
List of Slides

1 Title
2 Chapter 18: Files
3 Chapter aims
4 Section 2: Example:Counting bytes from standard input
5 Aim
6 Counting bytes from standard input
7 File IO API: IOException
9 Counting bytes from standard input

10 Statement: assignment statement: is an expression
13 Statement: try statement: with finally
15 File IO API: InputStream
19 Standard API: System : in : is an InputStream
20 Counting bytes from standard input
21 Variable: initial value
23 Counting bytes from standard input
26 Counting bytes from standard input

0-0

27 Trying it
28 Trying it
29 Coursework: A check sum program
30 Section 3: Example:Counting characters from standard input
31 Aim
32 Counting characters from standard input
33 Counting characters from standard input
34 File IO API: InputStreamReader
36 Counting characters from standard input
39 Trying it
40 Trying it
41 Trying it
42 Trying it
43 Coursework: Counting words
44 Section 4: Example:Numbering lines from standard input
45 Aim
46 File IO API: BufferedReader
47 Numbering lines from standard input

0-1

50 Trying it
51 Coursework: Deleting a field
52 Section 5: Example:Numbering lines from text file to text file
53 Aim
54 Numbering lines from text file to text file
55 File IO API: FileInputStream
56 File IO API: FileReader
59 File IO API: OutputStream
60 File IO API: OutputStreamWriter
61 File IO API: FileOutputStream
62 File IO API: FileWriter
66 File IO API: PrintWriter
67 Numbering lines from text file to text file
68 File IO API: PrintWriter : checkError()
71 Numbering lines from text file to text file
72 Numbering lines from text file to text file
75 Trying it
76 Trying it

0-2

77 Trying it
78 Trying it
79 Coursework: Deleting a field, from file to file
80 Section 6: Example:Numbering lines from and to anywhere
81 Aim
82 Numbering lines from and to anywhere
83 Standard API: System : out : is an OutputStream
84 Standard API: System : err : is an OutputStream
85 File IO API: PrintWriter : versus PrintStream
87 File IO API: PrintWriter : can also wrap an OutputStream
89 File IO API: File
90 Numbering lines from and to anywhere
91 Numbering lines from and to anywhere
92 Numbering lines from and to anywhere
96 Trying it
97 Trying it
98 Trying it
99 Trying it

0-3

100 Coursework: Deleting a field, from anywhere to anywhere
101 Section 7: Example:Text photographs
102 Aim
103 Text photographs
104 Text photographs
105 Text photographs
106 Text photographs
109 Text photographs
110 Text photographs
111 Text photographs
112 Expression: arithmetic: shift operators
115 Expression: arithmetic: integer bitwise operators
117 Text photographs
118 Text photographs
119 Text photographs
120 Text photographs
121 Text photographs
122 Text photographs

0-4

123 Text photographs
124 Text photographs
128 Coursework: Encoding binary in text
129 Section 8: Example:Contour points
130 Aim
131 Contour points
132 File IO API: DataOutputStream
134 File IO API: DataInputStream
136 Contour points
137 Contour points
138 Contour points
139 Contour points
140 Contour points
141 Contour points
142 Contour points
143 Contour points
144 Contour points
145 Contour points

0-5

146 Contour points
148 Trying it
149 Trying it
150 Trying it
151 Coursework: Saving greedy children
152 Concepts covered in this chapter

0-6

Title

Java Just in Time

John Latham

February 11, 2019

February 11, 2019 Java Just in Time - John Latham Page 1(0/0)

Chapter 18

Files

February 11, 2019 Java Just in Time - John Latham Page 2(0/0)

Chapter aims

• Previously met class Scanner (Section ?? on page ??)

– used to read input data.

• Simple and convenient

– at some point find out more about it

∗ read API documentation.

• Here look at

– reading bytes, characters, lines from text files

– writing bytes, characters, lines to text files

– reading/writing to/from binary files.

February 11, 2019 Java Just in Time - John Latham Page 3(0/0)

Section 2

Example:

Counting bytes from standard

input

February 11, 2019 Java Just in Time - John Latham Page 4(0/0)

Aim

AIM: To introduce the principle of reading bytes from stan-

dard input using InputStream , meet the try finally state-

ment and see that an assignment statement is actually

an expression – and can be used as suchwhen appro-

priate. We also meet IOException and briefly talk about

initial values of variables.

February 11, 2019 Java Just in Time - John Latham Page 5(0/0)

Counting bytes from standard input

• Program that reads standard input

– reports how many bytes

– how many of each value, for those that appeared at least once.

• Standard input could be redirected from a file

– or from output of running program

to see profile of bytes.

February 11, 2019 Java Just in Time - John Latham Page 6(0/0)

File IO API: IOException

• Processing files – much potential for things to go wrong

– e.g. attempt to read non-existing file

– running out of file space while writing file

– operating system experiencing disk / network problem

– etc..

• Most operations on files capable of throwing exception

– java.io.IOException .

– Many subclasses of IOException

∗ e.g. java.io.FileNotFoundException .

February 11, 2019 Java Just in Time - John Latham Page 7(0/0)

File IO API: IOException

• IOException direct subclass of java.lang.Exception

– not java.lang.RuntimeException

– instances are checked exceptions

∗ not generally avoidable by writing code

∗ must write catch clauses

∗ or throws clauses for them.

February 11, 2019 Java Just in Time - John Latham Page 8(0/0)

Counting bytes from standard input

• Read data from standard input

– byte by byte.

• Use InputStream

– typical use exploits fact assignment statement is expression.

February 11, 2019 Java Just in Time - John Latham Page 9(0/0)

Statement: assignment statement: is an expression

• Java assignment statement is actually expression

– = is operator

∗ takes variable as left operand

∗ expression as right

∗ evaluates expression

∗ assigns value to variable

∗ and then yields value as result.

February 11, 2019 Java Just in Time - John Latham Page 10(0/0)

Statement: assignment statement: is an expression

• So can write horrible code like:

int x = 10, y = 20, z;

int result = (z = x * y) + (y = z * 2);

• Example of more general idea: side effect expressions

– expressions that change value of variables while evaluated.

• Generally side effect expressions are dangerous

– can lead to code difficult to understand

– hence maintain

– e.g. above!

Coffee

time:

What is the value of result in the example from the

above concept?

February 11, 2019 Java Just in Time - John Latham Page 11(0/0)

Statement: assignment statement: is an expression

• However, few appropriate uses of treating assignments as expressions

– e.g. assign same value to several variables.

x = y = z = 10;

• Unlike most operators, = has right associativity

– so above is same as

x = (y = (z = 10));

• However such assignments not very common.

February 11, 2019 Java Just in Time - John Latham Page 12(0/0)

Statement: try statement: with finally

• The try statement may have finally block

– piece of code executed at end of statement

∗ regardless of whether try block completes

∗ or catch clause is executed

∗ or control thrown out of try statement.

• General form of try finally statement. . .

February 11, 2019 Java Just in Time - John Latham Page 13(0/0)

Statement: try statement: with finally

try

{

... Code here that might cause an exception to happen.

} // try

catch (SomeException exception)

{

... Code here to deal with SomeException types of exception.

} // catch

catch (AnotherException exception)

{

... Code here to deal with AnotherException types of excepti on.

} // catch

... more catch clauses as required.

finally

{

... Code here that will be run, no matter what,

... as the last thing the statement does.

} // finally

February 11, 2019 Java Just in Time - John Latham Page 14(0/0)

File IO API: InputStream

• java.io.InputStream : basic building block for reading data

– provides view of data as byte stream.

• Simplest way to access bytes one by one

– via read() instance method.

– Takes no method arguments

– returns next byte from stream.

– If/when no more bytes returns -1 .

– If something goes wrong throws IOException .

• Value returned by read() must be able to distinguish

-1 from byte value 255

– so result is int not byte .

February 11, 2019 Java Just in Time - John Latham Page 15(0/0)

File IO API: InputStream

• Skeleton code to process all data from InputStream

– another appropriate use of assignment statement as expression:

∗ loop terminates when result of expression is certain value

∗ also want to use result in loop body.

• Notice brackets around assignment statement

– = has lower operator precedence than != .

• . . .

February 11, 2019 Java Just in Time - John Latham Page 16(0/0)

File IO API: InputStream

InputStream inputData = null ;
try

{
inputData = ... Code to set up inputData.
int currentByte;
while ((currentByte = inputData.read()) != -1)
{

... Code to do something with currentByte.
} // while

} // try
catch (IOException exception)
{

System.err.println("Ooops -- that didn’t work! " + excepti on.getMessage());
} // catch
finally

{
try { if (inputData != null) inputData.close(); }
catch (IOException exception)

{ System.err.println("Could not close input " + exception); }
} // finally

February 11, 2019 Java Just in Time - John Latham Page 17(0/0)

File IO API: InputStream

• Notice how used try finally statement

to ensure attempt to close InputStream

– even if something else goes wrong.

– (Java 7.0 introduced try with resources statement.)

• Good idea to always close input / output streams when finished with

– E.g. some operating systems

do not separate notions of file name from file contents

∗ file cannot be deleted / renamed

if program has open for reading / writing.

• Also if not close output stream data might never get written to file!

February 11, 2019 Java Just in Time - John Latham Page 18(0/0)

Standard API: System : in : is an InputStream

• The class variable in inside java.lang.System

– holds reference to instance of java.io.InputStream .

• Enables programs to access bytes of standard input.

February 11, 2019 Java Just in Time - John Latham Page 19(0/0)

Counting bytes from standard input

• ByteCount program has array of 256 int values

– count occurrences of each possible byte

∗ in array element at corresponding array index.

• Counts need start at zero

– here rely on default initial values

– rather than write loop to set them.

February 11, 2019 Java Just in Time - John Latham Page 20(0/0)

Variable: initial value

• When class variables, instance variables, and array elements created

– given default initial value (unless also final variables).

• Whereas, compiler forces local variables (method variables)

and final variables to be initialized by our code.

• Dangerous to quietly rely on default values

when happen to be desired initial values

– anyone looking at code cannot tell difference between doing that

and having forgotten to initialize!

– Also you/they may misremember what initial value is

for variable of particular type.

• So, rule of thumb: always perform own initialization.

February 11, 2019 Java Just in Time - John Latham Page 21(0/0)

Variable: initial value

• However where non-trivial

– e.g. array elements

– write clear comment

∗ stating happy default value is desired

∗ and what it is.

February 11, 2019 Java Just in Time - John Latham Page 22(0/0)

Counting bytes from standard input

001: import java.io.IOException;

002:

003: // Program to count the number of bytes on the standard input

004: // and report it on the standard output.

005: // Each byte that occurs at least once is listed with its own co unt.

006: public class ByteCount

007: {

008: public static void main(String[] args)

009: {

010: // There are only 256 different byte values.

011: // Default initial values will be zero, which is what we want.

012: int [] byteCountSoFar = new int [256];

013:

February 11, 2019 Java Just in Time - John Latham Page 23(0/0)

Counting bytes from standard input

014: // The total number of bytes found so far.

015: int allBytesCountSoFar = 0;

016: try

017: {

018: int currentByte;

019: while ((currentByte = System.in.read()) != -1)

020: {

021: allBytesCountSoFar++;

022: byteCountSoFar[currentByte]++;

023: } // while

024: } // try

025: catch (IOException exception)

026: {

027: System.err.println(exception);

028: } // catch

February 11, 2019 Java Just in Time - John Latham Page 24(0/0)

Counting bytes from standard input

029: finally

030: {

031: try { System.in.close(); }

032: catch (IOException exception)

033: { System.err.println("Could not close input " + exception); }

034: } // finally

035:

036: // Report results.

037: System.out.println("The number of bytes read was " + allByt esCountSoFar);

038: for (int byteValue = 0; byteValue <= 255; byteValue++)

039: if (byteCountSoFar[byteValue] != 0)

040: System.out.println("Byte value " + byteValue + " occurred "

041: + byteCountSoFar[byteValue] + " times");

042: } // main

043:

044: } // class ByteCount

February 11, 2019 Java Just in Time - John Latham Page 25(0/0)

Counting bytes from standard input

• Seem odd to close System.in ?

– Program might be used with standard input redirected from file.

– If not, no harm closing it,

– If is, close means file released as soon as finished with.

Coffee

time:

Why did we not have to write an import statement for

java.io.InputStream , even though we are using it?

Coffee

time:

Could we have used a for-each loop to print out the byte

counts?

February 11, 2019 Java Just in Time - John Latham Page 26(0/0)

Trying it

Console Input / Output

$ java ByteCount

ˆD

The number of bytes read was 0

$ java ByteCount

The cat

sat on

the mat

ˆD

The number of bytes read was 23

Byte value 10 occurred 3 times

Byte value 32 occurred 3 times

Byte value 84 occurred 1 times

Byte value 97 occurred 3 times

Byte value 99 occurred 1 times

Byte value 101 occurred 2 times

Byte value 104 occurred 2 times

Byte value 109 occurred 1 times

...

$ _ Run

February 11, 2019 Java Just in Time - John Latham Page 27(0/0)

Trying it

Coffee

time:

Is the above result correct? My example was being run

under Linux. Would you expect to get the same result

under Microsoft Windows? (Hint: do they have the same

line separator?)

February 11, 2019 Java Just in Time - John Latham Page 28(0/0)

Coursework: A check sum program

(Summary only)

Write a program to produce a check sum of the standard input.

February 11, 2019 Java Just in Time - John Latham Page 29(0/0)

Section 3

Example:

Counting characters from

standard input

February 11, 2019 Java Just in Time - John Latham Page 30(0/0)

Aim

AIM: To introduce the principle of reading charac-

ters, instead of bytes, from standard input, using

InputStreamReader .

February 11, 2019 Java Just in Time - John Latham Page 31(0/0)

Counting characters from standard input

• Good chance would want to profile characters of standard input

– rather than bytes.

• Difference?

– Depends on locale

∗ collection of information about part of world

∗ e.g. file encoding for characters, currency symbol, etc..

• Sometimes one character occupies one byte

– sometimes some characters require more than one byte

to represent them

– e.g. China, Middle East,

– possibly anywhere.

February 11, 2019 Java Just in Time - John Latham Page 32(0/0)

Counting characters from standard input

• For portability, treat data as characters

– when we are concerned about characters

as bytes

– when we are concerned about bytes.

• Program here reads data from standard input,

– character by character

February 11, 2019 Java Just in Time - John Latham Page 33(0/0)

File IO API: InputStreamReader

• An InputStream is sequence of bytes.

• When wish to treat as sequence of characters

– wrap up in java.io.InputStreamReader .

• Provides instance method

– read

– returns next character from InputStream

∗ or -1 if no more to be read.

• Reads one or more bytes from underlying InputStream for each character.

February 11, 2019 Java Just in Time - John Latham Page 34(0/0)

File IO API: InputStreamReader

• Two constructor methods

– one takes an InputStream which it wraps up

∗ uses default file encoding.

• Other takes an InputStream

– and character encoding to be used

∗ permits reading character streams generated under different locale.

February 11, 2019 Java Just in Time - John Latham Page 35(0/0)

Counting characters from standard input

001: import java.io.InputStreamReader;

002: import java.io.IOException;

003:

004: // Program to count the number of characters on the standard i nput

005: // and report it on the standard output.

006: // Each character that occurs at least once is listed with its own count.

007: public class CharacterCount

008: {

009: public static void main(String[] args)

010: {

011: // There are 65536 different character values (two bytes).

012: // Default initial values will be zero, which is what we want.

013: int [] characterCountSoFar = new int [65536];

014:

015: // We will read the input as characters.

016: InputStreamReader input = new InputStreamReader(System.in);

February 11, 2019 Java Just in Time - John Latham Page 36(0/0)

Counting characters from standard input

017:

018: // The total number of characters found so far.

019: int allCharactersCountSoFar = 0;

020: try

021: {

022: int currentCharacter;

023: while ((currentCharacter = input.read()) != -1)

024: {

025: allCharactersCountSoFar++;

026: characterCountSoFar[currentCharacter]++;

027: } // while

028: } // try

029: catch (IOException exception)

030: {

031: System.err.println(exception);

032: } // catch

February 11, 2019 Java Just in Time - John Latham Page 37(0/0)

Counting characters from standard input

033: finally

034: {

035: try { input.close(); }

036: catch (IOException exception)

037: { System.err.println("Could not close input " + exception); }

038: } // finally

039:

040: // Report results.

041: System.out.println("The number of characters read was "

042: + allCharactersCountSoFar);

043: for (int characterValue = 0; characterValue <= 65535; characterVal ue++)

044: if (characterCountSoFar[characterValue] != 0)

045: System.out.println("Character value " + characterValue + " occurred "

046: + characterCountSoFar[characterValue] + " times");

047: } // main

048:

049: } // class CharacterCount

February 11, 2019 Java Just in Time - John Latham Page 38(0/0)

Trying it

Console Input / Output

$ java CharacterCount

ˆD

The number of characters read was 0

$ java CharacterCount

The cat

sat on

the mat

ˆD

The number of characters read was 23

Character value 10 occurred 3 times

Character value 32 occurred 3 times

Character value 84 occurred 1 times

Character value 97 occurred 3 times

Character value 99 occurred 1 times

Character value 101 occurred 2 times

Character value 104 occurred 2 times

Character value 109 occurred 1 times

...

$ _ Run

February 11, 2019 Java Just in Time - John Latham Page 39(0/0)

Trying it

Coffee

time:

Did the last two tests produce the same results as ob-

tained from the ByteCount program in Section 17 on page

27?

• Try with popular Chinese New Year greeting

– HappyNewYear-GBK.txt contains four Chinese characters

∗ encoded in GBK encoding (still) commonly used in China

plus new line character

– total 9 bytes.

Console Input / Output

$ ls -l HappyNewYear-GBK.txt

-rw------- 1 jtl jtl 9 Jul 01 19:12 HappyNewYear-GBK.txt

$ _ Run

February 11, 2019 Java Just in Time - John Latham Page 40(0/0)

Trying it

• Screen dump of GUI program displaying the four characters:

• Use -Dfile.encoding=GBK command line argument to set GBK encoding. . . .

February 11, 2019 Java Just in Time - John Latham Page 41(0/0)

Trying it

Console Input / Output

$ java -Dfile.encoding=GBK ByteCount < HappyNewYear-GBK.t xt

The number of bytes read was 9

Byte value 10 occurred 1 times

Byte value 191 occurred 1 times

Byte value 192 occurred 1 times

Byte value 194 occurred 1 times

Byte value 196 occurred 1 times

Byte value 208 occurred 1 times

Byte value 214 occurred 1 times

Byte value 234 occurred 1 times

Byte value 236 occurred 1 times

$ java -Dfile.encoding=GBK CharacterCount < HappyNewYear- GBK.txt

The number of characters read was 5

Character value 10 occurred 1 times

Character value 20048 occurred 1 times

Character value 24180 occurred 1 times

Character value 24555 occurred 1 times

Character value 26032 occurred 1 times

$ _ Run

February 11, 2019 Java Just in Time - John Latham Page 42(0/0)

Coursework: Counting words

(Summary only)

Write a program to count the number of words in its standard input.

February 11, 2019 Java Just in Time - John Latham Page 43(0/0)

Section 4

Example:

Numbering lines from standard

input

February 11, 2019 Java Just in Time - John Latham Page 44(0/0)

Aim

AIM: To introduce the principle of reading lines from stan-

dard input, using BufferedReader .

February 11, 2019 Java Just in Time - John Latham Page 45(0/0)

File IO API: BufferedReader

• java.io.BufferedReader

– wraps up an InputStreamReader

provides instance method to read a whole line of characters.

• readLine()

– takes no method arguments

– returns String

∗ next line of input from underlying InputStreamReader

∗ or null reference if no more lines.

February 11, 2019 Java Just in Time - John Latham Page 46(0/0)

Numbering lines from standard input

001: import java.io.BufferedReader;

002: import java.io.InputStreamReader;

003: import java.io.IOException;

004:

005: // Program to add a line number to the lines from the standard i nput

006: // and show the result on the standard output.

007: public class LineNumber

008: {

009: // The minimum number of digits in a line number.

010: private static final int MINIMUM_LINE_NUMBER_DIGITS = 5;

011:

012: // The format to use with printf for the line number and line.

013: private static final String LINE_FORMAT

014: = "%0" + MINIMUM_LINE_NUMBER_DIGITS + "d %s%n";

015:

016:

February 11, 2019 Java Just in Time - John Latham Page 47(0/0)

Numbering lines from standard input

017: // Read each line from input, and copy to output with a count.

018: public static void main(String[] args)

019: {

020: BufferedReader input

021: = new BufferedReader(new InputStreamReader(System.in));

022: try

023: {

024: // Now copy input to output, adding line numbers.

025: int noOfLinesReadSoFar = 0;

026: String currentLine;

027: while ((currentLine = input.readLine()) != null)

028: {

029: noOfLinesReadSoFar++;

030: System.out.printf(LINE_FORMAT, noOfLinesReadSoFar, cu rrentLine);

031: } // while

032: } // try

February 11, 2019 Java Just in Time - John Latham Page 48(0/0)

Numbering lines from standard input

033: catch (IOException exception)

034: {

035: System.err.println(exception);

036: } // catch

037: finally

038: {

039: try { input.close(); }

040: catch (IOException exception)

041: { System.err.println("Could not close input " + exception); }

042: } // finally

043: } // main

044:

045: } // class LineNumber

February 11, 2019 Java Just in Time - John Latham Page 49(0/0)

Trying it

Console Input / Output

$ java LineNumber

ˆD

$ java LineNumber

The cat

00001 The cat

sat on

00002 sat on

the mat

00003 the mat

ˆD

$ _ Run

February 11, 2019 Java Just in Time - John Latham Page 50(0/0)

Coursework: Deleting a field

(Summary only)

Write a program to delete a field in tab separated text from the standard

input.

February 11, 2019 Java Just in Time - John Latham Page 51(0/0)

Section 5

Example:

Numbering lines from text file to

text file

February 11, 2019 Java Just in Time - John Latham Page 52(0/0)

Aim

AIM: To introduce the principle of reading from a text

file and writing to another, using BufferedReader with

FileReader and PrintWriter with FileWriter . We also

meet FileInputStream , OutputStream , FileOutputStream

and OutputStreamWriter .

February 11, 2019 Java Just in Time - John Latham Page 53(0/0)

Numbering lines from text file to text file

• LineNumber program

– read data from text file

– write result to another text file.

– File names supplied as command line arguments.

• Also use LineNumberException class

– not shown: similar to others.

Coffee

time:

Write the LineNumberException class.

February 11, 2019 Java Just in Time - John Latham Page 54(0/0)

File IO API: FileInputStream

• java.io.FileInputStream

– subclass of java.io.InputStream

– reads input bytes from file.

• E.g.

myDataAsBytes = new FileInputStream("my-binary-data");

February 11, 2019 Java Just in Time - John Latham Page 55(0/0)

File IO API: FileReader

• Wrap FileInputStream in InputStreamReader

– can read characters from file

∗ instead of bytes.

• Convenience: java.io.FileReader

– creates required FileInputStream

– and InputStreamReader internally.

• FileReader is subclass of java.io.InputStreamReader

– has read() instance method

∗ read character

can be wrapped inside BufferedReader

– to obtain readLine() instance method.

• One constructor method takes name of file to be accessed.

February 11, 2019 Java Just in Time - John Latham Page 56(0/0)

File IO API: FileReader

FileReader fileReader = null ;

try

{

fileReader = new FileReader("my-data.txt");

int currentCharacter;

while ((currentCharacter = fileReader.read()) != -1)

{

... do something with currentCharacter.

} // while

} // try

catch (IOException exception)

{

System.err.println(exception.getMessage());

} // catch

February 11, 2019 Java Just in Time - John Latham Page 57(0/0)

File IO API: FileReader

finally

{

try { if (fileReader != null) fileReader.close(); }

catch (IOException exception)

{ System.err.println("Could not close input file " + excepti on); }

} // finally

February 11, 2019 Java Just in Time - John Latham Page 58(0/0)

File IO API: OutputStream

• java.io.OutputStream allows writing of bytes

– provides view of data as byte stream.

• Has instance method write()

– write single byte.

February 11, 2019 Java Just in Time - John Latham Page 59(0/0)

File IO API: OutputStreamWriter

• OutputStream can be wrapped in java.io.OutputStreamWriter

– provides view as sequence of characters

∗ rather than bytes.

• Has instance method write()

– write single character.

February 11, 2019 Java Just in Time - John Latham Page 60(0/0)

File IO API: FileOutputStream

• java.io.FileOutputStream is subclass of java.io.OutputStream

– writes bytes to file.

February 11, 2019 Java Just in Time - John Latham Page 61(0/0)

File IO API: FileWriter

• Wrap FileOutputStream in OutputStreamWriter

– can write characters to file

∗ instead of bytes.

• Convenience: java.io.FileWriter

– creates required FileOutputStream

– and OutputStreamWriter internally.

• FileWriter is subclass of java.io.OutputStreamWriter

– has write() instance method

∗ write character.

• One constructor method takes name of file to be written to.

February 11, 2019 Java Just in Time - John Latham Page 62(0/0)

File IO API: FileWriter

FileWriter fileWriter = null ;

try

{

fileWriter = new FileWriter("my-results.txt");

boolean iFeelLikeIt = ...

while (iFeelLikeIt)

{

int currentCharacter = ...

fileWriter.write(currentCharacter);

...

iFeelLikeIt = ...

} // while

} // try

February 11, 2019 Java Just in Time - John Latham Page 63(0/0)

File IO API: FileWriter

catch (IOException exception)

{

System.err.println(exception.getMessage());

} // catch

finally

{

try { if (fileWriter != null) fileWriter.close(); }

catch (IOException exception)

{ System.err.println("Could not close output file " + except ion); }

} // finally

• Notice call to close() instance method

– if do not close output files

∗ data written into FileWriter might still be in memory

∗ never get written to physical file.

February 11, 2019 Java Just in Time - John Latham Page 64(0/0)

File IO API: FileWriter

• Note: only lowest 16 bits

– size of a char

used by write()

– avoids need to cast value to char

∗ may have just obtained value from read() of InputStream .

February 11, 2019 Java Just in Time - John Latham Page 65(0/0)

File IO API: PrintWriter

• java.io.PrintWriter wraps up OutputStreamWriter

– provides instance methods println() and print()

∗ for range of possible method arguments.

– Since Java 5.0 also has printf() .

February 11, 2019 Java Just in Time - John Latham Page 66(0/0)

Numbering lines from text file to text file

BufferedReader PrintWriter

Output fileInput file

Lines Lines

Characters Characters

Bytes

Bytes Bytes

Bytes

InputStreamReader

FileInputStream FileOutputStream

OutputStreamWriter

FileReader FileWriter

LineNumber

(program)

February 11, 2019 Java Just in Time - John Latham Page 67(0/0)

File IO API: PrintWriter : checkError()

• The instance methods of java.io.PrintWriter never throw exceptions!

– Use checkError() to find out whether something has gone wrong.

∗ return true iff there has been error.

February 11, 2019 Java Just in Time - John Latham Page 68(0/0)

File IO API: PrintWriter : checkError()

PrintWriter printWriter = null ;

try

{

printWriter = ...

while (...)

{

...

printWriter.write(...);

...

} // while

} // try

catch (IOException exception)

{

System.err.println(exception.getMessage());

} // catch

February 11, 2019 Java Just in Time - John Latham Page 69(0/0)

File IO API: PrintWriter : checkError()

finally

{

if (printWriter != null)

{

// printWriter.close() does not throw an exception.

printWriter.close();

if (printWriter.checkError())

System.err.println("Something went wrong with the output ");

} // if

} // finally

February 11, 2019 Java Just in Time - John Latham Page 70(0/0)

Numbering lines from text file to text file

001: import java.io.BufferedReader;

002: import java.io.FileReader;

003: import java.io.FileWriter;

004: import java.io.IOException;

005: import java.io.PrintWriter;

006:

007: // Program to add a line number to the lines from an input file

008: // and produce the result in an output file.

009: // The two file names are given as command line arguments.

010: public class LineNumber

011: {

012: // The minimum number of digits in a line number.

013: private static final int MINIMUM_LINE_NUMBER_DIGITS = 5;

014:

015: // The format to use with printf for the line number and line.

016: private static final String LINE_FORMAT

017: = "%0" + MINIMUM_LINE_NUMBER_DIGITS + "d %s%n";

February 11, 2019 Java Just in Time - John Latham Page 71(0/0)

Numbering lines from text file to text file

Coffee

time:

Why need to set input and output to null reference?

020: // Read each line from input, and copy to output with a count.

021: public static void main(String[] args)

022: {

023: BufferedReader input = null ;

024: PrintWriter output = null ;

025: try

026: {

027: if (args.length != 2)

028: throw new LineNumberException

029: ("There must be exactly two arguments: infile outfile");

030:

031: input = new BufferedReader(new FileReader(args[0]));

032: output = new PrintWriter(new FileWriter(args[1]));

033:

February 11, 2019 Java Just in Time - John Latham Page 72(0/0)

Numbering lines from text file to text file

034: // Now copy input to output, adding line numbers.

035: int noOfLinesReadSoFar = 0;

036: String currentLine;

037: while ((currentLine = input.readLine()) != null)

038: {

039: noOfLinesReadSoFar++;

040: output.printf(LINE_FORMAT, noOfLinesReadSoFar, curren tLine);

041: } // while

042: } // try

043: catch (LineNumberException exception)

044: {

045: // We report LineNumberExceptions to standard output.

046: System.out.println(exception.getMessage());

047: } // catch

048: catch (IOException exception)

049: {

050: // Other exceptions go to standard error.

051: System.err.println(exception);

052: } // catch

February 11, 2019 Java Just in Time - John Latham Page 73(0/0)

Numbering lines from text file to text file

053: finally

054: {

055: try { if (input != null) input.close(); }

056: catch (IOException exception)

057: { System.err.println("Could not close input " + exception); }

058: if (output != null)

059: {

060: output.close();

061: if (output.checkError())

062: System.err.println("Something went wrong with the output ");

063: } // if

064: } // finally

065: } // main

066:

067: } // class LineNumber

February 11, 2019 Java Just in Time - John Latham Page 74(0/0)

Trying it

Console Input / Output

$ java LineNumber

There must be exactly two arguments: infile outfile

$ java LineNumber input.txt

There must be exactly two arguments: infile outfile

$ java LineNumber input.txt result.txt extra-argument

There must be exactly two arguments: infile outfile

$ java LineNumber /dev/null result.txt

$ cat result.txt

$ _ Run

February 11, 2019 Java Just in Time - John Latham Page 75(0/0)

Trying it

Console Input / Output

$ cat RomeoAndJuliet.txt

’Tis but thy name that is my enemy:

Thou art thyself, though not a Montague.

What’s Montague? It is nor hand, nor foot

Nor arm nor face nor any other part

Belonging to a man. O be some other name.

What’s in a name? That which we call a rose

By any other name would smell as sweet;

So Romeo would, were he not Romeo call’d,

Retain that dear perfection which he owes

Without that title. Romeo, doff thy name,

And for thy name, which is no part of thee,

Take all myself.

$ _ Run

February 11, 2019 Java Just in Time - John Latham Page 76(0/0)

Trying it

Console Input / Output

$ java LineNumber RomeoAndJuliet.txt result.txt

$ cat result.txt

00001 ’Tis but thy name that is my enemy:

00002 Thou art thyself, though not a Montague.

00003 What’s Montague? It is nor hand, nor foot

00004 Nor arm nor face nor any other part

00005 Belonging to a man. O be some other name.

00006 What’s in a name? That which we call a rose

00007 By any other name would smell as sweet;

00008 So Romeo would, were he not Romeo call’d,

00009 Retain that dear perfection which he owes

00010 Without that title. Romeo, doff thy name,

00011 And for thy name, which is no part of thee,

00012 Take all myself.

$ _ Run

February 11, 2019 Java Just in Time - John Latham Page 77(0/0)

Trying it

Console Input / Output

$ java LineNumber pandoras-box.txt result.txt

java.io.FileNotFoundException: pandoras-box.txt (No su ch file or directory)

$ java LineNumber RomeoAndJuliet.txt CaveOfWonders/lamp. txt

java.io.FileNotFoundException: CaveOfWonders/lamp.tx t (No such file or directory

)

$ _ Run

Coffee

time:

Observe the above exception – is it a surprise that an at-

tempt to create a new file results in a complaint about it

not being found?

February 11, 2019 Java Just in Time - John Latham Page 78(0/0)

Coursework: Deleting a field, from file to file

(Summary only)

Write a program to delete a field in tab separated text from a file, with the

results in another file.

February 11, 2019 Java Just in Time - John Latham Page 79(0/0)

Section 6

Example:

Numbering lines from and to

anywhere

February 11, 2019 Java Just in Time - John Latham Page 80(0/0)

Aim

AIM: To illustrate that reading from text files and from stan-

dard input is essentially the same thing, as is writing to

text files and to standard output. We also look at test-

ing for the existence of a file using the File class, and

revisit PrintWriter and PrintStream .

February 11, 2019 Java Just in Time - John Latham Page 81(0/0)

Numbering lines from and to anywhere

• Wish to treat standard input in same way as file

– get BufferedReader that gets input from either file

∗ or standard input, as desired.

• Wish to treat standard output in same way as file

– get PrintWriter that sends output to either file

∗ or standard output, as desired.

February 11, 2019 Java Just in Time - John Latham Page 82(0/0)

Standard API: System : out : is an OutputStream

• System.out holds reference to instance of java.io.OutputStream

– more precisely java.io.PrintStream

∗ subclass of OutputStream .

• Unlike basic OutputStream objects

PrintStream objects have extra instance methods

– print() ,

– println()

– and (since Java 5.0) printf()

which write character representations as bytes.

February 11, 2019 Java Just in Time - John Latham Page 83(0/0)

Standard API: System : err : is an OutputStream

• System.err holds reference to instance of java.io.PrintStream

– subclass of java.io.OutputStream .

February 11, 2019 Java Just in Time - John Latham Page 84(0/0)

File IO API: PrintWriter : versus PrintStream

• What is difference between java.io.PrintStream

and java.io.PrintWriter ?

• PrintStream is subclass of OutputStream

– has write() instance methods for writing bytes

– but also print() , println() and printf()

for printing representations as characters

• PrintWriter is wrapper around instance of java.io.OutputStreamWriter

– provides print() , println() and printf()

∗ via that OutputStreamWriter .

– has no way to write bytes.

February 11, 2019 Java Just in Time - John Latham Page 85(0/0)

File IO API: PrintWriter : versus PrintStream

• Desire to write mixture of bytes and characters to same stream

highly unusual

– nearly always want either all bytes

– or all characters

∗ sometimes with ability to print representations.

• PrintStream primarily exists for System.out and System.err

– standard output / standard error available as byte stream

∗ with convenient printing for error messages, debugging messages, or

very simple programs.

• Programs that need representations as stream of characters

– should use PrintWriter

∗ because does not have instance methods to write bytes!

February 11, 2019 Java Just in Time - John Latham Page 86(0/0)

File IO API: PrintWriter : can also wrap an

OutputStream

• System.out is an OutputStream

– actually subclass PrintStream .

• If wish to treat as PrintWriter

– wrap inside OutputStreamWriter

– and then inside PrintWriter .

PrintWriter systemOut = new PrintWriter(new OutputStreamWriter(System.out));

• For convenience, one constructor method of PrintWriter takes

OutputStream directly

– constructs intermediate OutputStreamWriter internally.

PrintWriter systemOut = new PrintWriter(System.out);

February 11, 2019 Java Just in Time - John Latham Page 87(0/0)

File IO API: PrintWriter : can also wrap an

OutputStream

• All instances of output classes which wrap other output class object

– may buffer output before sending to wrapped object

∗ to speed up overall operation of programs.

• Buffers are flushed by calling instance method flush()

– or when output is closed via close() .

• For PrintWriter wrapping System.out

– would want to enable automatic flushing

∗ ensures data is sent all the way through whenever one of

∗ println() or printf() has produced results.

• Automatic flushing enabled using constructor method with additional

boolean method argument.

PrintWriter systemOut = new PrintWriter(System.out, true);

February 11, 2019 Java Just in Time - John Latham Page 88(0/0)

File IO API: File

• java.io.File allows examination of file properties

• Called File

– but really about file names and properties.

• One constructor method takes path name of file method argument.

• Number of instance methods, e.g.

– exists()

∗ returns boolean indicating whether file actually exists.

February 11, 2019 Java Just in Time - John Latham Page 89(0/0)

Numbering lines from and to anywhere

Coffee

time:

Find out about the other features of the File class by

looking at the API on-line documentation.

February 11, 2019 Java Just in Time - John Latham Page 90(0/0)

Numbering lines from and to anywhere

001: import java.io.BufferedReader;

002: import java.io.File;

003: import java.io.FileReader;

004: import java.io.FileWriter;

005: import java.io.InputStreamReader;

006: import java.io.IOException;

007: import java.io.PrintWriter;

008:

009: // Program to add a line number to the lines from an input file

010: // and produce the result in an output file.

011: // The two file names are given as command line arguments.

012: // If a filename is missing, or is "-", then standard input/ou tput is used.

013: public class LineNumber

014: {

015: // The minimum number of digits in a line number.

016: private static final int MINIMUM_LINE_NUMBER_DIGITS = 5;

017:

018: // The format to use with printf for the line number and line.

019: private static final String LINE_FORMAT

020: = "%0" + MINIMUM_LINE_NUMBER_DIGITS + "d %s%n";

February 11, 2019 Java Just in Time - John Latham Page 91(0/0)

Numbering lines from and to anywhere

023: // Read each line from input, and copy to output with a count.

024: public static void main(String[] args)

025: {

026: BufferedReader input = null ;

027: PrintWriter output = null ;

028: try

029: {

030: // Check for too many args before opening files, in case wrong names.

031: if (args.length > 2)

032: throw new LineNumberException("Too many arguments");

033:

034: if (args.length < 1 || args[0].equals("-"))

035: input = new BufferedReader(new InputStreamReader(System.in));

036: else

037: input = new BufferedReader(new FileReader(args[0]));

038:

February 11, 2019 Java Just in Time - John Latham Page 92(0/0)

Numbering lines from and to anywhere

039: if (args.length < 2 || args[1].equals("-"))

040: output = new PrintWriter(System.out, true);

041: else

042: {

043: if (new File(args[1]).exists())

044: throw new LineNumberException("Output file "

045: + args[1] + " already exists");

046:

047: output = new PrintWriter(new FileWriter(args[1]));

048: } // else

049:

February 11, 2019 Java Just in Time - John Latham Page 93(0/0)

Numbering lines from and to anywhere

050: // Now copy input to output, adding line numbers.

051: int noOfLinesReadSoFar = 0;

052: String currentLine;

053: while ((currentLine = input.readLine()) != null)

054: {

055: noOfLinesReadSoFar++;

056: output.printf(LINE_FORMAT, noOfLinesReadSoFar, curren tLine);

057: } // while

058: } // try

059: catch (LineNumberException exception)

060: {

061: // We report LineNumberExceptions to standard output.

062: System.out.println(exception.getMessage());

063: } // catch

064: catch (IOException exception)

065: {

066: // Other exceptions go to standard error.

067: System.err.println(exception);

068: } // catch

February 11, 2019 Java Just in Time - John Latham Page 94(0/0)

Numbering lines from and to anywhere

069: finally

070: {

071: try { if (input != null) input.close(); }

072: catch (IOException exception)

073: { System.err.println("Could not close input " + exception); }

074: if (output != null)

075: {

076: output.close();

077: if (output.checkError())

078: System.err.println("Something went wrong with the output ");

079: } // if

080: } // finally

081: } // main

082:

083: } // class LineNumber

February 11, 2019 Java Just in Time - John Latham Page 95(0/0)

Trying it

Console Input / Output

$ java LineNumber input.txt result.txt extra-argument

Too many arguments

$ _ Run

Console Input / Output

$ cat input.txt

Big

Cheese

$ java LineNumber input.txt result.txt

$ cat result.txt

00001 Big

00002 Cheese

$ _ Run

February 11, 2019 Java Just in Time - John Latham Page 96(0/0)

Trying it

Console Input / Output

$ java LineNumber input.txt -

00001 Big

00002 Cheese

$ _ Run

February 11, 2019 Java Just in Time - John Latham Page 97(0/0)

Trying it

Console Input / Output

$ java LineNumber - result.txt

Output file result.txt already exists

$ cat result.txt

00001 Big

00002 Cheese

$ _ Run

Console Input / Output

$ rm result.txt

$ java LineNumber - result.txt

Hello

Mum

ˆD

$ cat result.txt

00001 Hello

00002 Mum

$ _ Run

February 11, 2019 Java Just in Time - John Latham Page 98(0/0)

Trying it

Console Input / Output

$ java LineNumber - -

Hello

00001 Hello

Mum

00002 Mum

ˆD

$ java LineNumber -

Hello

00001 Hello

Mum

00002 Mum

ˆD

$ java LineNumber

Hello

00001 Hello

Mum

00002 Mum

ˆD

$ _ Run

February 11, 2019 Java Just in Time - John Latham Page 99(0/0)

Coursework: Deleting a field, from anywhere to

anywhere

(Summary only)

Write a program to delete a field in tab separated text either from standard

input or a file, with the results going to either standard output or another file.

February 11, 2019 Java Just in Time - John Latham Page 100(0/0)

Section 7

Example:

Text photographs

February 11, 2019 Java Just in Time - John Latham Page 101(0/0)

Aim

AIM: To see an example of reading binary files, where we

did not choose the file format. This includes the process

of turning byte s into int s, using a shift operator and an

integer bitwise operator.

February 11, 2019 Java Just in Time - John Latham Page 102(0/0)

Text photographs

• ‘ASCII art’ impressionist version of given

photograph

– user chooses width and height of output

text image.

– Dark regions of image represented using

dark characters, e.g. ’#’

∗ lighter as e.g. ’*’ , ’.’ , space.

• E.g. from this original . . .

February 11, 2019 Java Just in Time - John Latham Page 103(0/0)

Text photographs

Console Input / Output

$ java Bmp2Txt 90 61 monty.bmp

++++++++**+*******+++++++++++**********@@*******@@@ @@@@@@@@******+*++++++++++++**+++++++++

+++++++*********++++++++++++++*****@@@*@*@@@@@***@@@@@@@@@@@***@*******+**+++++*++++++++++

+++++********++++++*****++++******@@***@@***@@**@@@ @@@@@@@@*****************++++**++++++++

+++*********+++++************@@@@@@+**@***@@@***@*@ @@@@@@@@******************++++++++++++.

*************+**************@@@@@*+*@**+*@@******** *******@@***********++++****+++++++++..

*************************+**@@@@******************* +++++****************+++..+++++++++....

@**++.++@@@@****@@@@@@@@@*+****@*+++*@****++++++++++***************+++++++++++++.

********++**@*@@***@@@@@@@@@@@@++*****+++**@*+++.........++****************++++++++++++.

@@@@***++****@@@@@@@@@@@@@@@@@*+****++.+******++++..... ...++**++++++++*****++++++******+.

@@@***++*****@@@@@@@*@@@@@@@*@******+++*****++**+.... ..++++++++++++********@@@@**++*

@@@@*++***+*@@@@@@@@*@@**@@@@@******+*******++****+... ..++++++++*++++****@@@*****+++

@@@******++*@@@@@@@@@@@****@@@@@*+*+.++******+******+.+........++++++++++++****@@@****++..

@@@****+++*@@@@@@@@@@@**@@*@@@@@**+...++**+***@*@****@***++.. .++++++++++++****@**+++++.+

@@@@***+++**@@@@@@@@@@@@@@*@@@@**+++..+++**+****@@@****+.. ..++++++++++++***@@**++++++

@@@********@@@#@@@@@****@@@@@@@@**++++.+++*********+...+. ..++++++++.++++*********+.

@@@*******@**@@@@@@********@***@@**++++++++++++***++... ...+++++.+++*@@***+++++.

@@@******@@**@@@@@@@************@@@****+++++******+ ++.... ...+++++...++*@@@@******+

@@@***@@@@**@@@@@@@******+++++****@@@*******+++...... ...++++*+.+*@@@********+

@@@@@@@@@*@@@@@@@@@@*****++++++++++++++***++++......++****************+++

@@@@@@@**@@@@@@@@@@@@***++++............++++++..........................+**@@**++*+***++++

@@@@@@@*@@@@@@@@@@@@****++++++++++++++++.....+............................+***+.++****++++

@@@@@@@@@@@@@@@@@@******++++**@@@#@@*+++++.+++...........++**+++++++.+**++*++++***++..

@@@@@@@@###@@@@******+++++++**@@##@**. .+*+++++...+*@#@@@++***++++++++++++++++++.

...

$ _ Run

February 11, 2019 Java Just in Time - John Latham Page 104(0/0)

Text photographs

• Original image must be 24 bit per pixel .bmp file

– easy to produce and not (usually) compressed

∗ hence fairly easy to read as data.

• Program reads image data as byte stream

– using FileInputStream .

• Much code is about making sense of bytes in file

– we didn’t choose file format.

– e.g. width and height of image

∗ stored at certain point

∗ as sequence of bytes in particular order.

February 11, 2019 Java Just in Time - John Latham Page 105(0/0)

Text photographs

001: import java.io.FileInputStream;

002: import java.io.FileNotFoundException;

003: import java.io.IOException;

004:

005: // Simple program to produce a text version of a 24 bit BMP form at image file.

006: // The first argument is the desired text width, the second is the height.

007: // The third argument is the name of BMP file.

008: // The text image is produced on the standard output.

009: public class Bmp2Txt

010: {

February 11, 2019 Java Just in Time - John Latham Page 106(0/0)

Text photographs

011: // The characters used for the text image.

012: // The first is used for the darkest pixels,

013: // the second for the next lightest, and so on.

014: // A good choice will depend on the font in use on the output.

015: // (We should reverse the order when using white print on blac k.)

016: private static final String SHADES_STRING = "#@*+. ";

017:

018: // The above is for convenient editing if we want to alter the

019: // characters used. This next array is actually used to

020: // map a scaled brightness on to a text character.

021: private static final char [] SHADE_CHARS = SHADES_STRING.toCharArray();

022:

023: // The bytes from the input image.

024: private static FileInputStream inputImage;

025:

February 11, 2019 Java Just in Time - John Latham Page 107(0/0)

Text photographs

026: // The width and height of the input image.

027: private static int inputWidth, inputHeight;

028:

029: // The width and height of the desired text image.

030: private static int outputWidth, outputHeight;

031:

032: // Our output image will be stored in this 2D array.

033: // Position 0,0 is bottom left.

034: // Each pixel records the monochrome brightness level.

035: private static int [][] outputImage;

February 11, 2019 Java Just in Time - John Latham Page 108(0/0)

Text photographs

• Every time read byte, check have not reached end of file

– have separate method.

038: // Read a single byte from the input image file

039: // and throw an exception if there is none left!

040: private static int readByte() throws IOException

041: {

042: int result = inputImage.read();

043: if (result == -1)

044: throw new IOException("Unexpected end of file");

045: return result;

046: } // readByte

February 11, 2019 Java Just in Time - John Latham Page 109(0/0)

Text photographs

• Need skip specific number of bytes from time to time

– stuff not relevant to program.

049: // Skip irrelevant bytes from the input image file.

050: private static void skipIrrelvantBytes(int skipCount) throws IOException

051: {

052: for (int count = 1; count <= skipCount; count++)

053: readByte();

054: } // skipIrrelvantBytes

February 11, 2019 Java Just in Time - John Latham Page 110(0/0)

Text photographs

• Heigth and width of image stored at certain point in file

– using four consecutive bytes each.

• Need to read these four bytes

– turn them into integer they represent.

February 11, 2019 Java Just in Time - John Latham Page 111(0/0)

Expression: arithmetic: shift operators

• More arithmetic operators: shift operators.

• The left shift operator, <<

– yields number obtained by shifting first operand left by second

operand number of bits

– placing zeroes on right.

• The unsigned right shift operator, >>>

– shifts rightwards

– placing zeroes on left.

• The signed right shift operator, >>

– same except places ones on left if number negative.

February 11, 2019 Java Just in Time - John Latham Page 112(0/0)

Expression: arithmetic: shift operators

• E.g. 1000 is 0001111101000 in binary.

4096 2048 1024 512 256 128 64 32 16 8 4 2 1

0 0 0 1 1 1 1 1 0 1 0 0 0

0+ 0+ 0+ 512+ 256+ 128+ 64+ 32+ 0+ 8+ 0+ 0+ 0 = 1000

• Shift left three places: 1000 << 3

– get 8000 which is 1111101000000 in binary.

4096 2048 1024 512 256 128 64 32 16 8 4 2 1

1 1 1 1 1 0 1 0 0 0 0 0 0

4096+ 2048+ 1024+ 512+ 256+ 0+ 64+ 0+ 0+ 0+ 0+ 0+ 0 = 8000

February 11, 2019 Java Just in Time - John Latham Page 113(0/0)

Expression: arithmetic: shift operators

• 1000 >> 3 and 1000 >>> 3 both yield 0000001111101 (125 .)

4096 2048 1024 512 256 128 64 32 16 8 4 2 1

0 0 0 0 0 0 1 1 1 1 1 0 1

0+ 0+ 0+ 0+ 0+ 0+ 64+ 32+ 16+ 8+ 4+ 0+ 1 = 125

• Shift left n bits same effect as multiplication by 2n

– discarding overflow.

• Signed shift right by n bits same effect as division by 2n

– discarding remainder.

February 11, 2019 Java Just in Time - John Latham Page 114(0/0)

Expression: arithmetic: integer bitwise operators

• The operators | , &, and ˆ

– applied to numeric operands

– integer bitwise or, integer bitwise and and integer bitwise exclusive or

bit n of bit n of bit n of bit n of bit n of

op1 op2 op1 | op2 op1 & op2 op1 ˆ op2

0 0 0 0 0

0 1 1 0 1

1 0 1 0 1

1 1 1 1 0

February 11, 2019 Java Just in Time - John Latham Page 115(0/0)

Expression: arithmetic: integer bitwise operators

• E.g. 1000 is 1111101000 in binary

– anded with 23 which is 0000010111 in binary

– yields 0000000000

∗ have no corresponding bit values in common.

• When or-ed together

– yields 1111111111 in binary, which is 1023 .

• 1023 = 1000 + 23

– integer bitwise or same as addition

only when two numbers have no corresponding bits with same value.

February 11, 2019 Java Just in Time - John Latham Page 116(0/0)

Text photographs

• In BMP file, four bytes representing width or height

– least significant byte comes first

– so left shift second byte by 8, third by 16 and fourth by 24

– then integer bitwise or all four.

057: // Read an int from the next four bytes in the input image file.

058: // Least significant byte is first.

059: private static int readInt() throws IOException

060: {

061: return readByte() | readByte() << 8 | readByte() << 16 | readByte() < < 24;

062: } // readInt

Coffee

time:

How could we have used multiplication and addition to

achieve the same result as the left shift and integer bit-

wise or above?

February 11, 2019 Java Just in Time - John Latham Page 117(0/0)

Text photographs

• Each input pixel represented as 3 bytes: red, green and blue components.

• Convert to monochrome brightness:

green perceived brighter than red and red brighter than blue.

– Commonly used ratio: 299 : 587 : 114

065: // Read a pixel value from the input file and return its bright ness.

066: // The pixel is stored as 3 bytes for RGB.

067: // Compute the brightness as (R*299 + G*587 + B*114)/1000.

068: private static int readPixelBrightness() throws IOException

069: {

070: int red = readByte();

071: int green = readByte();

072: int blue = readByte();

073: return (red * 299 + green * 587 + blue * 114) / 1000;

074: } // readPixelBrightness

February 11, 2019 Java Just in Time - John Latham Page 118(0/0)

Text photographs

• At certain point in file, image stored as

– height number of rows

∗ each with width number of pixels.

• First row corresponds to image bottom

– first pixel in row corresponds to image left.

• Read pixel values

– store each one in corresponding scaled pixel of output image

– output image typically many fewer pixels than input.

February 11, 2019 Java Just in Time - John Latham Page 119(0/0)

Text photographs

077: // Read the image from the input file and scale into the output array.
078: private static void readImage() throws IOException
079: {

080: // The first row of input pixels is the bottom of the image.
081: // I.e., in a BMP file, position 0,0 is bottom left.
082: for (int inputY = 0; inputY < inputHeight; inputY++)
083: {

084: for (int inputX = 0; inputX < inputWidth; inputX++)
085: {

086: int pixelValue = readPixelBrightness();
087: // This pixel address needs to be scaled to fit output image.
088: int outputX = inputX * outputWidth / inputWidth;
089: int outputY = inputY * outputHeight / inputHeight;
090: // Add the input pixel value to the output pixel,
091: outputImage[outputX][outputY] += pixelValue;
092: } // for
093: // Each row of the input image is zero padded to a multiple of 4 b ytes.
094: skipIrrelvantBytes(inputWidth % 4);
095: } // for
096: } // readImage

February 11, 2019 Java Just in Time - John Latham Page 120(0/0)

Text photographs

• Need find brightness of brightest pixel in output image

– so can scale each value to range of output characters chosen.

• Zero brightness mapped onto darkest character

– maximum brightness onto lightest character

– others linearly between.

February 11, 2019 Java Just in Time - John Latham Page 121(0/0)

Text photographs

099: // Find the highest valued pixel in the output image.

100: private static int maxOutputBrightness()

101: {

102: int maxBrightnessSoFar = 0;

103: for (int y = 0; y < outputHeight; y++)

104: for (int x = 0; x < outputWidth; x++)

105: if (outputImage[x][y] > maxBrightnessSoFar)

106: maxBrightnessSoFar = outputImage[x][y];

107: return maxBrightnessSoFar;

108: } // maxOutputBrightness

February 11, 2019 Java Just in Time - John Latham Page 122(0/0)

Text photographs

111: // Write the text image to standard output.

112: private static void writeTextImage()

113: {

114: int maxBrightness = maxOutputBrightness();

115: // Scale each pixel brightness to one of the SHADE_CHARS.

116: for (int y = outputHeight - 1; y >= 0; y--)

117: {

118: for (int x = 0; x < outputWidth; x++)

119: System.out.print(SHADE_CHARS[outputImage[x][y] * SHAD E_CHARS.length

120: / (maxBrightness + 1)]);

121: System.out.println();

122: } // for

123: } // writeTextImage

February 11, 2019 Java Just in Time - John Latham Page 123(0/0)

Text photographs

126: // The main method gets arguments and parses the image file at the top level.

127: public static void main(String[] args)

128: {

129: // The name of the input image file, which must be in 24 bit BMP f ormat.

130: String filename = null ;

131: try

132: {

133: // Check we have three arguments.

134: if (args.length != 3)

135: throw new IllegalArgumentException(); // Caught below.

136:

137: // The first two command line arguments

138: // are the required width and height of the text image.

139: outputWidth = Integer.parseInt(args[0]);

140: outputHeight = Integer.parseInt(args[1]);

141: outputImage = new int [outputWidth][outputHeight];

142:

February 11, 2019 Java Just in Time - John Latham Page 124(0/0)

Text photographs

143: // The third argument is the original BMP image file name.

144: filename = args[2];

145: inputImage = new FileInputStream(filename);

146:

147: skipIrrelvantBytes(18);

148: inputWidth = readInt();

149: inputHeight = readInt();

150: skipIrrelvantBytes(28);

151: readImage();

152:

153: // Check end of file.

154: if (inputImage.read() != -1)

155: throw new IOException("Data after end of image");

156:

157: writeTextImage();

158: } // try

February 11, 2019 Java Just in Time - John Latham Page 125(0/0)

Text photographs

159: catch (NumberFormatException exception)

160: {

161: System.err.println("Supplied dimension is not a number: "

162: + exception.getMessage());

163: } // catch

164: catch (IllegalArgumentException exception)

165: {

166: System.err.println("Please (only) supply: width height f ilename");

167: } // catch

168: catch (FileNotFoundException exception)

169: {

170: System.err.println("Cannot open image file " + filename);

171: } // catch

172: catch (IOException exception)

173: {

174: System.err.println("Problem reading image file: "

175: + exception.getMessage());

176: } // catch

February 11, 2019 Java Just in Time - John Latham Page 126(0/0)

Text photographs

177: finally

178: {

179: try { if (inputImage != null) inputImage.close(); }

180: catch (IOException exception)

181: { System.err.println("Could not close image file " + excepti on); }

182: } // finally

183: } // main

184:

185: } // class Bmp2Txt

February 11, 2019 Java Just in Time - John Latham Page 127(0/0)

Coursework: Encoding binary in text

(Summary only)

Write a program to encode a binary file as an ASCII text file, so that it can be

sent in an email.

February 11, 2019 Java Just in Time - John Latham Page 128(0/0)

Section 8

Example:

Contour points

February 11, 2019 Java Just in Time - John Latham Page 129(0/0)

Aim

AIM: To show an example of writing and reading bi-

nary files where we choose the data format, using

DataOutputStream and DataInputStream classes.

February 11, 2019 Java Just in Time - John Latham Page 130(0/0)

Contour points

• Wish to build application manipulating contour points

in terrain surface model.

• Do not present whole program – nor its full requirements!

• Assume program will process and generate large amounts of data

– wish to store in binary file format

∗ more compact.

• Present early stage of development

– for exploring writing to / reading from binary files

– where we chose data format.

February 11, 2019 Java Just in Time - John Latham Page 131(0/0)

File IO API: DataOutputStream

• java.io.DataOutputStream allows writing primitive type values to binary file.

– Is subclass of java.io.OutputStream

∗ instances also wrap OutputStream

∗ including subclasses, e.g. java.io.FileOutputStream .

• E.g. DataOutputStream object which writes to file out.dat :

DataOutputStream out = new DataOutputStream(new FileOutputStream("out.dat"));

• Has instance methods to write all kinds of primitive type

– e.g. writeInt()

∗ write int value in four bytes

writeShort()

∗ write short value in two bytes.

February 11, 2019 Java Just in Time - John Latham Page 132(0/0)

File IO API: DataOutputStream

• Most significant byte of numbers written first

– but no need to worry about byte order

∗ if intend to read data back using corresponding readXXX()

from java.io.DataInputStream .

• Instances of java.lang.String written

– using writeUTF()

∗ saves text in 8-bit Unicode Transformation Format file encoding (ish)

∗ all Unicode characters represented.

February 11, 2019 Java Just in Time - John Latham Page 133(0/0)

File IO API: DataInputStream

• DataInputStream used to read values from binary file

– especially if written by DataOutputStream .

– Is subclass of java.io.InputStream

∗ instances also wrap InputStream

∗ including subclasses, e.g. java.io.FileInputStream .

• E.g. DataInputStream object which reads from file in.dat :

DataInputStream in = new DataInputStream(new FileInputStream("in.dat"));

• Has instance methods to read all kinds of primitive type

– readInt()

∗ read int value from four bytes

readShort()

∗ read short value from two bytes.

February 11, 2019 Java Just in Time - John Latham Page 134(0/0)

File IO API: DataInputStream

• Most significant byte of numbers read first

– but no need to worry about byte order

∗ if intend to read data written by writeXXX() from DataOutputStream .

• String s written using writeUTF() read using readUTF() .

February 11, 2019 Java Just in Time - John Latham Page 135(0/0)

Contour points

Coffee

time:

Why could we not have used DataInputStream to read the

four byte integer values for width and height, from the

input image binary file in the last example?

• Early development stage ContourPoint class

– assume points modelled on two-dimensional grid

∗ with four-digit number for each X / Y

and integer height above sea level

∗ (negative heights for below sea).

• Use short s for X / Y

– int for height.

February 11, 2019 Java Just in Time - John Latham Page 136(0/0)

Contour points

001: import java.io.DataInputStream;

002: import java.io.DataOutputStream;

003: import java.io.FileInputStream;

004: import java.io.FileOutputStream;

005: import java.io.IOException;

006:

007: // Representation of a contour point with X,Y grid reference

008: // and height above sea level.

009: public class ContourPoint

010: {

011: // gridX and gridY are in the range 0-9999, so a short will do ni cely.

012: private final short gridX, gridY;

013:

014: // Height has a wider range, but int is plenty.

015: private final int height;

February 11, 2019 Java Just in Time - John Latham Page 137(0/0)

Contour points

018: // Construct a ContourPoint with the given dimensions.

019: public ContourPoint(int requiredGridX, int requiredGridY, int requiredHeight)

020: {

021: gridX = (short) requiredGridX;

022: gridY = (short) requiredGridY;

023: height = requiredHeight;

024: } // ContourPoint

February 11, 2019 Java Just in Time - John Latham Page 138(0/0)

Contour points

• Second constructor method reads dimensions from DataInputStream

– assumed written by write() (below)

∗ or IOException thrown.

027: // Construct a ContourPoint, by reading the dimensions

028: // from the given DataInputStream.

029: public ContourPoint(DataInputStream in) throws IOException

030: {

031: gridX = in.readShort();

032: gridY = in.readShort();

033: height = in.readInt();

034: } // ContourPoint

February 11, 2019 Java Just in Time - John Latham Page 139(0/0)

Contour points

• Write dimensions

– in form expected by second constructor.

037: // Write the three dimensions to a given DataOutputStream

038: // so that it can be read back into the above constructor.

039: public void write(DataOutputStream out) throws IOException

040: {

041: out.writeShort(gridX);

042: out.writeShort(gridY);

043: out.writeInt(height);

044: } // write

February 11, 2019 Java Just in Time - John Latham Page 140(0/0)

Contour points

047: // Accessor for gridX.

048: public short getGridX()

049: {

050: return gridX;

051: } // getGridX

052:

053:

054: // Accessor for gridY.

055: public short getGridY()

056: {

057: return gridY;

058: } // getGridY

059:

060:

061: // Accessor for height.

062: public int getHeight()

063: {

064: return height;

065: } // getHeight

February 11, 2019 Java Just in Time - John Latham Page 141(0/0)

Contour points

068: // Linear interpolation between this and a given other point .
069: public ContourPoint[] interpolate(ContourPoint endPoint, int noOfSteps)

070: {

071: ContourPoint[] result = new ContourPoint[noOfSteps];
072:
073: for (int stepCount = 1; stepCount <= noOfSteps; stepCount++)

074: {

075: short newGridX = (short) (gridX + stepCount * (endPoint.gridX - gridX)
076: / (noOfSteps + 1));
077: short newGridY = (short) (gridY + stepCount * (endPoint.gridY - gridY)
078: / (noOfSteps + 1));
079: // Cast stepCount to long, to avoid int overflow.
080: int newHeight = (int) (height + (long)stepCount
081: * (endPoint.height - height)
082: / (noOfSteps + 1));
083: result[stepCount - 1] = new ContourPoint(newGridX, newGridY, newHeight);

084: } // for

085: return result;

086: } // interpolate

February 11, 2019 Java Just in Time - John Latham Page 142(0/0)

Contour points

089: // Return a String representing the point.

090: @Override

091: public String toString()

092: {

093: return "(" + gridX + "," + gridY + "," + height + ")";

094: } // toString

February 11, 2019 Java Just in Time - John Latham Page 143(0/0)

Contour points

097: // Purely for testing during development, and so does not cat ch exceptions.

098: public static void main(String[] args) throws Exception

099: {

100: ContourPoint point1 = new ContourPoint(0, 0, 0);

101: ContourPoint point2 = new ContourPoint(9999, 9999, 100000000);

102:

103: DataOutputStream output

104: = new DataOutputStream(new FileOutputStream("test.dat"));

105:

106: // Test the following interpolation steps.

107: int [] trySteps = {0, 10, 100 };

108:

109: // Write the number of lists.

110: output.writeByte(trySteps.length);

February 11, 2019 Java Just in Time - John Latham Page 144(0/0)

Contour points

112: for (int tryStep : trySteps)

113: {

114: ContourPoint[] interpolation = point1.interpolate(poin t2, tryStep);

115: // Write the length of this list,

116: // plus 2 to include the original points.

117: output.writeInt(interpolation.length + 2);

118: // Now write the first point.

119: point1.write(output);

120: // Now write each interpolated point.

121: for (ContourPoint aPoint : interpolation)

122: aPoint.write(output);

123: // Now write the last point.

124: point2.write(output);

125: } // for

126:

127: output.close();

February 11, 2019 Java Just in Time - John Latham Page 145(0/0)

Contour points

129: DataInputStream input

130: = new DataInputStream(new FileInputStream("test.dat"));

131:

132: // Read the number of lists.

133: int noOfLists = input.readByte();

134: for (int count = 1; count <= noOfLists; count++)

135: {

136: // Read the length of this list.

137: int length = input.readInt();

138: ContourPoint[] pointArray = new ContourPoint[length];

139:

140: // Now read each point.

141: for (int pointIndex = 0; pointIndex < length; pointIndex++)

142: // Construct a point from the file.

143: pointArray[pointIndex] = new ContourPoint(input);

144:

February 11, 2019 Java Just in Time - John Latham Page 146(0/0)

Contour points

145: // Now print them out.

146: for (int pointIndex = 0; pointIndex < length; pointIndex++)

147: System.out.println(pointIndex + " " + pointArray[pointIn dex]);

148: System.out.println();

149: } // for

150:

151: input.close();

152: } // main

153:

154: } // class ContourPoint

February 11, 2019 Java Just in Time - John Latham Page 147(0/0)

Trying it

Console Input / Output

$ java ContourPoint

0 (0,0,0)

1 (9999,9999,100000000)

0 (0,0,0)

1 (909,909,9090909)

2 (1818,1818,18181818)

3 (2727,2727,27272727)

4 (3636,3636,36363636)

5 (4545,4545,45454545)

6 (5454,5454,54545454)

7 (6363,6363,63636363)

8 (7272,7272,72727272)

9 (8181,8181,81818181)

10 (9090,9090,90909090)

...

$ _ Run

February 11, 2019 Java Just in Time - John Latham Page 148(0/0)

Trying it

• Size matters?

– binary file test.dat considerably smaller than if data stored as text file.

• Take standard output

– strip off everything except text inside brackets

– count characters

– get approximation of minimum size needed to store as text.

Console Input / Output

$ java ContourPoint | cut -f2 -d"(" | cut -f1 -d ")" | wc -c

2135

$ ls -l test.dat

-rw------- 1 jtl jtl 941 Jul 01 19:12 test.dat

$ _ Run

February 11, 2019 Java Just in Time - John Latham Page 149(0/0)

Trying it

• Binary file less than half text file size

– each short takes only two bytes

∗ up to four as text

– each int takes four bytes

∗ instead of typical eight.

– No separator byte between components of points

nor between each point

∗ because each component is fixed size.

February 11, 2019 Java Just in Time - John Latham Page 150(0/0)

Coursework: Saving greedy children

(Summary only)

Add features to some existing model classes so they can be written and read

back from binary files.

February 11, 2019 Java Just in Time - John Latham Page 151(0/0)

Concepts covered in this chapter

• Each book chapter ends with a list of concepts covered in it.

• Each concept has with it

– a self-test question,

– and a page reference to where it was covered.

• Please use these to check your understanding before we start the next

chapter.

February 11, 2019 Java Just in Time - John Latham Page 152(0/0)

	Title
	Chapter 18: Files
	Chapter aims
	Section 2: Example: Counting bytes from standard input
	Aim
	Counting bytes from standard input
	File IO API: IOException
	File IO API: IOException

	Counting bytes from standard input
	Statement: assignment statement: is an expression
	Statement: assignment statement: is an expression

	Statement: try statement: with finally
	Statement: try statement: with finally

	File IO API: InputStream
	File IO API: InputStream

	Standard API: System: in: is an InputStream
	Standard API: System: in: is an InputStream

	Counting bytes from standard input
	Variable: initial value
	Variable: initial value

	Counting bytes from standard input
	Counting bytes from standard input
	Trying it
	Trying it
	Coursework: A check sum program
	Section 3: Example: Counting characters from standard input
	Aim
	Counting characters from standard input
	Counting characters from standard input
	File IO API: InputStreamReader
	File IO API: InputStreamReader

	Counting characters from standard input
	Trying it
	Trying it
	Trying it
	Trying it
	Coursework: Counting words
	Section 4: Example: Numbering lines from standard input
	Aim
	File IO API: BufferedReader
	File IO API: BufferedReader

	Numbering lines from standard input
	Trying it
	Coursework: Deleting a field
	Section 5: Example: Numbering lines from text file to text file
	Aim
	Numbering lines from text file to text file
	File IO API: FileInputStream
	File IO API: FileInputStream

	File IO API: FileReader
	File IO API: FileReader

	File IO API: OutputStream
	File IO API: OutputStream

	File IO API: OutputStreamWriter
	File IO API: OutputStreamWriter

	File IO API: FileOutputStream
	File IO API: FileOutputStream

	File IO API: FileWriter
	File IO API: FileWriter

	File IO API: PrintWriter
	File IO API: PrintWriter

	Numbering lines from text file to text file
	File IO API: PrintWriter: checkError()
	File IO API: PrintWriter: checkError()

	Numbering lines from text file to text file
	Numbering lines from text file to text file
	Trying it
	Trying it
	Trying it
	Trying it
	Coursework: Deleting a field, from file to file
	Section 6: Example: Numbering lines from and to anywhere
	Aim
	Numbering lines from and to anywhere
	Standard API: System: out: is an OutputStream
	Standard API: System: out: is an OutputStream

	Standard API: System: err: is an OutputStream
	Standard API: System: err: is an OutputStream

	File IO API: PrintWriter: versus PrintStream
	File IO API: PrintWriter: versus PrintStream

	File IO API: PrintWriter: can also wrap an OutputStream
	File IO API: PrintWriter: can also wrap an OutputStream

	File IO API: File
	File IO API: File

	Numbering lines from and to anywhere
	Numbering lines from and to anywhere
	Numbering lines from and to anywhere
	Trying it
	Trying it
	Trying it
	Trying it
	Coursework: Deleting a field, from anywhere to anywhere
	Section 7: Example: Text photographs
	Aim
	Text photographs
	Text photographs
	Text photographs
	Text photographs
	Text photographs
	Text photographs
	Text photographs
	Expression: arithmetic: shift operators
	Expression: arithmetic: shift operators

	Expression: arithmetic: integer bitwise operators
	Expression: arithmetic: integer bitwise operators

	Text photographs
	Text photographs
	Text photographs
	Text photographs
	Text photographs
	Text photographs
	Text photographs
	Text photographs
	Coursework: Encoding binary in text
	Section 8: Example: Contour points
	Aim
	Contour points
	File IO API: DataOutputStream
	File IO API: DataOutputStream

	File IO API: DataInputStream
	File IO API: DataInputStream

	Contour points
	Contour points
	Contour points
	Contour points
	Contour points
	Contour points
	Contour points
	Contour points
	Contour points
	Contour points
	Contour points
	Trying it
	Trying it
	Trying it
	Coursework: Saving greedy children
	Concepts covered in this chapter

