler

– to cast from Object to subclass we need them to be

– typically what they were known to be when they went in!

• Type cast checked at run time

– throws ClassCastException if got it wrong.

• Would be nice if could allow compiler to already know:

– what kind of items are in pair?

• In other words, for us to say what kind of pair.

• Since Java 5.0 can have generic classes.

February 19, 2019 Java Just in Time - John Latham Page 23(0/0)

Class: generic class

• A generic class has one or more type parameters

– written within <> after name in heading.

• Specific types given as type arguments when make instance.

• E.g. T1 and T2 are type parameters.

public class MyGenericClass<T1, T2>

{

... Typical class stuff here,

... but using T1 and T2 as though they are types

... (in permitted ways).

private T1 someVariable = ...

private T2 someOtherVariable = ...

...

} // class MyGenericClass

February 19, 2019 Java Just in Time - John Latham Page 24(0/0)

Class: generic class

• Supply specific type argument for each type parameter

– e.g. when make instance.

MyGenericClass<String, Date> myVariable = new MyGenericClass<String, Date>();

• A class is a type.

• Intention for generic class is to supply type arguments for type parameters

– identify parameterized type.

• E.g. from MyGenericClass can have parameterized types

– MyGenericClass<String, Date> , MyGenericClass<Integer, String> , etc.,

– even MyGenericClass<String[], Integer> , etc..

February 19, 2019 Java Just in Time - John Latham Page 25(0/0)

Class: generic class

• Parameterized type almost behaves as textual copy of generic class

– but replaced each type parameter

with corresponding type argument.

• Almost – some restrictions

– e.g. type arguments must be reference types

∗ cannot be primitive types.

February 19, 2019 Java Just in Time - John Latham Page 26(0/0)

The Pair class

• New version is generic class with two type parameters

– one for type of first element of each pair

– one for second.

• So can have parameterized type for any kind of pair.

001: // Two Objects grouped into a pair.

002: public class Pair<FirstType, SecondType>

003: {

004: // The first object.

005: private final FirstType first;

006:

007: // The second object.

008: private final SecondType second;

February 19, 2019 Java Just in Time - John Latham Page 27(0/0)

The Pair class

• The method parameters for constructor method not of type Object

– each is appropriate type parameter.

011: // Constructor is given the two objects.

012: public Pair(FirstType requiredFirst, SecondType requiredSecon d)

013: {

014: first = requiredFirst;

015: second = requiredSecond;

016: } // Pair

February 19, 2019 Java Just in Time - John Latham Page 28(0/0)

The Pair class

• Similarly return types of accessor methods.

019: // Return the first object.

020: public FirstType getFirst()

021: {

022: return first;

023: } // getFirst

024:

025:

026: // Return the second object.

027: public SecondType getSecond()

028: {

029: return second;

030: } // getSecond

031:

032: } // class Pair

February 19, 2019 Java Just in Time - John Latham Page 29(0/0)

The LongestString class

• New findLongestString() returns (a reference to)

instance of parameterized type Pair<String, Integer> .

001: // Contains a method to find the position of the longest strin g in an array.

002: public class LongestString

003: {

004: // Find the longest string in the given array.

005: // Return a Pair containing it and its position.

006: // Throw IllegalArgumentException if array is null or empty .

007: public static Pair<String, Integer> findLongestString(String[] array)

008: throws IllegalArgumentException

009: {

010: if (array == null || array.length == 0)

011: throw new IllegalArgumentException("Array must exist and be non-em pty");

012:

February 19, 2019 Java Just in Time - John Latham Page 30(0/0)

The LongestString class

013: String longestString = array[0];

014: int longestIndex = 0;

015: for (int index = 1; index < array.length; index++)

016: if (longestString.length() < array[index].length())

017: {

018: longestString = array[index];

019: longestIndex = index;

020: } // if

021:

022: return new Pair<String, Integer>(longestString, new Integer(longestIndex));

023: } // findLongestString

024:

025: } // class LongestString

Coffee

time:

Compare this latest version of LongestString with the orig-

inal in Section 12 on page 12.

February 19, 2019 Java Just in Time - John Latham Page 31(0/0)

The LongestArgument class

001: // Find the longest command line argument and report it and it s position.

002: // (Warning: this program does not catch RuntimeExceptions .)

003: public class LongestArgument

004: {

005: public static void main(String[] args) throws RuntimeException

006: {

007: Pair<String, Integer> result = LongestString.findLonges tString(args);

008: String longestArg = result.getFirst();

009: int longestIndex = result.getSecond().intValue();
010:

011: System.out.println("A longest argument was ‘" + longestAr g + "’");

012: System.out.println("of length " + longestArg.length());

013: System.out.println("found at position " + (longestIndex + 1));

014: } // main

015:

016: } // class LongestArgument

• No need cast elements to String and Integer

– compiler already knows!

February 19, 2019 Java Just in Time - John Latham Page 32(0/0)

The LongestArgumentOops class

001: // Find the longest command line argument and report it and it s position.

002: // (Warning: this program does not catch RuntimeExceptions .)

003: public class LongestArgumentOops

004: {

005: public static void main(String[] args)

006: {

007: Pair<Integer, String> result = LongestString.findLonges tString(args);

008: int longestIndex = result.getFirst().intValue();

009: String longestArg = result.getSecond();

010:

011: System.out.println("A longest argument was ‘" + longestAr g + "’");

012: System.out.println("of length " + longestArg.length());

013: System.out.println("found at position " + (longestIndex + 1));

014: } // main

015:

016: } // class LongestArgumentOops

February 19, 2019 Java Just in Time - John Latham Page 33(0/0)

The LongestArgumentOops class

Coffee

time:

Do you agree that the above program contains the

equivalent error to the one in Section 16 on page 17?

Console Input / Output

$ javac LongestArgumentOops.java

LongestArgumentOops.java:7: incompatible types

found : Pair<java.lang.String,java.lang.Integer>

required: Pair<java.lang.Integer,java.lang.String>

Pair<Integer, String> result = LongestString.findLonges tString(args);

ˆ

1 error

$ _ Run

February 19, 2019 Java Just in Time - John Latham Page 34(0/0)

The LongestArgumentOops class

Coffee

time:

While this new power is wonderful to protect against

many trivial mistakes, can you think of situations where

the accidental swapping of the pair elements would not

be detected by the compiler?

Coffee

time:

What do you think would happen if we had not made

the changes to the LongestString and LongestArgument

classes, but tried to compile the original ones from the

last section with the generic class version of Pair ? Try it!

Surprised? Can you figure out why it behaves like that?

February 19, 2019 Java Just in Time - John Latham Page 35(0/0)

Coursework: A generic triple

(Summary only)

Write a generic class that can store a triple of specific kinds of objects, and

use it.

February 19, 2019 Java Just in Time - John Latham Page 36(0/0)

Section 4

Autoboxing and

auto-unboxing of primitive

values

February 19, 2019 Java Just in Time - John Latham Page 37(0/0)

Aim

AIM: To expose Java’s implicit conversion between values

of primitive types and instances of the corresponding

wrapper classes.

February 19, 2019 Java Just in Time - John Latham Page 38(0/0)

Autoboxing and auto-unboxing of primitive values

• Have seen mechanism for wrapping int in Object .

• Similar classes for other primitive types.

Coffee

time:

In addition to Integer , you have already met two other

of these wrapper classes, although we have not yet seen

them used to wrap up a value. Which two are they?

• Since Java 5.0 have convenience of autoboxing / auto-unboxing.

February 19, 2019 Java Just in Time - John Latham Page 39(0/0)

Standard API: Integer: as a box for int: autoboxing

• Use of java.lang.Integer to wrap up ints is common.

• Since Java 5.0 compiler can make use implicit

– autoboxing / auto-unboxing.

• Whenever int given where Integer required

– int automatically boxed.

• Whenever (reference to) Integer given where int required

– intValue() automatically used to unbox int.

February 19, 2019 Java Just in Time - John Latham Page 40(0/0)

Standard API: Integer: as a box for int: autoboxing

• E.g.

Integer anInteger = new Integer(10);

int anInt = anInteger.intValue() + 1;

System.out.println(anInt);

• Following has same effect.

Integer anInteger = 10;

int anInt = anInteger + 1;

System.out.println(anInt);

• Convenience makes int and Integer types work seamlessly together

– but most important to remember difference between them:

∗ int is primitive type

∗ Integer is reference type.

February 19, 2019 Java Just in Time - John Latham Page 41(0/0)

Standard API: Integer: as a box for int: autoboxing

• E.g. array of ten ints (approx) ten times bigger than one int.

• Array of ten Integer objects would hold ten references,

– each referring to object storing int value.

February 19, 2019 Java Just in Time - John Latham Page 42(0/0)

Autoboxing and auto-unboxing of primitive values

Coffee

time:

Draw a diagram of an array of ten ints, and another of

an array of ten Integer s.

Coffee

time:

Do you think autoboxing and auto-unboxing has been

applied to the other primitive type wrapper classes?

What would be the easiest way to find out?

February 19, 2019 Java Just in Time - John Latham Page 43(0/0)

Autoboxing and auto-unboxing of primitive values

001: // Contains a method to find the position of the longest strin g in an array.

002: public class LongestString

003: {

...

022: return new Pair<String, Integer>(longestString, longestIndex);

...

025: } // class LongestString

001: // Find the longest command line argument and report it and it s position.

002: // (Warning: this program does not catch RuntimeExceptions .)

003: public class LongestArgument

004: {

...

009: int longestIndex = result.getSecond();

...

016: } // class LongestArgument

February 19, 2019 Java Just in Time - John Latham Page 44(0/0)

Coursework: A generic triple, used with autoboxing

(Summary only)

Write a generic class that can store a triple of specific kinds of objects, and

use it; this time using autoboxing and auto-unboxing.

February 19, 2019 Java Just in Time - John Latham Page 45(0/0)

Section 5

Example:

A conversation of persons

February 19, 2019 Java Just in Time - John Latham Page 46(0/0)

Aim

AIM: To introduce the idea of a bound type parameter, in

particular, one that must extend some other type.

February 19, 2019 Java Just in Time - John Latham Page 47(0/0)

A conversation of persons

• Enhancement to Notional Lottery – have conversations between Person s

– essentially wrapper around array of Person

– with instance method speak()

∗ makes one of the Person s speak,

∗ repeated calls make each Person speak in turn.

• A conversation is kind of collection of persons

– perhaps times when most likely write generic class

are when implementing collection.

• So we speak of having conversations of persons.

February 19, 2019 Java Just in Time - John Latham Page 48(0/0)

A conversation of persons

• Further, need ability to have particular Conversation s comprise only

persons of particular subclasses of Person

– e.g. conversation of AudienceMember s,

– another of TVHost s, etc..

• Achieve via bound type parameter. . . .

February 19, 2019 Java Just in Time - John Latham Page 49(0/0)

Class: generic class: bound type parameter

• A generic class type parameter may be bound type parameter

– specify certain restrictions on allowed type arguments

for when parameterized type identified.

February 19, 2019 Java Just in Time - John Latham Page 50(0/0)

Class: generic class: bound type parameter:

extends some class

• One kind of restriction for bound type parameter:

– type argument must extend some known class.

• Follow name of type parameter

with reserved word extends and known class.

• The compiler checks that type argument is

– either known class,

– or subclass of it.

• E.g.. . .

February 19, 2019 Java Just in Time - John Latham Page 51(0/0)

Class: generic class: bound type parameter:

extends some class

public class ServiceCentre<VehicleType extends Vehicle>

{

... Etc., using VehicleType as a type (in permitted ways)

... but knowing that it is a Vehicle

... and so using some Vehicle methods, etc..

public void service(VehicleType vehicle)

{

if (! vehicle.isRoadworthy())

{

...

} // if

} // service

...

} // class ServiceCentre

February 19, 2019 Java Just in Time - John Latham Page 52(0/0)

Class: generic class: bound type parameter:

extends some class

• Can make ServiceCentre objects for particular kinds of Vehicle .

ServiceCentre<Car> garage = new ServiceCentre<Car>();

Car car = new Car(...);

Lorry lorry = new Lorry(...);

garage.service(car);

garage.service(lorry);

garage.service("car");

• Last two lines above cause compile time error.

February 19, 2019 Java Just in Time - John Latham Page 53(0/0)

The Conversation class

001: // Representation of a group of lottery people talking in tur n.

002: public class Conversation<PersonType extends Person>

003: {

• So type argument given when parameterized type identified must be

– subclass of Person ,

– or Person itself.

February 19, 2019 Java Just in Time - John Latham Page 54(0/0)

The Conversation class

• An instance stores (reference to) partially filled array of Person objects

– grown on demand using array extension.

004: // Initial size and resize factor.

005: private static final int INITIAL_ARRAY_SIZE = 2, ARRAY_RESIZE_FACTOR = 2;

006:

007: // The array, together with the number of Person objects in it .

008: private Person[] persons = new Person[INITIAL_ARRAY_SIZE];

009: private int noOfPersons = 0;

Coffee

time:

Are you wondering why the array is of type Person[]

rather than PersonType[] ? Would that be better?

February 19, 2019 Java Just in Time - John Latham Page 55(0/0)

The Conversation class

012: // Empty constructor, nothing needs doing.

013: public Conversation()

014: {

015: } // Conversation

• addPerson() takes (reference to) object of type PersonType ,

stores in array

– allowed because PersonType extends Person :

– it is a Person as well as whatever subclass of Person .

• The compiler will complain if try to add wrong kind of Person

February 19, 2019 Java Just in Time - John Latham Page 56(0/0)

The Conversation class

018: // Add given Person to the Conversation (extend array as requ ired).

019: public void addPerson(PersonType newPerson)

020: {

021: if (noOfPersons == persons.length)

022: {

023: Person[] biggerArray = new Person[persons.length * ARRAY_RESIZE_FACTOR];

024: for (int index = 0; index < persons.length; index++)

025: biggerArray[index] = persons[index];

026: persons = biggerArray;

027: } // if

028: persons[noOfPersons] = newPerson;

029: noOfPersons++;

030: } // addPerson

February 19, 2019 Java Just in Time - John Latham Page 57(0/0)

The Conversation class

Coffee

time:

Are you getting tired of seeing code that copies from one

array to another? Take a look in the API documentation

for the System class to find something that might be of

interest to you.

033: // Return the number of people in the conversation.

034: public int getSize()

035: {

036: return noOfPersons;

037: } // getSize

February 19, 2019 Java Just in Time - John Latham Page 58(0/0)

The Conversation class

040: // Used to keep track of whose turn it is to speak.

041: private int nextToSpeak = 0;

042:

043:

044: // Make the next person speak and update who is next after that .

045: public void speak()

046: {

047: if (noOfPersons > 0)

048: {

049: persons[nextToSpeak].speak();

050: nextToSpeak = (nextToSpeak + 1) % noOfPersons;

051: } // if

052: } // speak

February 19, 2019 Java Just in Time - John Latham Page 59(0/0)

The Conversation class

055: // Mainly for testing.

056: @Override

057: public String toString()

058: {

059: String result = noOfPersons == 0 ? "" : "" + persons[0];

060: for (int index = 1; index < noOfPersons; index++)

061: result += String.format("%n%s", persons[index]);

062: return result;

063: } // toString

064:

065: } // class Conversation

February 19, 2019 Java Just in Time - John Latham Page 60(0/0)

The TestConversation class

001: // Create conversations of persons and make them speak.

002: public class TestConversation

003: {

004: public static void main(String[] args)

005: {

• Conversation in which all persons must be AudienceMember s:

– compiler checks do not add wrong kind of Person .

006: // A conversation of AudienceMembers.

007: Conversation<AudienceMember> audienceChat

008: = new Conversation<AudienceMember>();

009: audienceChat.addPerson(new AudienceMember("AM 1"));

010: audienceChat.addPerson(new AudienceMember("AM 2"));

011: audienceChat.addPerson(new AudienceMember("AM 3"));

February 19, 2019 Java Just in Time - John Latham Page 61(0/0)

The TestConversation class

012: System.out.printf("%s%n%n", audienceChat);

013: for (int count = 1; count <= audienceChat.getSize(); count++)

014: {

015: audienceChat.speak();

016: System.out.printf("%s%n%n", audienceChat);

017: } // for

Coffee

time:

How can we have a conversation of any kind of person?

February 19, 2019 Java Just in Time - John Latham Page 62(0/0)

The TestConversation class

019: // A conversation of any kind of person.

020: Conversation<Person> anyChat = new Conversation<Person>();

021: anyChat.addPerson(new TVHost("TVH 1"));

022: anyChat.addPerson(new AudienceMember("AM 4"));

023: System.out.printf("%s%n%n", anyChat);

024: for (int count = 1; count <= anyChat.getSize(); count++)

025: {

026: anyChat.speak();

027: System.out.printf("%s%n%n", anyChat);

028: } // for

029: } // main

030:

031: } // class TestConversation

February 19, 2019 Java Just in Time - John Latham Page 63(0/0)

Trying it

Console Input / Output

$ java TestConversation

(Output shown using multiple columns to save space.)

Audience Member AM 1 true I am AM 1 Audience Member AM 2 true Oooooh!

Audience Member AM 2 true I am AM 2 Audience Member AM 3 true Oooooh!

Audience Member AM 3 true I am AM 3

TV Host TVH 1 true I am TVH 1

Audience Member AM 1 true Oooooh! Audience Member AM 4 true I am AM 4

Audience Member AM 2 true I am AM 2

Audience Member AM 3 true I am AM 3 TV Host TVH 1 true Welcome, suckers!

Audience Member AM 4 true I am AM 4

Audience Member AM 1 true Oooooh!

Audience Member AM 2 true Oooooh! TV Host TVH 1 true Welcome, suckers!

Audience Member AM 3 true I am AM 3 Audience Member AM 4 true Oooooh!

Audience Member AM 1 true Oooooh!

$ _ Run

February 19, 2019 Java Just in Time - John Latham Page 64(0/0)

The TestConversationOops class

001: // Create conversations of people and make them speak.

002: public class TestConversationOops

003: {

004: public static void main(String[] args)

005: {

006: // A conversation of AudienceMembers.

007: Conversation<AudienceMember> audienceChat

008: = new Conversation<AudienceMember>();

009: audienceChat.addPerson(new AudienceMember("AM 1"));

010: audienceChat.addPerson(new TVHost("TVH 1"));

011: System.out.printf("%s%n%n", audienceChat);

012: for (int count = 1; count <= audienceChat.getSize(); count++)

013: {

014: audienceChat.speak();

015: System.out.printf("%s%n%n", audienceChat);

016: } // for

017: } // main

018:

019: } // class TestConversationOops

February 19, 2019 Java Just in Time - John Latham Page 65(0/0)

The TestConversationOops class

Console Input / Output

$ javac TestConversationOops.java

TestConversationOops.java:10: addPerson(AudienceMemb er) in Conversation<Audience

Member> cannot be applied to (TVHost)

audienceChat.addPerson(new TVHost("TVH 1"));

ˆ

1 error

$ _ Run

February 19, 2019 Java Just in Time - John Latham Page 66(0/0)

The TestConversationOops class

Coffee

time:

Recall the full Person hierarchy from Section ?? on page

??. How could we have a Conversation in which all the

persons must be MoodyPerson s, but can be any kind of

moody person?

Coffee

time:

Recall that within the Conversation class, we had an array

of type Person[] , in which only PersonType objects were

stored. It would have been nicer to declare the array as

PersonType[] . So, why didn’t we? Try it to find out!

February 19, 2019 Java Just in Time - John Latham Page 67(0/0)

Coursework: A moody group

(Summary only)

Write a generic class that can store a collection of a particular kind of

MoodyPerson objects, from the Notional Lottery example, and make them all

happy or unhappy at the same time.

February 19, 2019 Java Just in Time - John Latham Page 68(0/0)

Section 6

What we cannot do with type

parameters

February 19, 2019 Java Just in Time - John Latham Page 69(0/0)

Aim

AIM: To briefly explore some of the things we might like to do

with type parameters but cannot.

February 19, 2019 Java Just in Time - John Latham Page 70(0/0)

Class: generic class: where type parameters cannot

be used

• Each type parameter of generic class may be treated as type

within that class

– but certain restrictions, in two categories.

• First, meaning of type parameters:

– type argument is supplied for each parameter to identify

parameterized type

– ready for instances to be made.

– Type arguments only mean anything in context of creating instances

– make no sense in static context of generic class

∗ (which is not part of the type).

– We cannot refer to type parameters in static parts

∗ class variable and class method declarations.

February 19, 2019 Java Just in Time - John Latham Page 71(0/0)

Class: generic class: where type parameters cannot

be used

• Second set of restrictions about way Java implements generic classes.

– Cannot create any instances of type parameter

– nor arrays with array elements of that type.

– Generic features is entirely compile time artifact

∗ enables compiler undertake more type checking.

– At run time, virtual machine has no knowledge of type parameters

∗ so cannot create instances of them.

February 19, 2019 Java Just in Time - John Latham Page 72(0/0)

What we cannot do with type parameters

• Cannot have this – pity?

001: // Create instances of ObjectType, and count them.

002: public class CountingFactory<ObjectType>

003: {

004: // The number of instances made so far.

005: private int constructionCountSoFar = 0;

006:

007:

008: // Empty constructor, nothing needs doing.

009: public CountingFactory()

010: {

011: } // CountingFactory

012:

013:

February 19, 2019 Java Just in Time - John Latham Page 73(0/0)

What we cannot do with type parameters

014: // Return the number of objects that have been made up to now.

015: public int getConstructionCount()

016: {

017: return constructionCountSoFar;

018: } // getConstructionCount

019:

020:

021: // Create an ObjectType and count it.

022: public ObjectType newObject()

023: {

024: constructionCountSoFar++;

025: return new ObjectType();

026: } // newObject

027:

028: } // class CountingFactory

February 19, 2019 Java Just in Time - John Latham Page 74(0/0)

Trying it

Console Input / Output

$ javac CountingFactory.java

CountingFactory.java:25: unexpected type

found : type parameter ObjectType

required: class

return new ObjectType();

ˆ

1 error

$ _ Run

February 19, 2019 Java Just in Time - John Latham Page 75(0/0)

Section 7

Using a generic class without

type parameters

February 19, 2019 Java Just in Time - John Latham Page 76(0/0)

Aim

AIM: To briefly explore what happens when we use a

generic class without type parameters.

February 19, 2019 Java Just in Time - John Latham Page 77(0/0)

Class: generic class: used as a raw type

• A generic class is still a class

– and hence a type

– can be used directly to make instances

without supplying type arguments.

• Due to legacy issues:

– generic classes added in Java 5.0

– type parameters added to many standard API classes

– already existed millions of Java programs using those classes

– unacceptable for all to suddenly stop working!

February 19, 2019 Java Just in Time - John Latham Page 78(0/0)

Class: generic class: used as a raw type

• Type of generic class without type parameters called its raw type.

• When use raw types compiler assumes best known actual type for each

type parameter

– gives warnings about types being unchecked .

• But makes byte code anyway.

• Programmers encouraged to use generic classes properly for new code

– and gradually change legacy code.

• Best known type assumed by compiler for type parameter

which extends some concrete type is that concrete type

– for ones that do not it is java.lang.Object .

February 19, 2019 Java Just in Time - John Latham Page 79(0/0)

Using a generic class without type parameters

001: // Create conversations of people and make them speak.

002: public class TestConversationOops

003: {

004: public static void main(String[] args)

005: {

006: // A conversation of AudienceMembers.

007: Conversation audienceChat = new Conversation();

008: audienceChat.addPerson(new AudienceMember("AM 1"));

009: audienceChat.addPerson(new TVHost("TVH 1"));

010: System.out.printf("%s%n%n", audienceChat);

011: for (int count = 1; count <= audienceChat.getSize(); count++)

012: {

013: audienceChat.speak();

014: System.out.printf("%s%n%n", audienceChat);

015: } // for

016: } // main

017:

018: } // class TestConversationOops

February 19, 2019 Java Just in Time - John Latham Page 80(0/0)

Trying it

Console Input / Output

$ javac TestConversationOops.java

Note: TestConversationOops.java uses unchecked or unsafe operations.

Note: Recompile with -Xlint:unchecked for details.

$ _ Run

• The compiler does not give details of warnings

– but can ask for details with -Xlint:unchecked compiler option.. . .

February 19, 2019 Java Just in Time - John Latham Page 81(0/0)

Trying it

Console Input / Output

$ javac -Xlint:unchecked TestConversationOops.java

TestConversationOops.java:8: warning: [unchecked] unch ecked call to addPerson(Pe

rsonType) as a member of the raw type Conversation

audienceChat.addPerson(new AudienceMember("AM 1"));

ˆ

TestConversationOops.java:9: warning: [unchecked] unch ecked call to addPerson(Pe

rsonType) as a member of the raw type Conversation

audienceChat.addPerson(new TVHost("TVH 1"));

ˆ

2 warnings

$ _ Run

• Should not write new code that generates warnings like this.

February 19, 2019 Java Just in Time - John Latham Page 82(0/0)

Trying it

• Most worryingly our erroneous program runs without errors!

Console Input / Output

$ java TestConversationOops

Audience Member AM 1 true I am AM 1

TV Host TVH 1 true I am TVH 1

Audience Member AM 1 true Oooooh!

TV Host TVH 1 true I am TVH 1

Audience Member AM 1 true Oooooh!

TV Host TVH 1 true Welcome, suckers!

$ _ Run

February 19, 2019 Java Just in Time - John Latham Page 83(0/0)

The TestConversationMajorOops class

001: // Create conversations of people and make them speak.

002: public class TestConversationMajorOops

003: {

004: public static void main(String[] args)

005: {

006: // A conversation of AudienceMembers.

007: Conversation audienceChat = new Conversation();

008: audienceChat.addPerson("AM 1");

009: System.out.printf("%s%n%n", audienceChat);

010: for (int count = 1; count <= audienceChat.getSize(); count++)

011: {

012: audienceChat.speak();

013: System.out.printf("%s%n%n", audienceChat);

014: } // for

015: } // main

016:

017: } // class TestConversationMajorOops

February 19, 2019 Java Just in Time - John Latham Page 84(0/0)

The TestConversationMajorOops class

• At least get compile time error

if try to add object which is not a Person .

Console Input / Output

$ javac TestConversationMajorOops.java

TestConversationMajorOops.java:8: addPerson(Person) i n Conversation cannot be ap

plied to (java.lang.String)

audienceChat.addPerson("AM 1");

ˆ

1 error

$ _ Run

February 19, 2019 Java Just in Time - John Latham Page 85(0/0)

Concepts covered in this chapter

• Each book chapter ends with a list of concepts covered in it.

• Each concept has with it

– a self-test question,

– and a page reference to where it was covered.

• Please use these to check your understanding before we start the next

chapter.

February 19, 2019 Java Just in Time - John Latham Page 86(0/0)

	Title
	Chapter 19: Generic classes
	Chapter aims
	Section 2: Example: A pair of any objects
	Aim
	A pair of any objects
	The Pair class
	The Pair class
	The longest argument program
	The LongestString class
	Standard API: Integer: as a box for int
	Standard API: Integer: as a box for int

	The LongestString class
	The LongestString class
	The LongestArgument class
	Trying it
	The LongestArgumentOops class
	The LongestArgumentOops class
	The LongestArgumentOops class
	Coursework: A triple
	Section 3: Example: A generic pair of specified types
	Aim
	A generic pair of specified types
	Class: generic class
	Class: generic class

	The Pair class
	The Pair class
	The Pair class
	The LongestString class
	The LongestArgument class
	The LongestArgumentOops class
	The LongestArgumentOops class
	The LongestArgumentOops class
	Coursework: A generic triple
	Section 4: Autoboxing and auto-unboxing of primitive values
	Aim
	Autoboxing and auto-unboxing of primitive values
	Standard API: Integer: as a box for int: autoboxing
	Standard API: Integer: as a box for int: autoboxing

	Autoboxing and auto-unboxing of primitive values
	Autoboxing and auto-unboxing of primitive values
	Coursework: A generic triple, used with autoboxing
	Section 5: Example: A conversation of persons
	Aim
	A conversation of persons
	A conversation of persons
	Class: generic class: bound type parameter
	Class: generic class: bound type parameter

	Class: generic class: bound type parameter: extends some class
	Class: generic class: bound type parameter: extends some class

	The Conversation class
	The Conversation class
	The Conversation class
	The Conversation class
	The Conversation class
	The Conversation class
	The Conversation class
	The TestConversation class
	The TestConversation class
	The TestConversation class
	Trying it
	The TestConversationOops class
	The TestConversationOops class
	The TestConversationOops class
	Coursework: A moody group
	Section 6: What we cannot do with type parameters
	Aim
	Class: generic class: where type parameters cannot be used
	Class: generic class: where type parameters cannot be used

	What we cannot do with type parameters
	Trying it
	Section 7: Using a generic class without type parameters
	Aim
	Class: generic class: used as a raw type
	Class: generic class: used as a raw type

	Using a generic class without type parameters
	Trying it
	Trying it
	Trying it
	The TestConversationMajorOops class
	The TestConversationMajorOops class
	Concepts covered in this chapter

