
List of Slides

1 Title
2 Chapter 17: Making our own exceptions
3 Chapter aims
4 Section 2: The exception inheritance hierarchy
5 Aim
6 The exception inheritance hierarchy
7 Exception: inheritance hierarchy

16 The exception inheritance hierarchy
17 Section 3: Example:The Date class with its own exceptions
18 Aim
19 The Date class with its own exceptions
20 Exception: making our own exception classes
23 The Date class with its own exceptions
24 The DateException class
25 The DateException class
27 The Date class

0-0

28 The Date class
29 The DateDifference class
33 Trying it
34 Trying it
35 Trying it
36 A sneaky test?
37 Coursework: GreedyChildren with exceptions
38 Section 4: Example:The Notional Lottery with exceptions
39 Aim
40 The Notional Lottery with exceptions
41 The BallContainerException class
42 The BallContainerException class
44 The MachineException class
45 The MachineException class
47 The BallContainer class
48 The BallContainer class
49 The BallContainer class
50 The BallContainer class

0-1

51 The BallContainer class
52 The BallContainer class
53 The BallContainer class
55 The BallContainer class
56 The BallContainer class
57 The Machine class
58 The Machine class
59 The Machine class
60 The Machine class
62 The TestMachineExceptions class
67 Trying it
68 Trying it
69 Trying it
70 Trying it
71 Trying it
72 Coursework: MobileIceCreamParlour with exceptions
73 Concepts covered in this chapter

0-2

Title

Java Just in Time

John Latham

February 8, 2018

February 8, 2018 Java Just in Time - John Latham Page 1(0/0)

Chapter 17

Making our own exceptions

February 8, 2018 Java Just in Time - John Latham Page 2(0/0)

Chapter aims

• Standard exception classes sometimes not specific enough

– to model exact nature of exceptions we want.

• Can create our own!

• Look at how inheritance hierarchy used

to obtain different kinds of exception

– explore how can have our own.

February 8, 2018 Java Just in Time - John Latham Page 3(0/0)

Section 2

The exception inheritance

hierarchy

February 8, 2018 Java Just in Time - John Latham Page 4(0/0)

Aim

AIM: To explain how Java implements the idea of having lots

of different kinds of exception.

February 8, 2018 Java Just in Time - John Latham Page 5(0/0)

The exception inheritance hierarchy

• Already seen many kinds of exception.

Coffee

time:

How do you think that Java implements the idea of hav-

ing many kinds of exception?

February 8, 2018 Java Just in Time - John Latham Page 6(0/0)

Exception: inheritance hierarchy

• All Java exceptions modelled as instances of classes

– e.g. java.lang.Exception models very general idea of exception

– java.lang.ArrayIndexOutOfBoundsExceptionmuch more specific kind.

• Different kinds arranged in inheritance hierarchy

– near top models of quite general exceptions

– near bottom very specific.

February 8, 2018 Java Just in Time - John Latham Page 7(0/0)

Exception: inheritance hierarchy

• Instance of ArrayIndexOutOfBoundsException

created when array index out of legal range.

– class is subclass of java.lang.IndexOutOfBoundsException.

• Another subclass of IndexOutOfBoundsException is

java.lang.StringIndexOutOfBoundsException

– e.g. when supply illegal method argument to charAt() of a String.

• IndexOutOfBoundsException is subclass of java.lang.RuntimeException

– kinds of exception we are not required to catch.

• java.lang.RuntimeException is subclass of Exception.

• Can show in UML class diagram. . . .

February 8, 2018 Java Just in Time - John Latham Page 8(0/0)

Exception: inheritance hierarchy

Throwable

+ Throwable()
+ Throwable(message: String)
+ Throwable(message: String, cause: Throwable)
+ Throwable(cause: Throwable)
+ getMessage(): String
+ getCause(): Throwable
+ toString(): String

Error

+ Error()
+ Error(message: String)
+ Error(message: String, cause: Throwable)
+ Error(cause: Throwable)

Exception

+ Exception()
+ Exception(message: String)
+ Exception(message: String, cause: Throwable)
+ Exception(cause: Throwable)

RuntimeException

+ RuntimeException()
+ RuntimeException(message: String)
+ RuntimeException(message: String, cause: Throwable)
+ RuntimeException(cause: Throwable)

ArrayIndexOutOfBoundsException

+ ArrayIndexOutOfBoundsException()
+ ArrayIndexOutOfBoundsException(message: String)
+ ArrayIndexOutOfBoundsException(index: int)

StringIndexOutOfBoundsException

+ StringIndexOutOfBoundsException()
+ StringIndexOutOfBoundsException(message: String)
+ StringIndexOutOfBoundsException(index: int)

IOException

+ IOException()
+ IOException(message: String)

IndexOutOfBoundsException

+ IndexOutOfBoundsException()
+ IndexOutOfBoundsException(message: String)

February 8, 2018 Java Just in Time - John Latham Page 9(0/0)

Exception: inheritance hierarchy

• Exception is subclass of java.lang.Throwable

– type of all objects that can be thrown and handled

by catches of try statement.

• Separate subclass java.lang.Error

– for very serious conditions – usually don’t bother trying to catch them

∗ e.g. java.lang.OutOfMemoryError.

Can catch these, but are not forced to

∗ are unchecked exceptions.

February 8, 2018 Java Just in Time - John Latham Page 10(0/0)

Exception: inheritance hierarchy

• Exception is type of Throwable

– represents conditions that should typically be caught at some point.

• If code in a method could cause an Exception

– or one of its subclasses

compiler forces exception to

– be caught within method

– or declared in throws clause of the method.

They are checked exceptions.

February 8, 2018 Java Just in Time - John Latham Page 11(0/0)

Exception: inheritance hierarchy

• However, RuntimeException (and subclasses)

– represents possible exceptions which programmers usually avoid.

– E.g. loop array index over an array

∗ probably get it right, avoid ArrayIndexOutOfBoundsException.

• Would be highly inconvenient to have to write a catch clause or throws

clause

– even when we know the exceptions are avoided.

• Java relaxes the rule for this subclass

– they too are unchecked exceptions.

• We must be disciplined, especially in code for software reuse

– should write catch or throws clauses if not eliminated possibility.

February 8, 2018 Java Just in Time - John Latham Page 12(0/0)

Exception: inheritance hierarchy

• There are over 70 direct subclasses of Exception in the API for Java 7.0

– including java.io.IOException.

• There are almost 50 direct subclasses of RuntimeException.

February 8, 2018 Java Just in Time - John Latham Page 13(0/0)

Exception: inheritance hierarchy

• One advantage of inheritance hierarchy is when we catch exceptions

– can decide how general or specific we need to be.

• E.g. following code could cause ArrayIndexOutOfBoundsException or

StringIndexOutOfBoundsException.

int arrayIndex, stringIndex;

String[] listOfStrings;

... Code here to populate the above array,

... and set arrayIndex and stringIndex.

char c = listOfStrings[arrayIndex].charAt(stringIndex)

February 8, 2018 Java Just in Time - John Latham Page 14(0/0)

Exception: inheritance hierarchy

• Can catch ArrayIndexOutOfBoundsException

– if arrayIndex has bad value.

• Can catch StringIndexOutOfBoundsException

– if stringIndex has bad value.

• Can have two catch clauses, one for each.

– or could have one catch clause to deal with both

∗ catch IndexOutOfBoundsException.

February 8, 2018 Java Just in Time - John Latham Page 15(0/0)

The exception inheritance hierarchy

Coffee

time:

Where does IllegalArgumentException fit into the inheri-

tance hierarchy? How many constructor methods does it

have? Find out by looking at the API on-line documenta-

tion.

February 8, 2018 Java Just in Time - John Latham Page 16(0/0)

Section 3

Example:

The Date class with its own

exceptions

February 8, 2018 Java Just in Time - John Latham Page 17(0/0)

Aim

AIM: To introduce the idea of making our own exceptions.

February 8, 2018 Java Just in Time - John Latham Page 18(0/0)

The Date class with its own exceptions

• Revisit Date from Section ?? starting on page ??

– improve by creating and using our own exception class.

February 8, 2018 Java Just in Time - John Latham Page 19(0/0)

Exception: making our own exception classes

• Because exceptions arranged in inheritance hierarchy

– can make our exception classes.

• Sometimes classes at bottom of standard exception tree not quite

specific for us

– designed to be appropriate to standard classes.

• Whenever wish to throw exception

– ask ourselves is there standard exception that fits nicely

∗ if not – make one.

February 8, 2018 Java Just in Time - John Latham Page 20(0/0)

Exception: making our own exception classes

• How? Choose standard class closest to what we want

– make subclass of it.

• Often will be either java.lang.Exception

– if want ours to be checked exceptions

or java.lang.RuntimeException.

– if want ours to be unchecked exceptions

∗ because we believe they can be and typically should be avoided.

February 8, 2018 Java Just in Time - John Latham Page 21(0/0)

Exception: making our own exception classes

• Most often own exception classes contain just four constructor methods

– one with no method parameters

– one takes String for message

– one takes String and exception cause

– one takes just exception cause.

February 8, 2018 Java Just in Time - John Latham Page 22(0/0)

The Date class with its own exceptions

• Present DateException

• describe changes to Date

• develop modified version of DateDifference.

February 8, 2018 Java Just in Time - John Latham Page 23(0/0)

The DateException class

• DateException will extend RuntimeException

– instances of DateException also instances of RuntimeException.

• Thus will be unchecked exceptions

– programmers not forced to catch them.

• Why?

– All the erroneous conditions are avoidable,

and typically will be avoided.

Coffee

time:

As an aside, think about programs which read and/or

write files. Can errors occur in those scenarios which can-

not be avoided by the programmer? Should the excep-

tions thus thrown be checked exceptions or unchecked?

(Hint: look at the UML class diagram!)

February 8, 2018 Java Just in Time - John Latham Page 24(0/0)

The DateException class

001: // Exceptions to be used with the Date class.

002: public class DateException extends RuntimeException

003: {

004: // Create DateException with no message and no cause.

005: public DateException()

006: {

007: super();

008: } // DateException

009:

010:

011: // Create DateException with message but no cause.

012: public DateException(String message)

013: {

014: super(message);

015: } // DateException

016:

017:

February 8, 2018 Java Just in Time - John Latham Page 25(0/0)

The DateException class

018: // Create DateException with message and cause.

019: public DateException(String message, Throwable cause)

020: {

021: super(message, cause);

022: } // DateException

023:

024:

025: // Create DateException with no message but with cause.

026: public DateException(Throwable cause)

027: {

028: super(cause);

029: } // DateException

030:

031: } // class DateException

Coffee

time:

Why do we have to write these constructor methods? Do

DateException objects have any instance methods?

February 8, 2018 Java Just in Time - John Latham Page 26(0/0)

The Date class

• Same as version from Section ?? starting on page ??

– except most occurrences of Exception changed to DateException.

Coffee

time:

There is one catch clause in the Date class that must not

be changed from Exception to DateException. Where is it,

and why is it not changed like the others?

February 8, 2018 Java Just in Time - John Latham Page 27(0/0)

The Date class

Coffee

time:

There were some places in the Date class from Section ??

where we had to catch an Exception, even though we

knew that one would never be thrown. Is this still neces-

sary with our new version?

Coffee

time:

Some Date instance methods, such as daysFrom(), throw a

NullPointerException when their Date method argument

is the null reference. Should these be caught and turned

into DateExceptions, or left as NullPointerExceptions?

February 8, 2018 Java Just in Time - John Latham Page 28(0/0)

The DateDifference class

• Similar to Section ?? on page ??, but

– uses DateException

– also structured differently

∗ nested try statements,

001: // Obtain two dates in day/month/year format from first and second arguments.

002: // Report how many days there are from first to second,

003: // which is negative if first date is the earliest one.

004: public class DateDifference

005: {

006: public static void main(String[] args)

007: {

February 8, 2018 Java Just in Time - John Latham Page 29(0/0)

The DateDifference class

008: try

009: {

010: try

011: {

012: if (args.length != 2)

013: throw new IllegalArgumentException(args.length + " != 2");

014: Date date1 = new Date(args[0]);

015: Date date2 = new Date(args[1]);

016: System.out.println("From " + date1 + " to " + date2 + " is "

017: + date1.daysFrom(date2) + " days");

018: } // try

019: catch (IllegalArgumentException exception)

020: {

021: System.out.println("Please supply exactly two dates");

022: throw exception;

023: } // catch

February 8, 2018 Java Just in Time - John Latham Page 30(0/0)

The DateDifference class

024: catch (DateException exception)

025: {

026: System.out.println("One of your dates has a problem.");

027: System.out.println(exception.getMessage());

028: throw exception;

029: } // catch

030: catch (Exception exception)

031: {

032: System.out.println("Something unforeseen has happened!");

033: System.out.println(exception.getMessage());

034: throw exception;

035: } // catch

036: } // try

February 8, 2018 Java Just in Time - John Latham Page 31(0/0)

The DateDifference class

037: catch (Exception exception)

038: {

039: // All exceptions have been already reported to System.out.

040: System.err.println(exception);

041: if (exception.getCause() != null)

042: System.err.println("Caused by: " + exception.getCause());

043: } // catch

044: } // main

045:

046: } // class DateDifference

Coffee

time:

Notwithstanding that it sounds like a contradiction in

terms, can you foresee what could be an unforeseen ex-

ception?!

February 8, 2018 Java Just in Time - John Latham Page 32(0/0)

Trying it

Console Input / Output

$ java DateDifference 26/03/2017 26/03/2018

From 26/3/2017 to 26/3/2018 is 365 days

$ java DateDifference 26/03/2018 26/03/2017

From 26/3/2018 to 26/3/2017 is -365 days

$ _ Run

Console Input / Output

$ java DateDifference

Please supply exactly two dates

java.lang.IllegalArgumentException: 0 != 2

$ java DateDifference 26/03/2017

Please supply exactly two dates

java.lang.IllegalArgumentException: 1 != 2

$ java DateDifference 26/03/2017 26/03/2018 ExtraArgument

Please supply exactly two dates

java.lang.IllegalArgumentException: 3 != 2

$ _ Run

February 8, 2018 Java Just in Time - John Latham Page 33(0/0)

Trying it

Console Input / Output

$ java DateDifference 26/03/2018 "Hello mum"

One of your dates has a problem.

Date ‘Hello mum’ is not in day/month/year format

DateException: Date ‘Hello mum’ is not in day/month/year format

Caused by: java.lang.NumberFormatException: For input string: "Hello mum"

$ java DateDifference 26/03 "Hello mum"

One of your dates has a problem.

Date ‘26/03’ is not in day/month/year format

DateException: Date ‘26/03’ is not in day/month/year format

Caused by: java.lang.ArrayIndexOutOfBoundsException: 2

$ _ Run

February 8, 2018 Java Just in Time - John Latham Page 34(0/0)

Trying it

Console Input / Output

$ java DateDifference 26/03/2018 03/26/2018

One of your dates has a problem.

Month 26 must be from 1 to 12

DateException: Month 26 must be from 1 to 12

$ java DateDifference 26/03/2018 2018/03/26

One of your dates has a problem.

Year 26 must be >= 1753

DateException: Year 26 must be >= 1753

$ java DateDifference 26/03/2018 30/2/2018

One of your dates has a problem.

Day 30 must be from 1 to 28 for 2/2018

DateException: Day 30 must be from 1 to 28 for 2/2018

$ _ Run

February 8, 2018 Java Just in Time - John Latham Page 35(0/0)

A sneaky test?

001: // Test DateDifference with a null arguments array!

002: public class DateDifferenceUnforeseenTest

003: {

004: public static void main(String[] args)

005: {

006: DateDifference.main(null);

007: } // main

008:

009: } // class DateDifferenceUnforeseenTest

Console Input / Output

$ java DateDifferenceUnforeseenTest

Something unforeseen has happened!

null

java.lang.NullPointerException

$ _ Run

February 8, 2018 Java Just in Time - John Latham Page 36(0/0)

Coursework: GreedyChildren with exceptions

(Summary only)

Add your own exceptions to the GreedyChildren example.

February 8, 2018 Java Just in Time - John Latham Page 37(0/0)

Section 4

Example:

The Notional Lottery with

exceptions

February 8, 2018 Java Just in Time - John Latham Page 38(0/0)

Aim

AIM: To reinforce the idea of defining our own exceptions,

and further it by having two of our own exception

classes, where one is a subclass of the other.

February 8, 2018 Java Just in Time - John Latham Page 39(0/0)

The Notional Lottery with exceptions

• Revisit Notional Lottery

– didn’t use exceptions previously.

• E.g. graphical user interface accepts input from end user

– program must check that input is valid.

• Could write checking code in GUI

– perhaps better to have model classes check validity

∗ throw exceptions which GUI classes catch.

• Look only at BallContainer and Machine.

– develop BallContainerException and MachineException

– alter BallContainer and Machine to use them.

• Also present program TestMachineExceptions.

February 8, 2018 Java Just in Time - John Latham Page 40(0/0)

The BallContainerException class

• BallContainerException is subclass of Exception

– instances are checked exceptions.

• Instance thrown when invalid operation performed on BallContainer

– e.g. removing ball when empty.

February 8, 2018 Java Just in Time - John Latham Page 41(0/0)

The BallContainerException class

• Like DateException: but called BallContainerException, extends Exception.

001: // Exceptions to be used with the BallContainer class.

002: public class BallContainerException extends Exception

003: {

004: // Create BallContainerException with no message and no cause.

005: public BallContainerException()

006: {

007: super();

008: } // BallContainerException

009:

010:

011: // Create BallContainerException with message but no cause.

012: public BallContainerException(String message)

013: {

014: super(message);

015: } // BallContainerException

February 8, 2018 Java Just in Time - John Latham Page 42(0/0)

The BallContainerException class

016:

017:

018: // Create BallContainerException with message and cause.

019: public BallContainerException(String message, Throwable cause)

020: {

021: super(message, cause);

022: } // BallContainerException

023:

024:

025: // Create BallContainerException with no message but with cause.

026: public BallContainerException(Throwable cause)

027: {

028: super(cause);

029: } // BallContainerException

030:

031: } // class BallContainerException

February 8, 2018 Java Just in Time - John Latham Page 43(0/0)

The MachineException class

• MachineException is subclass of BallContainerException

– thrown when invalid operation specific to machine-like behaviour is

performed

∗ e.g. eject ball when machine is empty

(ejectBall() is in Machine, but not BallContainer).

• BallContainerExceptions thrown by code inside BallContainer class

– MachineExceptions by code inside Machine class.

• Thus Machines can throw both kinds of exception.

February 8, 2018 Java Just in Time - John Latham Page 44(0/0)

The MachineException class

001: // Exceptions to be used with the Machine class.

002: public class MachineException extends BallContainerException

003: {

004: // Create MachineException with no message and no cause.

005: public MachineException()

006: {

007: super();

008: } // MachineException

009:

010:

011: // Create MachineException with message but no cause.

012: public MachineException(String message)

013: {

014: super(message);

015: } // MachineException

016:

017:

February 8, 2018 Java Just in Time - John Latham Page 45(0/0)

The MachineException class

018: // Create MachineException with message and cause.

019: public MachineException(String message, Throwable cause)

020: {

021: super(message, cause);

022: } // MachineException

023:

024:

025: // Create MachineException with no message but with cause.

026: public MachineException(Throwable cause)

027: {

028: super(cause);

029: } // MachineException

030:

031: } // class MachineException

February 8, 2018 Java Just in Time - John Latham Page 46(0/0)

The BallContainer class

001: // Representation of a container of balls for the lottery,

002: // with a fixed size and zero or more balls in a certain order.

003: public abstract class BallContainer

004: {

005: // The name of the BallContainer.

006: private final String name;

007:

008: // The balls contained in the BallContainer.

009: private final Ball[] balls;

010:

011: // The number of balls contained in the BallContainer.

012: // These are stored in balls, indexes 0 to noOfBalls - 1.

013: private int noOfBalls;

February 8, 2018 Java Just in Time - John Latham Page 47(0/0)

The BallContainer class

• Size must be at least 1.

016: // Constructor is given the name and size.

017: public BallContainer(String requiredName, int requiredSize)

018: throws BallContainerException

019: {

020: if (requiredSize < 1)

021: throw new BallContainerException("Size must be at least 1");

022: name = requiredName;

023: balls = new Ball[requiredSize];

024: noOfBalls = 0;

025: } // BallContainer

February 8, 2018 Java Just in Time - John Latham Page 48(0/0)

The BallContainer class

• These bits the same.

028: // Returns the BallContainer’s name.

029: public String getName()

030: {

031: return name;

032: } // getName

033:

034:

035: // Returns the name of the type of BallContainer.

036: public abstract String getType();

February 8, 2018 Java Just in Time - John Latham Page 49(0/0)

The BallContainer class

• getBall() throws exceptions.

039: // Returns the Ball at the given index in the BallContainer.

040: // Throws exception if that index is not in the range 0 to noOfBalls - 1.

041: public Ball getBall(int index) throws BallContainerException

042: {

043: if (noOfBalls == 0)

044: throw new BallContainerException("Cannot get ball: is empty");

045:

046: if (index < 0 || index >= noOfBalls)

047: throw new BallContainerException

048: ("Get ball at " + index + ": not in range 0.."

049: + (noOfBalls - 1));

050: return balls[index];

051: } // getBall;

February 8, 2018 Java Just in Time - John Latham Page 50(0/0)

The BallContainer class

• These bits the same.

054: // Returns the number of balls in the BallContainer.

055: public int getNoOfBalls()

056: {

057: return noOfBalls;

058: } // getNoOfBalls

059:

060:

061: // Returns the size of the BallContainer.

062: public int getSize()

063: {

064: return balls.length;

065: } // getSize

February 8, 2018 Java Just in Time - John Latham Page 51(0/0)

The BallContainer class

• addBall() throws exceptions.

068: // Adds the given ball into the BallContainer, at the next highest unused

069: // index position. Throws exception if the BallContainer is full.

070: public void addBall(Ball ball) throws BallContainerException

071: {

072: if (noOfBalls == balls.length)

073: throw new BallContainerException("Cannot add ball: is full");

074: balls[noOfBalls] = ball;

075: noOfBalls++;

076: } // addBall

February 8, 2018 Java Just in Time - John Latham Page 52(0/0)

The BallContainer class

• swapBalls() throws exceptions.

079: // Swaps the balls at the two given index positions.

080: // Throws exception if either index is not in the range 0 to noOfBalls - 1.

081: public void swapBalls(int index1, int index2) throws BallContainerException

082: {

083: if (noOfBalls == 0)

084: throw new BallContainerException("Cannot swap balls: is empty");

085:

086: if (index1 < 0 || index1 >= noOfBalls)

087: throw new BallContainerException

088: ("Swap ball at " + index1 + ": not in range 0.."

089: + (noOfBalls - 1));

090:

February 8, 2018 Java Just in Time - John Latham Page 53(0/0)

The BallContainer class

091: if (index2 < 0 || index2 >= noOfBalls)

092: throw new BallContainerException

093: ("Swap ball at " + index2 + ": not in range 0.."

094: + (noOfBalls - 1));

095:

096: Ball thatWasAtIndex1 = balls[index1];

097: balls[index1] = balls[index2];

098: balls[index2] = thatWasAtIndex1;

099: } // swapBalls;

February 8, 2018 Java Just in Time - John Latham Page 54(0/0)

The BallContainer class

• removeBall() throws exceptions.

102: // Removes the Ball at the highest used index position.

103: // Throws exception if the BallContainer is empty.

104: public void removeBall() throws BallContainerException

105: {

106: if (noOfBalls <= 0)

107: throw new BallContainerException("Cannot remove ball: is empty");

108: noOfBalls--;

109: } // removeBall

February 8, 2018 Java Just in Time - John Latham Page 55(0/0)

The BallContainer class

• toString() same as before

– except use override annotation.

112: // Mainly for testing.

113: @Override

114: public String toString()

115: {

116: String result = getType() + " " + name + "(<=" + balls.length + ")";

117: for (int index = 0; index < noOfBalls; index++)

118: result += String.format("%n%d %s", index, balls[index]);

119: return result;

120: } // toString

121:

122: } // class BallContainer

February 8, 2018 Java Just in Time - John Latham Page 56(0/0)

The Machine class

• Validity checks specific to machines

– e.g. minimum size is two!

001: // Representation of a lottery machine,

002: // with the facility for a randomly chosen ball to be ejected.

003: public class Machine extends BallContainer

004: {

005: // Constructor is given the name and size.

006: public Machine(String name, int size) throws BallContainerException

007: {

008: super(name, size);

009: if (size < 2)

010: throw new MachineException("Size must be at least 2");

011: } // Machine

February 8, 2018 Java Just in Time - John Latham Page 57(0/0)

The Machine class

Coffee

time:

What would be the result of the code new

Machine("Empty", 0)? What would be the result of

new Machine("Single", 1)? What if we were to swap the

two statements in the constructor method?

Coffee

time:

Why did we declare that the constructor method throws

BallContainerException rather than MachineException?

What would happen if we accidentally said it throws

MachineException? What if BallContainerException was a

subclass of RuntimeException rather than Exception?

February 8, 2018 Java Just in Time - John Latham Page 58(0/0)

The Machine class

014: // Returns the name of the type of BallContainer.

015: public String getType()

016: {

017: return "Lottery machine";

018: } // getType

• ejectBall() catches BallContainerException

– and throws MachineException, with BallContainerException as cause. . . .

February 8, 2018 Java Just in Time - John Latham Page 59(0/0)

The Machine class

021: // Randomly chooses a ball in the machine, and ejects it.

022: // The ejected ball is returned. If the machine is empty then

023: // it throws an exception.

024: public Ball ejectBall() throws MachineException

025: {

026: try

027: {

028: // Math.random() * getNoOfBalls yields a number

029: // which is >= 0 and < number of balls.

030: int ejectedBallIndex = (int) (Math.random() * getNoOfBalls());

031:

032: Ball ejectedBall = getBall(ejectedBallIndex);

033:

034: swapBalls(ejectedBallIndex, getNoOfBalls() - 1);

035: removeBall();

036:

037: return ejectedBall;

February 8, 2018 Java Just in Time - John Latham Page 60(0/0)

The Machine class

038: } // try

039: catch (BallContainerException exception)

040: {

041: throw new MachineException("Cannot eject ball: is empty", exception);

042: } // catch

043: } // ejectBall

044:

045: } // class Machine

February 8, 2018 Java Just in Time - John Latham Page 61(0/0)

The TestMachineExceptions class

001: import java.awt.Color;

002:

003: /* For testing BallContainer and Machine with BallContainerException and

004: MachineException. Depending on the values given, it will produce exceptions

005: at different points, which we catch and print out. By running it with

006: different values, we are able to test every possible throw statement in

007: BallContainer and Machine.

008: */

009: public class TestMachineExceptions

010: {

011: public static void main(String[] args)

012: {

February 8, 2018 Java Just in Time - John Latham Page 62(0/0)

The TestMachineExceptions class

013: int machineSize = Integer.parseInt(args[0]);

014: int fillCount = Integer.parseInt(args[1]);

015: int findIndex = Integer.parseInt(args[2]);

016: int removeCount1 = Integer.parseInt(args[3]);

017: int swapIndex1 = Integer.parseInt(args[4]);

018: int swapIndex2 = Integer.parseInt(args[5]);

019: int removeCount2 = Integer.parseInt(args[6]);

020: int ejectCount = Integer.parseInt(args[7]);

021:

022: try

023: {

February 8, 2018 Java Just in Time - John Latham Page 63(0/0)

The TestMachineExceptions class

024: System.out.println("Creating machine sized " + machineSize);

025: Machine machine = new Machine("Test4U", machineSize);

026:

027: System.out.println("Filling with " + fillCount + " balls");

028: for (int i = 1; i <= fillCount; i++)

029: machine.addBall(new Ball(i, Color.red));

030:

031: System.out.println("Finding ball at " + findIndex);

032: machine.getBall(findIndex);

033:

034: System.out.println("Adding another ball");

035: machine.addBall(new Ball(fillCount + 1, Color.red));

036:

February 8, 2018 Java Just in Time - John Latham Page 64(0/0)

The TestMachineExceptions class

037: System.out.println("Removing " + removeCount1 + " balls");

038: for (int i = 1; i <= removeCount1; i++)

039: machine.removeBall();

040:

041: System.out.println("Swapping balls at " + swapIndex1

042: + " and " + swapIndex2);

043: machine.swapBalls(swapIndex1, swapIndex2);

044:

045: System.out.println("Removing " + removeCount2 + " balls");

046: for (int i = 1; i <= removeCount2; i++)

047: machine.removeBall();

048:

049: System.out.println("Ejecting " + ejectCount + " balls");

050: for (int i = 1; i <= ejectCount; i++)

051: machine.ejectBall();

February 8, 2018 Java Just in Time - John Latham Page 65(0/0)

The TestMachineExceptions class

052:

053: } // try

054: catch (Exception exception)

055: {

056: System.out.println("Got exception " + exception);

057: if (exception.getCause() != null)

058: System.out.println("Caused by: " + exception.getCause());

059: } // catch

060: } // main

061:

062: } // class TestMachineExceptions

February 8, 2018 Java Just in Time - John Latham Page 66(0/0)

Trying it

No Size Fill Find Rem Swap Rem Eject Expected result

1 0 -1 -1 -1 -1, -1 -1 -1 BCE: Size must be at least 1

2 1 -1 -1 -1 -1, -1 -1 -1 ME: Size must be at least 2

3 5 0 1 -1 -1, -1 -1 -1 BCE: Cannot get ball: is empty

4 5 5 5 -1 -1, -1 -1 -1 BCE: Get ball at 5: not in range 0..4

5 5 5 4 -1 -1, -1 -1 -1 BCE: Cannot add ball: is full

6 5 1 0 2 0, 0 -1 -1 BCE: Cannot swap balls: is empty

7 5 4 3 0 -1, 0 -1 -1 BCE: Swap ball at -1: not in range 0..4

8 5 4 3 0 0, 5 -1 -1 BCE: Swap ball at 5: not in range 0..4

9 5 3 2 0 0, 1 5 -1 BCE: Cannot remove ball: is empty

10 5 3 2 0 0, 1 0 5 ME: Cannot eject ball: is empty

February 8, 2018 Java Just in Time - John Latham Page 67(0/0)

Trying it

Console Input / Output

$ java TestMachineExceptions 0 -1 -1 -1 -1 -1 -1 -1

Creating machine sized 0

Got exception BallContainerException: Size must be at least 1

$ java TestMachineExceptions 1 -1 -1 -1 -1 -1 -1 -1

Creating machine sized 1

Got exception MachineException: Size must be at least 2

$ java TestMachineExceptions 5 0 1 -1 -1 -1 -1 -1

Creating machine sized 5

Filling with 0 balls

Finding ball at 1

Got exception BallContainerException: Cannot get ball: is empty

$ java TestMachineExceptions 5 5 5 -1 -1 -1 -1 -1

Creating machine sized 5

Filling with 5 balls

Finding ball at 5

Got exception BallContainerException: Get ball at 5: not in range 0..4

$ _ Run

February 8, 2018 Java Just in Time - John Latham Page 68(0/0)

Trying it

Console Input / Output

$ java TestMachineExceptions 5 5 4 -1 -1 -1 -1 -1

Creating machine sized 5

Filling with 5 balls

Finding ball at 4

Adding another ball

Got exception BallContainerException: Cannot add ball: is full

$ java TestMachineExceptions 5 1 0 2 0 0 -1 -1

Creating machine sized 5

Filling with 1 balls

Finding ball at 0

Adding another ball

Removing 2 balls

Swapping balls at 0 and 0

Got exception BallContainerException: Cannot swap balls: is empty

$ _ Run

February 8, 2018 Java Just in Time - John Latham Page 69(0/0)

Trying it

Console Input / Output

$ java TestMachineExceptions 5 4 3 0 -1 0 -1 -1

Creating machine sized 5

Filling with 4 balls

Finding ball at 3

Adding another ball

Removing 0 balls

Swapping balls at -1 and 0

Got exception BallContainerException: Swap ball at -1: not in range 0..4

$ java TestMachineExceptions 5 4 3 0 0 5 -1 -1

Creating machine sized 5

Filling with 4 balls

Finding ball at 3

Adding another ball

Removing 0 balls

Swapping balls at 0 and 5

Got exception BallContainerException: Swap ball at 5: not in range 0..4

$ _ Run

February 8, 2018 Java Just in Time - John Latham Page 70(0/0)

Trying it

Console Input / Output

$ java TestMachineExceptions 5 3 2 0 0 1 5 -1

Creating machine sized 5

Filling with 3 balls

Finding ball at 2

Adding another ball

Removing 0 balls

Swapping balls at 0 and 1

Removing 5 balls

Got exception BallContainerException: Cannot remove ball: is empty

$ java TestMachineExceptions 5 3 2 0 0 1 0 5

Creating machine sized 5

Filling with 3 balls

Finding ball at 2

Adding another ball

Removing 0 balls

Swapping balls at 0 and 1

Removing 0 balls

Ejecting 5 balls

Got exception MachineException: Cannot eject ball: is empty

Caused by: BallContainerException: Cannot get ball: is empty

$ _ Run

February 8, 2018 Java Just in Time - John Latham Page 71(0/0)

Coursework: MobileIceCreamParlour with

exceptions

(Summary only)

Add a subclass of your own exception to the GreedyChildren example.

February 8, 2018 Java Just in Time - John Latham Page 72(0/0)

Concepts covered in this chapter

• Each book chapter ends with a list of concepts covered in it.

• Each concept has with it

– a self-test question,

– and a page reference to where it was covered.

• Please use these to check your understanding before we start the next

chapter.

February 8, 2018 Java Just in Time - John Latham Page 73(0/0)

	Title
	Chapter 17: Making our own exceptions
	Chapter aims
	Section 2: The exception inheritance hierarchy
	Aim
	The exception inheritance hierarchy
	Exception: inheritance hierarchy
	Exception: inheritance hierarchy

	The exception inheritance hierarchy
	Section 3: Example: The Date class with its own exceptions
	Aim
	The Date class with its own exceptions
	Exception: making our own exception classes
	Exception: making our own exception classes

	The Date class with its own exceptions
	The DateException class
	The DateException class
	The Date class
	The Date class
	The DateDifference class
	Trying it
	Trying it
	Trying it
	A sneaky test?
	Coursework: GreedyChildren with exceptions
	Section 4: Example: The Notional Lottery with exceptions
	Aim
	The Notional Lottery with exceptions
	The BallContainerException class
	The BallContainerException class
	The MachineException class
	The MachineException class
	The BallContainer class
	The BallContainer class
	The BallContainer class
	The BallContainer class
	The BallContainer class
	The BallContainer class
	The BallContainer class
	The BallContainer class
	The BallContainer class
	The Machine class
	The Machine class
	The Machine class
	The Machine class
	The TestMachineExceptions class
	Trying it
	Trying it
	Trying it
	Trying it
	Trying it
	Coursework: MobileIceCreamParlour with exceptions
	Concepts covered in this chapter

