
List of Slides

1 Title
2 Chapter 16: Inheritance
3 Chapter aims
5 Section 2: The Notional Lottery game
6 Aim
7 The Notional Lottery game
8 The Notional Lottery game
9 The Notional Lottery game

10 Section 3: The Person class
11 Aim
12 The Person class
13 The Person class
14 Inheritance
17 The Person class
18 The Person class
19 The Person class

0-0

20 The Person class
21 The Person class
22 The Person class
23 The Person class
24 The Person class
25 The TestPerson class
26 Trying it
27 Coursework: Stock control system
28 Section 4: The AudienceMember class
29 Aim
30 Inheritance: a subclass extends its superclass
33 The AudienceMember class
34 Inheritance: invoking the superclass constructor
37 The AudienceMember class
38 The AudienceMember class
39 Inheritance: overriding a method
42 The AudienceMember class
43 The AudienceMember class

0-1

44 Design: UML
45 Design: UML: class diagram
46 The AudienceMember class
47 The AudienceMember class
48 The full AudienceMember code
49 The TestAudienceMember class
50 The TestAudienceMember class
51 Trying it
52 Coursework: Your first stock item!
53 Section 5: The Punter class
54 Aim
55 The Punter class
57 The Punter class
58 The Punter class
59 The TestPunter class
60 Trying it
61 Coursework: Your catalogue
62 Section 6: The Person abstract class

0-2

63 Aim
64 The Person abstract class
65 Inheritance: abstract class
67 The Person class
68 The Person class
70 Inheritance: abstract method
75 The Person class
76 The Person class
77 The Person class
78 The AudienceMember and Punter classes
79 Trying it
80 Coursework: An abstract stock item
81 Section 7: The remaining simple subclasses of Person
82 Aim
83 The remaining simple subclasses of Person
84 The Director class
85 The Director class
86 The Psychic class

0-3

88 The TVHost class
90 Latest inheritance hierarchy
91 The TestPersonSubclasses class
92 The TestPersonSubclasses class
93 The TestPersonSubclasses class
94 Inheritance: polymorphism
95 The TestPersonSubclasses class
96 The TestPersonSubclasses class
97 Inheritance: polymorphism: dynamic method binding
99 Inheritance: final methods and classes

100 The TestPersonSubclasses class
101 Trying it
102 Coursework: More stock items
103 Section 8: The MoodyPerson classes
104 Aim
105 The MoodyPerson classes
106 The MoodyPerson classes
107 The MoodyPerson class

0-4

108 Inheritance: adding more object state
109 The MoodyPerson class
110 The MoodyPerson class
111 Method: constructor methods: more than one: using this
114 The MoodyPerson class
115 Inheritance: adding more instance methods
116 The MoodyPerson class
117 The Teenager class
118 The Teenager class
119 The Teenager class
120 The Teenager class
121 The Teenager class
122 The TestPersonSubclasses class
123 The TestPersonSubclasses class
124 Inheritance: testing for an instance of a class
125 Inheritance: casting to a subclass
128 The TestPersonSubclasses class
130 The TestPersonSubclasses class

0-5

131 Trying it
132 Coursework: Lots of different mouse mats!
133 Section 9: The Ball class
134 Aim
135 The Ball class
136 GUI API: Color
138 The Ball class
142 Section 10: The BallContainer classes
143 Aim
144 The BallContainer classes
145 The BallContainer classes
146 The BallContainer classes
147 The BallContainer class
148 The BallContainer class
149 The BallContainer class
151 The BallContainer class
154 The Machine class
155 Array: partially filled array: deleting an element

0-6

156 The Machine class
158 The Rack class
159 The Rack class
160 The Rack class
161 Section 11: The Gameclass
162 Aim
163 The Gameclass
164 Inheritance: is a versus has a
165 The Gameclass
166 The Gameclass
167 The Gameclass
168 The Gameclass
169 The Gameclass
170 The Gameclass
171 Coursework: Shopping baskets
172 Section 12: The Worker classes
173 Aim
174 The Worker classes

0-7

175 The Worker classes
176 The Worker classes
177 The Worker class
178 The Worker class
179 The Worker class
180 The Worker class
182 The TraineeWorker class
183 The TraineeWorker class
184 The TraineeWorker class
185 Inheritance: using an overridden method
187 The TraineeWorker class
188 The TraineeWorker class
189 The TraineeWorker class
190 The TestWorkers class
192 Trying it
193 Coursework: Loads of disc space
194 Section 13: The CleverPunter class
195 Aim

0-8

196 The CleverPunter class
197 The CleverPunter class
198 The CleverPunter class
199 The CleverPunter class
200 The CleverPunter class
203 The CleverPunter class
204 The CleverPunter class
205 The TestCleverPunter class
207 Trying it
208 Trying it
209 Trying it
210 Coursework: Making it more realistic
211 Section 14: The GUI classes
212 Aim
213 The GUI classes
214 The GUI classes
215 MoodyPerson.java
216 The GUI classes

0-9

217 Section 15: The Object class and constructor chaining
218 Aim
219 Standard API: Object
221 Inheritance: invoking the superclass constructor: implicitly
222 The Object class and constructor chaining
223 Person.java
224 The Object class and constructor chaining
225 Person.java-WITH-SUPER
226 Inheritance: constructor chaining
227 The Object class and constructor chaining
228 TraineeWorker.java
229 Worker.java
230 MoodyPerson.java
231 Person.java
232 The Object class and constructor chaining
233 Method: constructor methods: default
236 Trying it
237 Coursework: Exploring constructor chaining

0-10

238 Section 16: Overloaded methods versus override
239 Aim
240 Overloaded methods versus override
241 Does an int match a double?
243 Does an int match a double?
244 Does an int match a double?
245 Standard API: System : out.println() : with any argument
246 Standard API: Object : toString()
247 System.out.println() and inheritance
248 System.out.println() and inheritance
249 System.out.println() and inheritance
250 Accidental overload
251 Accidental overload
253 Accidental overload
254 Overloaded methods versus override
255 Overloaded methods versus override
256 Overloaded methods versus override
257 Overloaded methods versus override

0-11

258 Inheritance: overriding a method: @Override annotation
259 Overloaded methods versus override
260 SafeChiefInspector.java-WITH-HIDE
261 Overloaded methods versus override
262 Coursework: Using the @Override annotation
263 Concepts covered in this chapter

0-12

Title

Java Just in Time

John Latham

January 28, 2019

January 28, 2019 Java Just in Time - John Latham Page 1(0/0)

Chapter 16

Inheritance

January 28, 2019 Java Just in Time - John Latham Page 2(0/0)

Chapter aims

• A core principle of object oriented programming: a class might inherit

properties from another.

• Already met in context of graphical user interfaces

– e.g. HelloWorld inherited properties from JFrame

– HelloWorld was a particular kind of JFrame .

• Also, more implicitly with exceptions

– different kinds of, say, RuntimeException .

• This chapter properly introduces inheritance.

January 28, 2019 Java Just in Time - John Latham Page 3(0/0)

Chapter aims

• Unlike previous chapters this has single program example.

– Finished program has more than 3000 lines of code

– divided into nearly 40 classes.

• Secondary aim: show how can develop and test larger programs

incrementally.

– Development divided into phases

∗ subdivided into sections – implementation and testing of one or more

classes.

• We do not explore whole program

– just parts acting as vehicle for covering inheritance.

January 28, 2019 Java Just in Time - John Latham Page 4(0/0)

Section 2

The Notional Lottery game

January 28, 2019 Java Just in Time - John Latham Page 5(0/0)

Aim

AIM: To introduce the example program used throughout

this chapter.

January 28, 2019 Java Just in Time - John Latham Page 6(0/0)

The Notional Lottery game

• A game for children - the Notional Lottery

– teach young players how unlikely they are to win!

• Traditionally start development of a program by identifying detailed

requirements

– but to keep coverage interesting present just overview here

– give more detail as we proceed.

January 28, 2019 Java Just in Time - John Latham Page 7(0/0)

The Notional Lottery game

• Game has models of

– people

– lottery games.

∗ comprising balls in a machine

∗ ejected into a landing rack.

• End user (child) chooses people and sizes of lottery games

– some of the people play the lottery.

January 28, 2019 Java Just in Time - John Latham Page 8(0/0)

The Notional Lottery game

• Two phases of development

– first underlying model of program, i.e. people, games

– then graphical user interface.

• Chapter covers first phase

– says just a little about second.

January 28, 2019 Java Just in Time - John Latham Page 9(0/0)

Section 3

The Person class

January 28, 2019 Java Just in Time - John Latham Page 10(0/0)

Aim

AIM: To introduce the ideas of superclass, subclass, inheri-

tance, and is a relationships.

January 28, 2019 Java Just in Time - John Latham Page 11(0/0)

The Person class

• Several kinds of person

– e.g. audience members, TV hosts, psychics, etc..

• Child can make people speak

– different kinds say different things

∗ e.g. audience members always say “Oooooh!”

∗ e.g. TV hosts always say “Welcome suckers!”

∗ e.g. psychics always say “I can see someone very happy!”.

• Some kinds always smile, some always frown, some can change mood.

January 28, 2019 Java Just in Time - John Latham Page 12(0/0)

The Person class

• Each kind of person modelled by separate class

– instances made at run time.

• But also have some properties in common

– so have general class called Person for common properties

– more specific kinds inherit these via inheritance.

January 28, 2019 Java Just in Time - John Latham Page 13(0/0)

Inheritance

• A class is used to model category (classification) of objects

– sometimes want to have sub-categories.

• E.g. program for simulating traffic movement:

– Vehicle – containing properties common to all vehicles

– sub-categories: bicycle, private car, taxi, bus, lorry etc..

– each with specific properties:

∗ bicycles can be chained to railings

∗ lorries need access to unloading points at shops etc.

∗ some vehicles carry passengers

∗ some carry loads.

January 28, 2019 Java Just in Time - John Latham Page 14(0/0)

Inheritance

• Want to model sub-categories as separate classes

– with specific properties as required.

• But also model idea they are all vehicles.

• In object oriented programming:

– superclass models general category

– subclass models a sub-category.

• E.g. Vehicle might be superclass of all vehicles

– Bicycle could be sub-category for bicycles

– PrivateCar , Taxi , Bus, Lorry , etc..

January 28, 2019 Java Just in Time - John Latham Page 15(0/0)

Inheritance

• The is a relationship: subclass / superclass

– e.g. a bicycle is a vehicle

– i.e. an instance of Bicycle is also an instance of Vehicle .

• Relationship known as inheritance

– subclasses inherit general properties from superclass

– add specific properties.

January 28, 2019 Java Just in Time - John Latham Page 16(0/0)

The Person class

• So, AudienceMember will be subclass of Person

– an audience member is a person.

• Have other subclasses for other kinds of person.

• Here we develop Person class

– also TestPerson program.

January 28, 2019 Java Just in Time - John Latham Page 17(0/0)

The Person class

001: // Representation of a person involved somehow in the lotter y.

002: public class Person

003: {

004: // The name of the person.

005: private final String personName;

006:

007: // The Person’s latest saying.

008: private String latestSaying;

009:

010:

011: // Constructor is given the person’s name.

012: public Person(String requiredPersonName)

013: {

014: personName = requiredPersonName;

015: latestSaying = "I am " + personName;

016: } // Person

January 28, 2019 Java Just in Time - John Latham Page 18(0/0)

The Person class

• GUI will display name of person along with picture representing them.

019: // Returns the Person’s name.

020: public String getPersonName()

021: {

022: return personName;

023: } // getPersonName

• GUI will display latest saying in speech bubble.

026: // Returns the Person’s latest saying.

027: public String getLatestSaying()

028: {

029: return latestSaying;

030: } // getLatestSaying

January 28, 2019 Java Just in Time - John Latham Page 19(0/0)

The Person class

• GUI will show kind of person

– each subclass will have different description.

∗ e.g. AudienceMember will return "Audience Member" .

• Have instance method in superclass

– but redefine in each subclass.

033: // Returns the name of the type of Person.

034: public String getPersonType()

035: {

036: return "Person";

037: } // getPersonType

January 28, 2019 Java Just in Time - John Latham Page 20(0/0)

The Person class

• GUI will draw person’s face with smile or frown.

• Most kinds of person are always happy

– so define isHappy() to return true

– subclasses for kinds that are unhappy will redefine it.

040: // Returns whether or not the Person is happy.

041: public boolean isHappy()

042: {

043: return true;

044: } // isHappy

January 28, 2019 Java Just in Time - John Latham Page 21(0/0)

The Person class

• speak() causes result from getCurrentSaying() to become latest saying

– so GUI displays it via getLatestSaying() .

• Current saying depends on kind of person

– define getCurrentSaying() here

– redefine in each subclass.

January 28, 2019 Java Just in Time - John Latham Page 22(0/0)

The Person class

047: // Returns the Person’s current saying.

048: public String getCurrentSaying()

049: {

050: return "I have nothing to say";

051: } // getCurrentSaying

052:

053:

054: // Causes the person to speak by updating their latest saying from

055: // their current saying.

056: public void speak()

057: {

058: latestSaying = getCurrentSaying();

059: } // speak

January 28, 2019 Java Just in Time - John Latham Page 23(0/0)

The Person class

062: // Mainly for testing.

063: public String toString()

064: {

065: return getPersonType() + " " + getPersonName()

066: + " " + isHappy() + " " + getLatestSaying();

067: } // toString

068:

069: } // class Person

January 28, 2019 Java Just in Time - John Latham Page 24(0/0)

The TestPerson class

• Test each section of incremental development as we go along.

001: // Create a Person and make them speak.

002: public class TestPerson

003: {

004: public static void main(String[] args)

005: {

006: Person person = new Person("Ivana Vinnit");

007: System.out.println(person);

008: person.speak();

009: System.out.println(person);

010: } // main

011:

012: } // class TestPerson

January 28, 2019 Java Just in Time - John Latham Page 25(0/0)

Trying it

Console Input / Output

$ java TestPerson

Person Ivana Vinnit true I am Ivana Vinnit

Person Ivana Vinnit true I have nothing to say

$ _ Run

January 28, 2019 Java Just in Time - John Latham Page 26(0/0)

Coursework: Stock control system

(Summary only)

Write a class that can be used to keep track of stock items, and test it.

January 28, 2019 Java Just in Time - John Latham Page 27(0/0)

Section 4

The AudienceMember class

January 28, 2019 Java Just in Time - John Latham Page 28(0/0)

Aim

AIM: To finish introducing superclass, subclass and inheri-

tance, and briefly meet UML. Also, to introduce the

principles of invoking the constructor method of the su-

perclass, and having instance methods that override

one from the superclass.

January 28, 2019 Java Just in Time - John Latham Page 29(0/0)

Inheritance: a subclass extends its superclass

• A subclass is extension of its superclass

– may have more properties than superclass

∗ as well as inheriting properties of superclass.

• Heading of subclass states it extends superclass.

January 28, 2019 Java Just in Time - John Latham Page 30(0/0)

Inheritance: a subclass extends its superclass

• E.g. a Bicycle object has properties of a Vehicle

– but also can be chained to railings.

public class Bicycle extends Vehicle

{

...

public void chainToRailings(Railings railings)

{

...

} // chainToRailings

...

} // class Bicycle

January 28, 2019 Java Just in Time - John Latham Page 31(0/0)

Inheritance: a subclass extends its superclass

• Used to represent is a relationships between model classes of programs.

• Also commonly used in graphical user interfaces.

• E.g. HelloWorld is subclass of javax.swing.JFrame

– HelloWorld is an extension of JFrame

– instance of HelloWorld is a JFrame object too

∗ but with extra properties.

import javax.swing.JFrame;

public class HelloWorld extends JFrame

{

... Code to add a JLabel with the text "Hello World!" in it.

} // class HelloWorld

January 28, 2019 Java Just in Time - John Latham Page 32(0/0)

The AudienceMember class

• Every instance of AudienceMember is a Person object too.

001: // Representation of an audience member watching the lotter y.

002: public class AudienceMember extends Person

003: {

January 28, 2019 Java Just in Time - John Latham Page 33(0/0)

Inheritance: invoking the superclass constructor

• Code of constructor method in subclass typically starts with superclass

constructor call

– reserved word super followed by method arguments.

– Must be first statement

– superclass must have constructor matching arguments.

January 28, 2019 Java Just in Time - John Latham Page 34(0/0)

Inheritance: invoking the superclass constructor

• E.g. vehicle is given position, direction and speed.

public class Vehicle

{

...

public Vehicle(Position requiredPosition,

Direction requiredDirection, Speed requiredSpeed)

{

... Code that does something with requiredPosition,

... requiredDirection and requiredSpeed.

} // Vehicle

...

} // class Vehicle

January 28, 2019 Java Just in Time - John Latham Page 35(0/0)

Inheritance: invoking the superclass constructor

• Unlikely to make instances of Vehicle directly – want more specific kinds.

• Position, direction and speed passed to Vehicle constructor.

public class Bicycle extends Vehicle

{

...

public Bicycle(Position position, Direction direction, Speed sp eed)

{

super(position, direction, speed);

... Code specific to making a Bicycle, if any, goes here.

} // Bicycle

...

} // class Bicycle

January 28, 2019 Java Just in Time - John Latham Page 36(0/0)

The AudienceMember class

• So super here means constructor of Person .

004: // Constructor is given the person’s name.

005: public AudienceMember(String name)

006: {

007: super(name);

008: } // AudienceMember

• Name passed to AudienceMember constructor

– is passed to Person constructor

– which stores in instance variable personName .

– Also latestSaying is initialized.

January 28, 2019 Java Just in Time - John Latham Page 37(0/0)

The AudienceMember class

• Person has lots of instance methods inherited by AudienceMember

– getPersonName() , getLatestSaying() ,

– getPersonType() , etc..

• Definition of getPersonType() not suitable here

– returns "Person" instead of "Audience Member" .

January 28, 2019 Java Just in Time - John Latham Page 38(0/0)

Inheritance: overriding a method

• A subclass inherits instance methods of its superclass.

• Sometimes subclass needs to change definition of instance method

– simply redefines it

– subclass version overrides inherited definition

– must have same name and types of method parameters

∗ otherwise is different method

– must still be instance method

– and have matching return type.

January 28, 2019 Java Just in Time - John Latham Page 39(0/0)

Inheritance: overriding a method

• E.g. most vehicles perform emergency stop in same way.

public class Vehicle

{

...

public void emergencyStop()

{

... General code for most vehicles.

} // emergencyStop

...

} // class Vehicle

January 28, 2019 Java Just in Time - John Latham Page 40(0/0)

Inheritance: overriding a method

• But bicycles are different!

public class Bicycle extends Vehicle

{

...

public void emergencyStop()

{

... Specific code for bicycles.

} // emergencyStop

...

} // class Bicycle

January 28, 2019 Java Just in Time - John Latham Page 41(0/0)

The AudienceMember class

Coffee

time:

Why can we not override a class method? Hint: instance

methods are accessed via (a reference to) an object.

How are class methods (usually) accessed?

011: // Returns the name of the type of Person.

012: public String getPersonType()

013: {

014: return "Audience Member";

015: } // getPersonType

Coffee

time:

What would happen if we accidentally mistyped the

name of this instance method, as say, getPersontype ?

What would happen if instead we got the name right,

but declared it here to be a void method?

January 28, 2019 Java Just in Time - John Latham Page 42(0/0)

The AudienceMember class

• Also override getCurrentSaying() .

018: // Returns the Person’s current saying.

019: public String getCurrentSaying()

020: {

021: return "Oooooh!";

022: } // getCurrentSaying

023:

024: } // class AudienceMember

January 28, 2019 Java Just in Time - John Latham Page 43(0/0)

Design: UML

• Unified Modelling Language (UML)

– collection of diagram types

– can show relationships between entities

∗ e.g. objects and classes.

• Used by many professional Java programmers for designs.

January 28, 2019 Java Just in Time - John Latham Page 44(0/0)

Design: UML: class diagram

• UML class diagram can be used to represent an inheritance hierarchy.

• Each class appears as box

– with name

– variables

– and methods

– private items marked with -

– public items with +.

January 28, 2019 Java Just in Time - John Latham Page 45(0/0)

The AudienceMember class

Person

− personName: String
− latestSaying: String

+ Person(requiredPersonName: String)
+ getPersonName(): String
+ getLatestSaying(): String
+ getPersonType(): String
+ isHappy(): boolean
+ getCurrentSaying(): String
+ speak()
+ toString(): String

AudienceMember

+ AudienceMember(name: String)
+ getPersonType(): String
+ getCurrentSaying(): String

January 28, 2019 Java Just in Time - John Latham Page 46(0/0)

The AudienceMember class

Coffee

time:

Howmany instance variables does an AudienceMember ob-

ject have? Hint: an AudienceMember object is also a Person

object.

January 28, 2019 Java Just in Time - John Latham Page 47(0/0)

The full AudienceMember code

001: // Representation of an audience member watching the lotter y.
002: public class AudienceMember extends Person
003: {

004: // Constructor is given the person’s name.

005: public AudienceMember(String name)
006: {
007: super(name);
008: } // AudienceMember

009:
010:

011: // Returns the name of the type of Person.
012: public String getPersonType()
013: {

014: return "Audience Member";
015: } // getPersonType
016:
017:

018: // Returns the Person’s current saying.
019: public String getCurrentSaying()
020: {

021: return "Oooooh!";
022: } // getCurrentSaying
023:

024: } // class AudienceMember

January 28, 2019 Java Just in Time - John Latham Page 48(0/0)

The TestAudienceMember class

• Test in same way as Person .

• toString() implicitly used here

– inherited from Person

– invokes four other methods

∗ getPersonType() , getPersonName() , isHappy() and getLatestSaying() .

– AudienceMember overrides getPersonType() , inherits others.

• Also use speak()

– inherited from Person

– invokes getCurrentSaying() overridden by AudienceMember .

January 28, 2019 Java Just in Time - John Latham Page 49(0/0)

The TestAudienceMember class

001: // Create an AudienceMember and make them speak.

002: public class TestAudienceMember

003: {

004: public static void main(String[] args)

005: {

006: AudienceMember audienceMember = new AudienceMember("Ivana Di Yowt");

007: System.out.println(audienceMember);

008: audienceMember.speak();

009: System.out.println(audienceMember);

010: } // main

011:

012: } // class TestAudienceMember

Coffee

time:

Before looking at the test results in the next section, figure

out what the output of the TestAudienceMember program

should be.

January 28, 2019 Java Just in Time - John Latham Page 50(0/0)

Trying it

Console Input / Output

$ java TestAudienceMember

Audience Member Ivana Di Yowt true I am Ivana Di Yowt

Audience Member Ivana Di Yowt true Oooooh!

$ _ Run

January 28, 2019 Java Just in Time - John Latham Page 51(0/0)

Coursework: Your first stock item!

(Summary only)

Write a subclass which overrides some instance methods.

January 28, 2019 Java Just in Time - John Latham Page 52(0/0)

Section 5

The Punter class

January 28, 2019 Java Just in Time - John Latham Page 53(0/0)

Aim

AIM: To reinforce the ideas of superclass, subclass, inher-

itance, invoking the superclass constructor method,

and instance methods that override another.

January 28, 2019 Java Just in Time - John Latham Page 54(0/0)

The Punter class

• Punters want to win, but not clever enough to play!

• Similar to AudienceMember s

– but always unhappy.

001: // Representation of a person playing the lottery.

002: public class Punter extends Person

003: {

004: // Constructor is given the person’s name.

005: public Punter(String name)

006: {

007: super(name);

008: } // Punter

009:

010:

January 28, 2019 Java Just in Time - John Latham Page 55(0/0)

The Punter class

011: // Returns the name of the type of Person.

012: public String getPersonType()

013: {

014: return "Punter";

015: } // getPersonType

• Also overrides isHappy() .

018: // Returns whether or not the Person is happy.

019: public boolean isHappy()

020: {

021: return false;

022: } // isHappy

January 28, 2019 Java Just in Time - John Latham Page 56(0/0)

The Punter class

025: // Returns the Person’s current saying.

026: public String getCurrentSaying()

027: {

028: return "Make me happy: give me lots of money";

029: } // getCurrentSaying

030:

031: } // class Punter

January 28, 2019 Java Just in Time - John Latham Page 57(0/0)

The Punter class

Person

− personName: String
− latestSaying: String

+ Person(requiredPersonName: String)
+ getPersonName(): String
+ getLatestSaying(): String
+ getPersonType(): String
+ isHappy(): boolean
+ getCurrentSaying(): String
+ speak()
+ toString(): String

AudienceMember

+ AudienceMember(name: String)
+ getPersonType(): String
+ getCurrentSaying(): String

Punter

+ Punter(name: String)
+ getPersonType(): String
+ getCurrentSaying(): String
+ isHappy(): boolean

January 28, 2019 Java Just in Time - John Latham Page 58(0/0)

The TestPunter class

001: // Create a Punter and make them speak.

002: public class TestPunter

003: {

004: public static void main(String[] args)

005: {

006: Punter punter = new Punter("Ian Arushfa Rishly Ving");

007: System.out.println(punter);

008: punter.speak();

009: System.out.println(punter);

010: } // main

011:

012: } // class TestPunter

Coffee

time:

Before looking at the test results in the next section, figure

out what the output of the TestPunter program should be.

January 28, 2019 Java Just in Time - John Latham Page 59(0/0)

Trying it

Console Input / Output

$ java TestPunter

Punter Ian Arushfa Rishly Ving false I am Ian Arushfa Rishly V ing

Punter Ian Arushfa Rishly Ving false Make me happy: give me lo ts of money

$ _ Run

• Notice he is not happy.

January 28, 2019 Java Just in Time - John Latham Page 60(0/0)

Coursework: Your catalogue

(Summary only)

Write another subclass which overrides some instance methods.

January 28, 2019 Java Just in Time - John Latham Page 61(0/0)

Section 6

The Person abstract class

January 28, 2019 Java Just in Time - John Latham Page 62(0/0)

Aim

AIM: To introduce the concepts of abstract class and ab-

stract method.

January 28, 2019 Java Just in Time - John Latham Page 63(0/0)

The Person abstract class

• Unsatisfactory aspects of what done so far

– intend to make no instances of Person directly

∗ but what is stopping us do so in error?

– Written code for instance methods getPersonType() and

getCurrentSaying() in Person

∗ yet every subclass will override them

∗ so that code will never be used!

January 28, 2019 Java Just in Time - John Latham Page 64(0/0)

Inheritance: abstract class

• Can declare class as abstract class

– no instances can be made.

• Write reserved word abstract before class in heading.

• The compiler produces error if attempt to create direct instance.

January 28, 2019 Java Just in Time - John Latham Page 65(0/0)

Inheritance: abstract class

• E.g. likely do not want direct instances of Vehicle .

public abstract class Vehicle

{

...

} // class Vehicle

public class Bicycle extends Vehicle

{

...

} // class Bicycle

• This produces error.

Vehicle v = new Vehicle(...);

• This is allowed.

Bicycle b = new Bicycle(...);

January 28, 2019 Java Just in Time - John Latham Page 66(0/0)

The Person class

Coffee

time:

What about the following?

Vehicle v = new Bicycle(...);

January 28, 2019 Java Just in Time - John Latham Page 67(0/0)

The Person class

001: // Representation of a person involved somehow in the lotter y.

002: public abstract class Person

003: {

004: // The name of the person.

005: private final String personName;

006:

007: // The Person’s latest saying.

008: private String latestSaying;

009:

010:

011: // Constructor is given the person’s name.

012: public Person(String requiredPersonName)

013: {

014: personName = requiredPersonName;

015: latestSaying = "I am " + personName;

016: } // Person

017:

018:

January 28, 2019 Java Just in Time - John Latham Page 68(0/0)

The Person class

019: // Returns the Person’s name.

020: public String getPersonName()

021: {

022: return personName;

023: } // getPersonName

024:

025:

026: // Returns the Person’s latest saying.

027: public String getLatestSaying()

028: {

029: return latestSaying;

030: } // getLatestSaying

• Perhaps most valuable advantage of abstract class

is abstract methods. . . .

January 28, 2019 Java Just in Time - John Latham Page 69(0/0)

Inheritance: abstract method

• An abstract class can have abstract methods

• These are instance methods which have

– modifiers (not static)

∗ but definitely abstract

– return type

– name

– method parameters

– but no body

∗ just semi-colon (;).

• This declares method interface

– method signature and return type

• but not method implementation.

January 28, 2019 Java Just in Time - John Latham Page 70(0/0)

Inheritance: abstract method

• E.g. say there is no default way of determining if a vehicle can pass down

a route.

public abstract class Vehicle

{

...

public abstract boolean canPassDown(Route r);

...

} // class Vehicle

• Every subclass must

– provide method implementation of all abstract methods

– or be an abstract class.

January 28, 2019 Java Just in Time - John Latham Page 71(0/0)

Inheritance: abstract method

• An abstract method means

– all non-abstract subclasses contain an instance method with this

method interface

– but method implementations provided by the subclasses.

• So no need to provide implementation that is never used

if every subclass would override it.

January 28, 2019 Java Just in Time - John Latham Page 72(0/0)

Inheritance: abstract method

public class Bicycle extends Vehicle

{

...

public boolean canPassDown(Route r)

{

... Code for deciding if this bicycle can pass down the route.

} // canPassDown

...

} // class Bicycle

January 28, 2019 Java Just in Time - John Latham Page 73(0/0)

Inheritance: abstract method

• When subclass defines non-abstract instance method

also defined in superclass

– we say it overrides superclass one.

• When subclass defines non-abstract instance method

declared as abstract method in superclass

– we say it provides method implementation.

• Override is replacing method implementation from superclass.

January 28, 2019 Java Just in Time - John Latham Page 74(0/0)

The Person class

• No default implementation for getPersonType() .

033: // Returns the name of the type of Person.

034: public abstract String getPersonType();

• Whereas most subclasses are always happy, so we have default

implementation of isHappy()

– inherited by most subclasses (happy ones)

– others override it.

037: // Returns whether or not the Person is happy.

038: public boolean isHappy()

039: {

040: return true;

041: } // isHappy

January 28, 2019 Java Just in Time - John Latham Page 75(0/0)

The Person class

• Current saying always specific to kind of person.

044: // Returns the Person’s current saying.

045: public abstract String getCurrentSaying();

January 28, 2019 Java Just in Time - John Latham Page 76(0/0)

The Person class

• Rest is same as before.

048: // Causes the person to speak by updating their latest saying from

049: // their current saying.

050: public void speak()

051: {

052: latestSaying = getCurrentSaying();

053: } // speak

054:

055:

056: // Mainly for testing.

057: public String toString()

058: {

059: return getPersonType() + " " + getPersonName()

060: + " " + isHappy() + " " + getLatestSaying();

061: } // toString

062:

063: } // class Person

January 28, 2019 Java Just in Time - John Latham Page 77(0/0)

The AudienceMember and Punter classes

• No changes needed to AudienceMember and Punter .

• But no longer override getPersonType() and getCurrentSaying()

– have method implementations of them.

• Punter still overrides isHappy() .

January 28, 2019 Java Just in Time - John Latham Page 78(0/0)

Trying it

• Try recompile TestPerson .

Console Input / Output

$ javac TestPerson.java

TestPerson.java:6: Person is abstract; cannot be instanti ated

Person person = new Person("Ivana Vinnit");

ˆ

1 error

$ _ Run

January 28, 2019 Java Just in Time - John Latham Page 79(0/0)

Coursework: An abstract stock item

(Summary only)

Make a class into an abstract class.

January 28, 2019 Java Just in Time - John Latham Page 80(0/0)

Section 7

The remaining simple

subclasses of Person

January 28, 2019 Java Just in Time - John Latham Page 81(0/0)

Aim

AIM: To reinforce the concepts covered in the chapter so

far, and introduce the ideas of polymorphism and dy-

namic method binding. We also meet final classes and

final methods.

January 28, 2019 Java Just in Time - John Latham Page 82(0/0)

The remaining simple subclasses of Person

• Develop remaining ‘simple’ subclasses

– Director , Psychic and TVHost .

• Create TestPersonSubclasses to test all so far.

January 28, 2019 Java Just in Time - John Latham Page 83(0/0)

The Director class

001: // Representation of a director of the lottery company.

002: public class Director extends Person

003: {

004: // Constructor is given the person’s name.

005: public Director(String name)

006: {

007: super(name);

008: } // Director

January 28, 2019 Java Just in Time - John Latham Page 84(0/0)

The Director class

• Provide method implementations for abstract methods.

011: // Returns the name of the type of Person.

012: public String getPersonType()

013: {

014: return "Director";

015: } // getPersonType

016:
017:
018: // Returns the Person’s current saying.

019: public String getCurrentSaying()

020: {

021: return "This business is MY pleasure";

022: } // getCurrentSaying

023:

024: } // class Director

Coffee

time:

Are directors happy or unhappy? (Daft question?)

January 28, 2019 Java Just in Time - John Latham Page 85(0/0)

The Psychic class

001: // Representation of a psychic entertainer for the lottery.

002: public class Psychic extends Person

003: {

004: // Constructor is given the person’s name.

005: public Psychic(String name)

006: {

007: super(name);

008: } // Psychic

009:

010:

011: // Returns the name of the type of Person.

012: public String getPersonType()

013: {

014: return "Psychic";

015: } // getPersonType

016:

January 28, 2019 Java Just in Time - John Latham Page 86(0/0)

The Psychic class

017:

018: // Returns the Person’s current saying.

019: public String getCurrentSaying()

020: {

021: return "I can see someone very happy!";

022: } // getCurrentSaying

023:

024: } // class Psychic

January 28, 2019 Java Just in Time - John Latham Page 87(0/0)

The TVHost class

001: // Representation of a TV Host fronting the lottery TV progra mme.

002: public class TVHost extends Person

003: {

004: // Constructor is given the person’s name.

005: public TVHost(String name)

006: {

007: super(name);

008: } // TVHost

009:

010:

011: // Returns the name of the type of Person.

012: public String getPersonType()

013: {

014: return "TV Host";

015: } // getPersonType

016:

January 28, 2019 Java Just in Time - John Latham Page 88(0/0)

The TVHost class

017:

018: // Returns the Person’s current saying.

019: public String getCurrentSaying()

020: {

021: return "Welcome, suckers!";

022: } // getCurrentSaying

023:

024: } // class TVHost

January 28, 2019 Java Just in Time - John Latham Page 89(0/0)

Latest inheritance hierarchy

Person

− personName: String
− latestSaying: String

+ Person(requiredPersonName: String)
+ getPersonName(): String
+ getLatestSaying(): String
+ getPersonType(): String
+ isHappy(): boolean
+ getCurrentSaying(): String
+ speak()
+ toString(): String

AudienceMember

+ AudienceMember(name: String)
+ getPersonType(): String
+ getCurrentSaying(): String

Psychic

+ Psychic(name: String)
+ getPersonType(): String
+ getCurrentSaying(): String

TVHost

+ TVHost(name: String)
+ getPersonType(): String
+ getCurrentSaying(): String

Punter

+ Punter(name: String)
+ getPersonType(): String
+ getCurrentSaying(): String
+ isHappy(): boolean

Director

+ Director(name: String)
+ getPersonType(): String
+ getCurrentSaying(): String

January 28, 2019 Java Just in Time - John Latham Page 90(0/0)

The TestPersonSubclasses class

• Tests needed for each subclass of Person are the same

– create instance, print, speak, print.

• Have one program to test all

– rather than one for each subclass.

• Have array of Person

– containing one instance of each subclass

– loop through array testing each of them.

January 28, 2019 Java Just in Time - John Latham Page 91(0/0)

The TestPersonSubclasses class

001: // Create one of each type of person, and make them speak.

002: public class TestPersonSubclasses

003: {

004: public static void main(String[] args)

005: {

006: Person[] persons =

007: {

008: new AudienceMember("Ivana Di Yowt"),

009: new Director("Sir Lance Earl Otto"),

010: new Psychic("Miss T. Peg de Gowt"),

011: new Punter("Ian Arushfa Rishly Ving"),

012: new TVHost("Terry Bill Woah B’Gorne")

013: };

a

aThis chapter is dedicated to Terry Wogan, 3rd August 1938 – 31st January 2016.

January 28, 2019 Java Just in Time - John Latham Page 92(0/0)

The TestPersonSubclasses class

• Instance of subclass is also instance of its superclass

– e.g. first array element is (reference to) both an AudienceMember and a

Person .

• Multiplicity of types – known as polymorphism

– the objects are polymorphic.

January 28, 2019 Java Just in Time - John Latham Page 93(0/0)

Inheritance: polymorphism

• An instance of subclass is also instance of superclass.

– E.g. class Bicycle is subclass of Vehicle

∗ so instance of Bicycle is a Bicycle

∗ also is a Vehicle

– it has both these forms.

• Is polymorphic – means ‘has many forms’.

• Java polymorphism achieved by inheritance.

January 28, 2019 Java Just in Time - John Latham Page 94(0/0)

The TestPersonSubclasses class

015: for (Person person : persons)

016: testPerson(person);

017: } // main

018:

019:

020: // Make the given person speak, reporting the before and afte r toString.

021: private static void testPerson(Person person)

022: {

023: System.out.println("------------------------------- -------------------");

024: System.out.println(person);

025: person.speak();

026: System.out.println(person);

027: } // testPerson

028:

029: } // class TestPersonSubclasses

January 28, 2019 Java Just in Time - John Latham Page 95(0/0)

The TestPersonSubclasses class

• Body of testPerson() calls toString() and speak() instance methods of its

method parameter.

• toString() calls

– getPersonType() – method implementation in subclass

– getPersonName() – inherited by subclass

– isHappy() – inherited by subclass except Punter which overrides it

– getLatestSaying() – inherited by subclass.

• speak() calls

– getCurrentSaying() – method implementation in subclass.

• When compiler looks at Person code,

cannot know which actual method will be used when program is run

– different versions used at different moments for same method calls!

January 28, 2019 Java Just in Time - John Latham Page 96(0/0)

Inheritance: polymorphism: dynamic method

binding

• A class might have subclass

– which might override some of instance methods.

• And abstract methods are designed to have

different method implementations in different subclasses.

• When compiler produces byte code for instance method call

– does not know which actual method implementation will get used

– same call can invoke different versions of method at different times

∗ depending on run time value of object reference.

January 28, 2019 Java Just in Time - John Latham Page 97(0/0)

Inheritance: polymorphism: dynamic method

binding

• E.g. Assume PoshCar does not override emergencyStop() but Bicycle does.

Vehicle funRide = Math.random() < 0.5 ? new PoshCar(...) : new Bicycle(...);

funRide.emergencyStop();

• At run time, reference stored in funRide refers either to

– PoshCar object – emergencyStop() from Vehicle is called

– or Bicycle object – emergencyStop() from Bicycle is used.

• Process of determining actual method at run time known as

dynamic method binding.

• Consequence for programmers – our code might not behave as we

expect in some subclass where some instance methods are replaced with

ones that do something we did not expect.

• Our private instance methods are safe

– cannot be overridden because not visible in any subclass.

January 28, 2019 Java Just in Time - John Latham Page 98(0/0)

Inheritance: final methods and classes

• If wish that no subclass may override a public instance method

– make it final method – include reserved word final in heading.

• Use with care: future requirements may mean subclass not yet written

needs own version of instance method!

• Also can make a class into final class

– write final in class heading

– cannot have any subclasses.

January 28, 2019 Java Just in Time - John Latham Page 99(0/0)

The TestPersonSubclasses class

Coffee

time:

Look at the instance methods of the Person class and

decide which might appropriately be declared as final

methods. For example, will any subclass need to have its

own version of toString() ?

January 28, 2019 Java Just in Time - John Latham Page 100(0/0)

Trying it

Console Input / Output

$ java TestPersonSubclasses

--

Audience Member Ivana Di Yowt true I am Ivana Di Yowt

Audience Member Ivana Di Yowt true Oooooh!

--

Director Sir Lance Earl Otto true I am Sir Lance Earl Otto

Director Sir Lance Earl Otto true This business is MY pleasur e

--

Psychic Miss T. Peg de Gowt true I am Miss T. Peg de Gowt

Psychic Miss T. Peg de Gowt true I can see someone very happy!

--

Punter Ian Arushfa Rishly Ving false I am Ian Arushfa Rishly V ing

Punter Ian Arushfa Rishly Ving false Make me happy: give me lo ts of money

--

TV Host Terry Bill Woah B’Gorne true I am Terry Bill Woah B’Gor ne

TV Host Terry Bill Woah B’Gorne true Welcome, suckers!

$ _ Run

January 28, 2019 Java Just in Time - John Latham Page 101(0/0)

Coursework: More stock items

(Summary only)

Make some more subclasses and explore polymorphism and dynamic

method binding.

January 28, 2019 Java Just in Time - John Latham Page 102(0/0)

Section 8

The MoodyPerson classes

January 28, 2019 Java Just in Time - John Latham Page 103(0/0)

Aim

AIM: To introduce the ideas of addingmore object state and

instance methods in a subclass, testing for an instance

of a particular class, and casting to a subclass. We

also see how a constructor method can invoke another

from the same class.

January 28, 2019 Java Just in Time - John Latham Page 104(0/0)

The MoodyPerson classes

• Coming up: less simple subclasses of Person .

Name Brief description

Teenager Just for fun – a person that can be made to be happy

or unhappy at will.

CleverPunter Someone who actually plays the lottery.

Worker Someone who makes balls and fills up a lottery ma-

chine.

TraineeWorker A worker who gets the ball numbers wrong sometimes.

• All neither always happy, nor always unhappy.

• Suggests another subclass of Person called MoodyPerson

– above can be subclasses of MoodyPerson

– inherit the mood changing properties.

January 28, 2019 Java Just in Time - John Latham Page 105(0/0)

The MoodyPerson classes

• Here develop MoodyPerson and Teenager

– others interact with lottery games, so wait until those are done.

• Also add code to TestPersonSubclasses to test instances of MoodyPerson .

January 28, 2019 Java Just in Time - John Latham Page 106(0/0)

The MoodyPerson class

• Don’t want any direct instances of MoodyPerson

001: // Representation of a person involved in the lottery

002: // who can change their happiness state.

003: public abstract class MoodyPerson extends Person

004: {

• Need instance variable to record if currently happy

– adding more object state.

January 28, 2019 Java Just in Time - John Latham Page 107(0/0)

Inheritance: adding more object state

• A subclass is extension of its superclass.

– in general can add more properties.

• One way of extending

– add more object state

– i.e. more instance variables.

January 28, 2019 Java Just in Time - John Latham Page 108(0/0)

The MoodyPerson class

005: // The state of the Person’s happiness.

006: private boolean isHappyNow;

• Two method parameters for constructor method

– one passed to superclass constructor call

– one used here.

009: // Constructor is given the person’s name and initial happin ess.

010: public MoodyPerson(String name, boolean initialHappiness)

011: {

012: super(name);

013: isHappyNow = initialHappiness;

014: } // MoodyPerson

Coffee

time:

Why must the call to super be the first statement?

January 28, 2019 Java Just in Time - John Latham Page 109(0/0)

The MoodyPerson class

• Also have second constructor

– just takes name of person

– assumes person initially happy.

January 28, 2019 Java Just in Time - John Latham Page 110(0/0)

Method: constructor methods: more than one: using

this

• The method parameters to constructor methods often values for instance

variables.

• When have several instance variables might have multiple constructors

– some assume default values for some instance variables.

• E.g. Might allow constructing a Point for origin by supplying no method

arguments.

January 28, 2019 Java Just in Time - John Latham Page 111(0/0)

Method: constructor methods: more than one: using

this

public class Point

{

private final double x, y;

public Point(double requiredX, double requiredY)

{

x = requiredX;
y = requiredY;

} // Point

public Point()

{

x = 0;

y = 0;

} // Point

...

} // class Point

January 28, 2019 Java Just in Time - John Latham Page 112(0/0)

Method: constructor methods: more than one: using

this

• Second constructor rather like wrapper around first.

• Could make relationship explicit

– actually call first from second

– using reserved word this with desired arguments.

• E.g.

public Point()
{

this(0, 0);

} // Point

• Known as alternative constructor call

– must be first statement in constructor body

– class must have another constructor with matching parameters.

January 28, 2019 Java Just in Time - John Latham Page 113(0/0)

The MoodyPerson class

017: // Alternative constructor is given the person’s name

018: // and initial happiness is assumed to be true.

019: public MoodyPerson(String name)

020: {

021: this(name, true);

022: } // MoodyPerson

• Have override for isHappy() .

025: // Returns whether or not the Person is happy.

026: public boolean isHappy()

027: {

028: return isHappyNow;

029: } // isHappy

• Need method to set state of happiness. . . .

January 28, 2019 Java Just in Time - John Latham Page 114(0/0)

Inheritance: adding more instance methods

• Another way of extending superclass

– add more instance methods.

• Especially likely if subclass also has additional instance variables.

January 28, 2019 Java Just in Time - John Latham Page 115(0/0)

The MoodyPerson class

032: // Sets the happiness of the person to the given state.

033: public void setHappy(boolean newHappiness)

034: {

035: isHappyNow = newHappiness;

036: } // setHappy

037:

038: } // class MoodyPerson

January 28, 2019 Java Just in Time - John Latham Page 116(0/0)

The Teenager class

• Nothing to do with Lottery, per se, just for ‘fun’

– end user can create Teenager to model big sister or brother.

001: // Representation of a teenager.

002: public class Teenager extends MoodyPerson

003: {

• Teenagers always start off being unhappy.

• Follow chain of constructor calls. . . .

004: // Constructor is given the person’s name.

005: public Teenager(String name)

006: {

007: super(name, false);

008: } // Teenager

January 28, 2019 Java Just in Time - John Latham Page 117(0/0)

The Teenager class

• Provide method implementations getPersonType() and getCurrentSaying() .

• These method interfaces inherited from MoodyPerson

– which inherited them from Person without implementing them.

011: // Returns the name of the type of Person.

012: public String getPersonType()

013: {

014: return "Teenager";

015: } // getPersonType

January 28, 2019 Java Just in Time - John Latham Page 118(0/0)

The Teenager class

• Current saying depends on mood!

018: // Returns the Person’s current saying.

019: public String getCurrentSaying()

020: {

021: if (isHappy())

022: return "Isn’t life wonderful?";

023: else

024: return "It’s not fair!";

025: } // getCurrentSaying

026:

027: } // class Teenager

January 28, 2019 Java Just in Time - John Latham Page 119(0/0)

The Teenager class

Person

− personName: String
− latestSaying: String

+ Person(requiredPersonName: String)
+ getPersonName(): String
+ getLatestSaying(): String
+ getPersonType(): String
+ isHappy(): boolean
+ getCurrentSaying(): String
+ speak()
+ toString(): String

AudienceMember

+ AudienceMember(name: String)
+ getPersonType(): String
+ getCurrentSaying(): String

TVHost

+ TVHost(name: String)
+ getPersonType(): String
+ getCurrentSaying(): String

Director

+ Director(name: String)
+ getPersonType(): String
+ getCurrentSaying(): String

Punter

+ Punter(name: String)
+ getPersonType(): String
+ getCurrentSaying(): String
+ isHappy(): boolean

MoodyPerson

− isHappyNow: boolean

+ MoodyPerson(name: String, initialHappiness: boolean)
+ MoodyPerson(name: String)
+ isHappy(): boolean
+ setHappy(newHappiness: boolean)

Psychic

+ Psychic(name: String)
+ getPersonType(): String
+ getCurrentSaying(): String

Teenager

+ Teenager(name: String)
+ getPersonType(): String
+ getCurrentSaying(): String

January 28, 2019 Java Just in Time - John Latham Page 120(0/0)

The Teenager class

Coffee

time:

List the instance methods of the Teenager class, and for

each identify where they originated. State whether they

are inherited as is, override one from a superclass, or are

a method implementation of an abstract method.

January 28, 2019 Java Just in Time - John Latham Page 121(0/0)

The TestPersonSubclasses class

001: // Create one of each type of person, and make them speak.

002: public class TestPersonSubclasses

003: {

004: public static void main(String[] args)

005: {

006: Person[] persons =

007: {

008: new AudienceMember("Ivana Di Yowt"),

009: new Director("Sir Lance Earl Otto"),

010: new Psychic("Miss T. Peg de Gowt"),

011: new Punter("Ian Arushfa Rishly Ving"),

012: new Teenager("Homer Nalzone"),

013: new TVHost("Terry Bill Woah B’Gorne")

014: };

015:

016: for (Person person : persons)

017: testPerson(person);

018: } // main

January 28, 2019 Java Just in Time - John Latham Page 122(0/0)

The TestPersonSubclasses class

• Alter testPerson()

– if given Person also MoodyPerson

∗ calls new method testMoodyPerson() .

January 28, 2019 Java Just in Time - John Latham Page 123(0/0)

Inheritance: testing for an instance of a class

• The reserved word instanceof

– binary infix operator

– left operand is object reference

– right operand is class name.

– yields true

iff reference refers to object which is an instance of named class.

• E.g. if Tandem is subclass of Bicycle :

Vehicle vehicle = new Tandem(...);

... Code that might change what vehicle refers to.

if (vehicle instanceof Bicycle)

... Code that is only run if vehicle is still referring to a Bic ycle,

... perhaps still the original Tandem.

January 28, 2019 Java Just in Time - John Latham Page 124(0/0)

Inheritance: casting to a subclass

• An instance of subclass is an instance of superclass too.

• So item of subclass type

can always be used wherever superclass type required.

• E.g.

Vehicle vehicle1 = new Bicycle(...);

• But not every instance of superclass

is instance of a particular subclass – obviously.

• So item of superclass type

cannot automatically be used where subclass type is required.

January 28, 2019 Java Just in Time - John Latham Page 125(0/0)

Inheritance: casting to a subclass

• E.g. not permitted.

Vehicle vehicle1 = new Bicycle(...);

...

Bicycle bicycle1 = vehicle1;

• vehicle1 is definitely type Vehicle – but value might not be a Bicycle .

• If sure is safe to treat item of superclass type as particular subclass type

– can cast value to that subclass

∗ precede value with subclass name in brackets.

• E.g. if sure after ... that vehicle1 is still reference to a Bicycle :

Vehicle vehicle1 = new Bicycle(...);

...

Bicycle bicycle1 = (Bicycle)vehicle1;

January 28, 2019 Java Just in Time - John Latham Page 126(0/0)

Inheritance: casting to a subclass

• The compiler accepts this on face value

– but type cast is checked at run time

– if value being cast is not reference to object of that type

∗ ClassCastException object thrown.

• Note: class cast does not change object being cast

– merely checks that object is already of stated type.

• Contrast with primitive type cast

– e.g. convert double into int

– creates new value from old one.

January 28, 2019 Java Just in Time - John Latham Page 127(0/0)

The TestPersonSubclasses class

021: // Make the given person speak, reporting the before and afte r toString.

022: private static void testPerson(Person person)

023: {

024: System.out.println("------------------------------- -------------------");

025: System.out.println(person);

026: person.speak();

027: System.out.println(person);

028: if (person instanceof MoodyPerson)

029: testMoodyPerson((MoodyPerson)person);

030: } // testPerson

031:

032:

January 28, 2019 Java Just in Time - John Latham Page 128(0/0)

The TestPersonSubclasses class

033: // Make the given moody person change happiness then speak,

034: // reporting the after toString; all twice.

035: private static void testMoodyPerson(MoodyPerson moodyPerson)

036: {

037: for (int count = 1; count <= 2; count++)

038: {

039: moodyPerson.setHappy(! moodyPerson.isHappy());

040: moodyPerson.speak();

041: System.out.println(moodyPerson);

042: } // for

043: } // testMoodyPerson

044:

045: } // class TestPersonSubclasses

January 28, 2019 Java Just in Time - John Latham Page 129(0/0)

The TestPersonSubclasses class

Coffee

time:

In the code above, what would happen if we did not

cast person to MoodyPerson when passing its value to

testMoodyPerson() ? What if that method parameter was

declared to be of type Person ?

January 28, 2019 Java Just in Time - John Latham Page 130(0/0)

Trying it

Console Input / Output

--

Audience Member Ivana Di Yowt true I am Ivana Di Yowt

Audience Member Ivana Di Yowt true Oooooh!

--

Director Sir Lance Earl Otto true I am Sir Lance Earl Otto

Director Sir Lance Earl Otto true This business is MY pleasur e

--

Psychic Miss T. Peg de Gowt true I am Miss T. Peg de Gowt

Psychic Miss T. Peg de Gowt true I can see someone very happy!

--

Punter Ian Arushfa Rishly Ving false I am Ian Arushfa Rishly V ing

Punter Ian Arushfa Rishly Ving false Make me happy: give me lo ts of money

--

Teenager Homer Nalzone false I am Homer Nalzone

Teenager Homer Nalzone false It’s not fair!

Teenager Homer Nalzone true Isn’t life wonderful?

Teenager Homer Nalzone false It’s not fair!

--

TV Host Terry Bill Woah B’Gorne true I am Terry Bill Woah B’Gor ne

TV Host Terry Bill Woah B’Gorne true Welcome, suckers!

$ _ Run

January 28, 2019 Java Just in Time - John Latham Page 131(0/0)

Coursework: Lots of different mouse mats!

(Summary only)

Have additional state in some subclasses.

January 28, 2019 Java Just in Time - John Latham Page 132(0/0)

Section 9

The Ball class

January 28, 2019 Java Just in Time - John Latham Page 133(0/0)

Aim

AIM: This section is mainly for progressing the development

of the program, however the java.awt.Color class is in-

troduced.

January 28, 2019 Java Just in Time - John Latham Page 134(0/0)

The Ball class

• Away from subclasses of Person – onto lottery games.

• Balls have integer number, and colour.

• Use java.awt.Color to represent colour.

January 28, 2019 Java Just in Time - John Latham Page 135(0/0)

GUI API: Color

• java.awt.Color implements colours for graphical user interfaces

– each Color object has four values in range 0 to 255

∗ red, green, blue and alpha (opacity).

• Class has class constants

containing references to Color objects for some common colours.

public static final Color black = new Color(0, 0, 0, 255);

public static final Color white = new Color(255, 255, 255, 255);

public static final Color red = new Color(255, 0, 0, 255);

public static final Color green = new Color(0, 255, 0, 255);

public static final Color blue = new Color(0, 0, 255, 255);

January 28, 2019 Java Just in Time - John Latham Page 136(0/0)

GUI API: Color

public static final Color lightGray = new Color(192, 192, 192, 255);

public static final Color gray = new Color(128, 128, 128, 255);

public static final Color darkGray = new Color(64, 64, 64, 255);

public static final Color pink = new Color(255, 175, 175, 255);

public static final Color orange = new Color(255, 200, 0, 255);

public static final Color yellow = new Color(255, 255, 0, 255);

public static final Color magenta = new Color(255, 0, 255, 255);

public static final Color cyan = new Color(0, 255, 255, 255);

• An instance method getRGB()

– returns unique int for each equivalent colour

∗ based on four component values.

January 28, 2019 Java Just in Time - John Latham Page 137(0/0)

The Ball class

001: import java.awt.Color;
002:
003: // Representation of a lottery ball, comprising colour and v alue.
004: public class Ball

005: {

006: // The numeric value of the ball.
007: private final int value;
008:
009: // The colour of the ball.
010: private final Color colour;
011:
012:
013: // A ball is constructed by giving a number and a colour.
014: public Ball(int requiredValue, Color requiredColour)

015: {

016: value = requiredValue;
017: colour = requiredColour;

018: } // Ball

019:
020:

January 28, 2019 Java Just in Time - John Latham Page 138(0/0)

The Ball class

021: // Returns the numeric value of the ball.
022: public int getValue()

023: {

024: return value;

025: } // getValue

026:
027:
028: // Returns the colour of the ball.
029: public Color getColour()

030: {

031: return colour;

032: } // getColour

033:
034:

January 28, 2019 Java Just in Time - John Latham Page 139(0/0)

The Ball class

035: // Compares this ball’s value with another, returning

036: // < 0 if this ball’s value is smaller than the other’s,

037: // > 0 if it is greater, or if the values are equal then

038: // compare the RGB numbers of the colours instead.

039: public int compareTo(Ball other)

040: {

041: if (value == other.value)

042: return colour.getRGB() - other.colour.getRGB();

043: else

044: return value - other.value;

045: } // compareTo

046:
047:

January 28, 2019 Java Just in Time - John Latham Page 140(0/0)

The Ball class

048: // Mainly for testing.

049: public String toString()

050: {

051: return "Ball " + value + " " + colour;

052: } // toString

053:

054: } // class Ball

Coffee

time:

Is an instance of Ball a mutable object or an immutable

object?

January 28, 2019 Java Just in Time - John Latham Page 141(0/0)

Section 10

The BallContainer classes

January 28, 2019 Java Just in Time - John Latham Page 142(0/0)

Aim

AIM: To show another example of inheritance. We also see

how to delete an array element from an unsorted par-

tially filled array.

January 28, 2019 Java Just in Time - John Latham Page 143(0/0)

The BallContainer classes

• Lottery games consist of machine and landing rack

– both (can) contain balls

– have some features in common

– some features specific.

• Suggests superclass BallContainer for common features

– two subclasses Machine and Rack

– with specific features.

• We have TestBallContainers too, but do not show here.

January 28, 2019 Java Just in Time - John Latham Page 144(0/0)

The BallContainer classes

Machine

+ Machine(name: String, size: int)
+ getType(): String
+ ejectBall(): Ball

Rack

+ Rack(name: String, size: int)
+ getType(): String
+ sortBalls()
+ contains(value: int): boolean

BallContainer

− name: String
− balls: Ball[]
− noOfBalls: int

+ BallContainer(requiredName: String, requiredSize: int)
+ getName(): String
+ getType(): String
+ getBall(index: int): Ball
+ getNoOfBalls(): int
+ getSize(): int
+ addBall(ball: Ball)
+ swapBalls(index1: int, index2: int)
+ removeBall()
+ toString(): String

January 28, 2019 Java Just in Time - John Latham Page 145(0/0)

The BallContainer classes

• Note: places where we might sensibly throw exceptions

– keep simple here

– revisit during revisit to exceptions.

January 28, 2019 Java Just in Time - John Latham Page 146(0/0)

The BallContainer class

001: // Representation of a container of balls for the lottery,

002: // with a fixed size and zero or more balls in a certain order.

003: public abstract class BallContainer

004: {

005: // The name of the BallContainer.

006: private final String name;

007:

008: // The balls contained in the BallContainer.

009: private final Ball[] balls;

010:

011: // The number of balls contained in the BallContainer.

012: // These are stored in balls, indexes 0 to noOfBalls - 1.

013: private int noOfBalls;

January 28, 2019 Java Just in Time - John Latham Page 147(0/0)

The BallContainer class

Coffee

time:

Is a BallContainer always full? Does it have a fixed size?

016: // Constructor is given the name and size.

017: public BallContainer(String requiredName, int requiredSize)

018: {

019: name = requiredName;

020: balls = new Ball[requiredSize];

021: noOfBalls = 0;

022: } // BallContainer

• The accessor methods. . . .

January 28, 2019 Java Just in Time - John Latham Page 148(0/0)

The BallContainer class

025: // Returns the BallContainer’s name.
026: public String getName()

027: {

028: return name;

029: } // getName

030:
031:
032: // Returns the name of the type of BallContainer.
033: public abstract String getType();
034:
035:
036: // Returns the Ball at the given index in the BallContainer,
037: // or null if that index is not in the range 0 to noOfBalls - 1.
038: public Ball getBall(int index)

039: {

040: if (index >= 0 && index < noOfBalls)
041: return balls[index];
042: else

043: return null;

044: } // getBall;

January 28, 2019 Java Just in Time - John Latham Page 149(0/0)

The BallContainer class

045:
046:
047: // Returns the number of balls in the BallContainer.
048: public int getNoOfBalls()

049: {

050: return noOfBalls;

051: } // getNoOfBalls

052:
053:
054: // Returns the size of the BallContainer.

055: public int getSize()

056: {

057: return balls.length;

058: } // getSize

January 28, 2019 Java Just in Time - John Latham Page 150(0/0)

The BallContainer class

• And mutator methods.

061: // Adds the given ball into the BallContainer, at the next hig hest unused

062: // index position. Has no effect if the BallContainer is full .

063: public void addBall(Ball ball)

064: {

065: if (noOfBalls < balls.length)

066: {

067: balls[noOfBalls] = ball;

068: noOfBalls++;

069: } // if

070: } // addBall

071:

072:

January 28, 2019 Java Just in Time - John Latham Page 151(0/0)

The BallContainer class

073: // Swaps the balls at the two given index positions.

074: // Has no effect if either index is not in the range 0 to noOfBal ls - 1.

075: public void swapBalls(int index1, int index2)

076: {

077: if (index1 >= 0 && index1 < noOfBalls

078: && index2 >=0 && index2 < noOfBalls)

079: {

080: Ball thatWasAtIndex1 = balls[index1];

081: balls[index1] = balls[index2];

082: balls[index2] = thatWasAtIndex1;

083: } // if

084: } // swapBalls;

085:

086:

January 28, 2019 Java Just in Time - John Latham Page 152(0/0)

The BallContainer class

087: // Removes the Ball at the highest used index position.
088: // Has no effect if the BallContainer is empty.
089: public void removeBall()

090: {

091: if (noOfBalls > 0)
092: noOfBalls--;

093: } // removeBall

• And toString() .

096: // Mainly for testing.
097: public String toString()

098: {

099: String result = getType() + " " + name + "(<=" + balls.length + ")";
100: for (int index = 0; index < noOfBalls; index++)
101: result += String.format("%n%d %s", index, balls[index]);
102: return result;

103: } // toString

104:
105: } // class BallContainer

January 28, 2019 Java Just in Time - John Latham Page 153(0/0)

The Machine class

001: // Representation of a lottery machine,

002: // with the facility for a randomly chosen ball to be ejected.

003: public class Machine extends BallContainer

004: {

005: // Constructor is given the name and size.

006: public Machine(String name, int size)

007: {

008: super(name, size);

009: } // Machine

• A method implementation for abstract method getType() .

012: // Returns the name of the type of BallContainer.

013: public String getType()

014: {

015: return "Lottery machine";

016: } // getType

January 28, 2019 Java Just in Time - John Latham Page 154(0/0)

Array: partially filled array: deleting an element

• Simplest way to delete array element from partially filled array with

arbitrary order

– decrement the count

– replace unwanted item with one at end.

int indexToBeDeleted = ...

noOfItemsInArray--;

anArray[indexToBeDeleted] = anArray[noOfItemsInArray] ;

January 28, 2019 Java Just in Time - John Latham Page 155(0/0)

The Machine class

019: // Randomly chooses a ball in the machine, and ejects it.

020: // The ejected ball is returned. If the machine is empty then

021: // it has no effect, and returns null.

022: public Ball ejectBall()

023: {

024: if (getNoOfBalls() <= 0)

025: return null;

January 28, 2019 Java Just in Time - John Latham Page 156(0/0)

The Machine class

026: else

027: {

028: // Math.random() * getNoOfBalls yields a number

029: // which is >= 0 and < number of balls.

030: int ejectedBallIndex = (int) (Math.random() * getNoOfBalls());

031:

032: Ball ejectedBall = getBall(ejectedBallIndex);

033:

034: swapBalls(ejectedBallIndex, getNoOfBalls() - 1);

035: removeBall();

036:

037: return ejectedBall;

038: } // else

039: } // ejectBall

040:

041: } // class Machine

January 28, 2019 Java Just in Time - John Latham Page 157(0/0)

The Rack class

001: // Representation of a landing rack of balls for the lottery,

002: // with the facility for them to be sorted into order,

003: // and another to determine if it contains a ball of a given val ue.

004: public class Rack extends BallContainer

005: {

006: // Constructor is given the name and size.

007: public Rack(String name, int size)

008: {

009: super(name, size);

010: } // Rack

011:

012:

013: // Returns the name of the type of BallContainer.

014: public String getType()

015: {

016: return "Landing rack";

017: } // getType

January 28, 2019 Java Just in Time - John Latham Page 158(0/0)

The Rack class

020: // Sorts the balls in the Rack into ascending order,
021: // using their compareTo() methods.
022: public void sortBalls()

023: {

024: // Each pass of the sort reduces unsortedLength by one.

025: int unsortedLength = getNoOfBalls();
026: // If no change is made on a pass, the main loop can stop.

027: boolean changedOnThisPass;

028: do

029: {

030: changedOnThisPass = false;

031: for (int pairLeftIndex = 0;

032: pairLeftIndex < unsortedLength - 1; pairLeftIndex++)

033: if (getBall(pairLeftIndex).compareTo(getBall(pairLeftI ndex + 1)) > 0)
034: {

035: swapBalls(pairLeftIndex, pairLeftIndex + 1);
036: changedOnThisPass = true;

037: } // if

038: unsortedLength--;

039: } while (changedOnThisPass);

040: } // sortBalls

January 28, 2019 Java Just in Time - John Latham Page 159(0/0)

The Rack class

043: // Return true if and only if the rack contains

044: // a Ball with the given number.

045: public boolean contains(int value)

046: {

047: boolean found = false;

048: int index = 0;

049: while (!found && index < getNoOfBalls())

050: {

051: found = getBall(index).getValue() == value;

052: index++;

053: } // while

054: return found;

055: } // contains

056:

057: } // class Rack

January 28, 2019 Java Just in Time - John Latham Page 160(0/0)

Section 11

The Gameclass

January 28, 2019 Java Just in Time - John Latham Page 161(0/0)

Aim

AIM: To illustrate the difference between is a and has a rela-

tionships.

January 28, 2019 Java Just in Time - John Latham Page 162(0/0)

The Game class

• Games consist of machine and rack.

• Also create TestGame but not show here.

• A Gamehas a Machine and a Rack .

• A Machine is a BallContainer .

January 28, 2019 Java Just in Time - John Latham Page 163(0/0)

Inheritance: is a versus has a

• When class A is subclass of B

– object of type A is a B.

• When Chas instance variable of type D

– object of type Chas a D.

January 28, 2019 Java Just in Time - John Latham Page 164(0/0)

The Game class

001: // Representation of a lottery game, comprising a machine an d a rack.

002: public class Game

003: {

004: // The machine for the game.

005: private final Machine machine;

006:

007: // The rack for the game.

008: private final Rack rack;

009:

010:

011: // Constructor takes name and size of the machine, and the rac k.

012: public Game(String machineName, int machineSize,

013: String rackName, int rackSize)

014: {

015: machine = new Machine(machineName, machineSize);

016: rack = new Rack(rackName, rackSize);

017: } // Game

January 28, 2019 Java Just in Time - John Latham Page 165(0/0)

The Game class

020: // Return the size of the machine.
021: public int getMachineSize()

022: {

023: return machine.getSize();

024: } // getMachineSize

025:
026:
027: // Return the size of the rack.
028: public int getRackSize()

029: {

030: return rack.getSize();

031: } // getRackSize

032:
033:
034: // Return the number of balls in the rack.
035: public int getRackNoOfBalls()

036: {

037: return rack.getNoOfBalls();

038: } // getRackNoOfBalls

January 28, 2019 Java Just in Time - John Latham Page 166(0/0)

The Game class

041: // Add a ball into the machine

042: public void machineAddBall(Ball ball)

043: {

044: machine.addBall(ball);

045: } // machineAddBall

January 28, 2019 Java Just in Time - John Latham Page 167(0/0)

The Game class

048: // Eject a ball from the machine into the rack.

049: // Also return the rejected Ball.

050: public Ball ejectBall()

051: {

052: if (machine.getNoOfBalls() > 0

053: && rack.getNoOfBalls() < rack.getSize())

054: {

055: Ball ejectedBall = machine.ejectBall();

056: rack.addBall(ejectedBall);

057: return ejectedBall;

058: } // if

059: else

060: return null;

061: } // ejectBall

January 28, 2019 Java Just in Time - John Latham Page 168(0/0)

The Game class

064: // Returns true if and only if the rack contains

065: // a Ball with the given number.

066: public boolean rackContains(int value)

067: {

068: return rack.contains(value);

069: } // rackContains

070:

071:

072: // Sorts the balls in the Rack into ascending order.

073: public void rackSortBalls()

074: {

075: rack.sortBalls();

076: } // rackSortBalls

January 28, 2019 Java Just in Time - John Latham Page 169(0/0)

The Game class

079: // Mainly for testing.

080: public String toString()

081: {

082: return String.format("%s%n%s", machine, rack);

083: } // toString

084:

085: } // class Game

January 28, 2019 Java Just in Time - John Latham Page 170(0/0)

Coursework: Shopping baskets

(Summary only)

Write a class each instance of which has a number of instances of another

class stored in it.

January 28, 2019 Java Just in Time - John Latham Page 171(0/0)

Section 12

The Worker classes

January 28, 2019 Java Just in Time - John Latham Page 172(0/0)

Aim

AIM: To show an example of a superclass which is (appro-

priately) not an abstract class. We also show how we

can use an instance method defined in the superclass,

from a subclass which overrides it.

January 28, 2019 Java Just in Time - John Latham Page 173(0/0)

The Worker classes

• A Worker creates balls and fills lottery games.

– A TraineeWorker is still learning to count

– has efficiency rating:

∗ probability of getting numbers right when creating balls!

• A TraineeWorker is a Worker .

January 28, 2019 Java Just in Time - John Latham Page 174(0/0)

The Worker classes

Person

− personName: String
− latestSaying: String

+ Person(requiredPersonName: String)
+ getPersonName(): String
+ getLatestSaying(): String
+ getPersonType(): String
+ isHappy(): boolean
+ getCurrentSaying(): String
+ speak()
+ toString(): String

AudienceMember

+ AudienceMember(name: String)
+ getPersonType(): String
+ getCurrentSaying(): String

TVHost

+ TVHost(name: String)
+ getPersonType(): String
+ getCurrentSaying(): String

Director

+ Director(name: String)
+ getPersonType(): String
+ getCurrentSaying(): String

Punter

+ Punter(name: String)
+ getPersonType(): String
+ getCurrentSaying(): String
+ isHappy(): boolean

MoodyPerson

− isHappyNow: boolean

+ MoodyPerson(name: String, initialHappiness: boolean)
+ MoodyPerson(name: String)
+ isHappy(): boolean
+ setHappy(newHappiness: boolean)

Psychic

+ Psychic(name: String)
+ getPersonType(): String
+ getCurrentSaying(): String

Teenager

+ Teenager(name: String)
+ getPersonType(): String
+ getCurrentSaying(): String

TraineeWorker

− efficiency: double

+ TraineeWorker(name: String, requiredEfficiency: double)
+ getPersonName(): String
+ getPersonType(): String
+ makeNewBall(number: int, colour: Color): Ball

Worker

+ Worker(name: String)
+ getPersonType(): String
+ getCurrentSaying(): String
+ makeNewBall(number: int, colour: Color): Ball
+ fillMachine(game: Game)

January 28, 2019 Java Just in Time - John Latham Page 175(0/0)

The Worker classes

• Testing:

– Worker and TraineeWorker are subclasses of MoodyPerson

∗ add instances to TestPersonSubclasses – not shown here.

– Have TestWorkers – do show that.

January 28, 2019 Java Just in Time - John Latham Page 176(0/0)

The Worker class

001: import java.awt.Color;

002:

003: // Representation of a worker making balls

004: // and filling up machines in the lottery.

005: public class Worker extends MoodyPerson

006: {

007: // Constructor is given the person’s name.

008: public Worker(String name)

009: {

010: super(name);

011: } // Worker

January 28, 2019 Java Just in Time - John Latham Page 177(0/0)

The Worker class

014: // Returns the name of the type of Person.

015: public String getPersonType()

016: {

017: return "Worker";

018: } // getPersonType

019:

020:

021: // Returns the Person’s current saying.

022: public String getCurrentSaying()

023: {

024: if (isHappy())

025: return "Time for tea, I think";

026: else

027: return "Puff, pant, puff, pant";

028: } // getCurrentSaying

January 28, 2019 Java Just in Time - John Latham Page 178(0/0)

The Worker class

• Worker can fill Gamewith newly created balls.

• Have separate instance method to create single ball

– so TraineeWorker can override it.

031: // Returns a newly created Ball with the given number and colo ur.

032: public Ball makeNewBall(int number, Color colour)

033: {

034: return new Ball(number, colour);

035: } // makeNewBall

• Ball colours similar to colours of rainbow

– approximately evenly spread through balls from 1 to machine size. . . .

January 28, 2019 Java Just in Time - John Latham Page 179(0/0)

The Worker class

038: // Makes this Worker fill the machine of the given Game.

039: // The Balls are created as they are inserted into the Machine .

040: public void fillMachine(Game game)

041: {

042: // Colours of balls are evenly spread between these colours,

043: // in ascending order.

044: Color[] colourGroupColours

045: = new Color[] { Color.red, Color.orange, Color.yellow, Color.green,

046: Color.blue, Color.pink, Color.magenta };

047: // This happiness change will show up when the GUI is added.

048: setHappy(false);

049: speak();

050:

January 28, 2019 Java Just in Time - John Latham Page 180(0/0)

The Worker class

051: int noOfBalls = game.getMachineSize();

052: for (int count = 1; count <= noOfBalls; count++)

053: {

054: // The colour group is a number from 0

055: // to the number of colour groups - 1.

056: // For the nth ball, we take the fraction

057: // (n - 1) divided by the number of balls

058: // and multiply that by the number of groups.

059: int colourGroup = (int) ((count - 1.0) / (double)noOfBalls

060: * (double) colourGroupColours.length);

061: Color ballColour = colourGroupColours[colourGroup];

062: game.machineAddBall(makeNewBall(count, ballColour));

063: } // for

064: setHappy(true);

065: speak();

066: } // fillMachine

067:

068: } // class Worker

January 28, 2019 Java Just in Time - John Latham Page 181(0/0)

The TraineeWorker class

• TraineeWorker is subclass of Worker

– neither are abstract classes.

• TraineeWorker has name and efficiency

– number between 0.0 (never concentrating) and 1.0 (always is).

– When making ball, if trainee not concentrating

∗ ball number is one less or one greater than desired.

January 28, 2019 Java Just in Time - John Latham Page 182(0/0)

The TraineeWorker class

001: import java.awt.Color;

002:

003: // Representation of a trainee lottery worker,

004: // who has an efficiency rating effecting accuracy of ball nu mbering.

005: public class TraineeWorker extends Worker

006: {

007: // The efficiency of the TraineeWorker.

008: private final double efficiency;

009:

010:

011: // Constructor is given the person’s name and the required ef ficiency.

012: public TraineeWorker(String name, double requiredEfficiency)

013: {

014: super(name);

015: efficiency = requiredEfficiency;

016: } // TraineeWorker

January 28, 2019 Java Just in Time - John Latham Page 183(0/0)

The TraineeWorker class

• Want efficiency to be shown as part of person’s name.

– So override getPersonName() .

– But need to use overridden version in new one!

January 28, 2019 Java Just in Time - John Latham Page 184(0/0)

Inheritance: using an overridden method

• When override instance method in superclass, may wish to method call

superclass version in body of subclass version.

• Write reserved word super and dot then instance method name.

• E.g. Assume bicycle emergency stop based on general one.

public class Vehicle

{

...

public void emergencyStop()

{

... General code for most vehicles.

} // emergencyStop

...

} // class Vehicle

January 28, 2019 Java Just in Time - John Latham Page 185(0/0)

Inheritance: using an overridden method

public class Bicycle extends Vehicle

{

...

public void emergencyStop()

{

... Specific code for bicycles.

super.emergencyStop();

... More specific code for bicycles.

} // emergencyStop

...

} // class Bicycle

• super. can be used in any instance method of subclass

– not just overriding method.

January 28, 2019 Java Just in Time - John Latham Page 186(0/0)

The TraineeWorker class

019: // Returns the Person’s name with the efficiency added in bra ckets.

020: public String getPersonName()

021: {

022: return super.getPersonName() + " (" + efficiency + " efficiency)";

023: } // getPersonName

Coffee

time:

Was getPersonName() one of the instance methods which

you decided ought to be declared as a final method in

Section 81 on page 100? Oops?

January 28, 2019 Java Just in Time - John Latham Page 187(0/0)

The TraineeWorker class

026: // Returns the name of the type of Person.

027: public String getPersonType()

028: {

029: return "Trainee " + super.getPersonType();

030: } // getPersonType

January 28, 2019 Java Just in Time - John Latham Page 188(0/0)

The TraineeWorker class

033: // Returns a newly created Ball with the given number and colo ur.

034: // The ball’s number may be wrong depending on the efficiency .

035: public Ball makeNewBall(int number, Color colour)

036: {

037: if (Math.random() >= efficiency)

038: if (Math.random() < 0.5)

039: number--;

040: else

041: number++;

042: return new Ball(number, colour);

043: } // makeNewBall

044:

045: } // class TraineeWorker

January 28, 2019 Java Just in Time - John Latham Page 189(0/0)

The TestWorkers class

• (Not thorough test.)

001: // Create one of each type of worker,

002: // and get them to fill the machine of a game.

003: public class TestWorkers

004: {

005: public static void main(String[] args)

006: {

007: testWorker(new Worker("May Kit Dewitt"),

008: new Game("Lott O’Luck Larry", 3, "Slippery’s Mile", 2));

009: testWorker(new TraineeWorker("Darwin Marbest", 0.75),

010: new Game("13th Time Lucky", 5, "Oooz OK Lose", 2));

011: } // main

012:

013:

January 28, 2019 Java Just in Time - John Latham Page 190(0/0)

The TestWorkers class

014: // Make the given worker fill the given game,

015: // reporting values before and after.

016: private static void testWorker(Worker worker, Game game)

017: {

018: System.out.println("------------------------------- -------");

019: System.out.println("Start with");

020: System.out.println(game);

021:

022: System.out.println("Balls added by");

023: System.out.println(worker);

024:

025: worker.fillMachine(game);

026: System.out.println(game);

027: System.out.println(worker);

028: } // testWorker

029:

030: } // class TestWorkers

January 28, 2019 Java Just in Time - John Latham Page 191(0/0)

Trying it

Console Input / Output

$ java TestWorkers

Start with

Lottery machine Lott O’Luck Larry(<=3)

Landing rack Slippery’s Mile(<=2)

Balls added by

Worker May Kit Dewitt true I am May Kit Dewitt

Lottery machine Lott O’Luck Larry(<=3)

0 Ball 1 java.awt.Color[r=255,g=0,b=0]

1 Ball 2 java.awt.Color[r=255,g=255,b=0]

2 Ball 3 java.awt.Color[r=0,g=0,b=255]

Landing rack Slippery’s Mile(<=2)

Worker May Kit Dewitt true Time for tea, I think

Start with

...

$ _ Run

January 28, 2019 Java Just in Time - John Latham Page 192(0/0)

Coursework: Loads of disc space

(Summary only)

To write a non-abstract class which has a subclass, and use an instance

method defined in the superclass from a subclass which overrides it.

January 28, 2019 Java Just in Time - John Latham Page 193(0/0)

Section 13

The CleverPunter class

January 28, 2019 Java Just in Time - John Latham Page 194(0/0)

Aim

AIM: To reinforce inheritance concepts, and complete the

model classes of the Notional Lottery program.

January 28, 2019 Java Just in Time - John Latham Page 195(0/0)

The CleverPunter class

• CleverPunter models kind of person that plays lottery games.

– Is subclass of MoodyPerson .

• Develop CleverPunter and TestCleverPunter here.

• Add a CleverPunter to TestPersonSubclasses – not shown here.

• Our final UML class diagram. . . .

January 28, 2019 Java Just in Time - John Latham Page 196(0/0)

The CleverPunter class

Person

− personName: String
− latestSaying: String

+ Person(requiredPersonName: String)
+ getPersonName(): String
+ getLatestSaying(): String
+ getPersonType(): String
+ isHappy(): boolean
+ getCurrentSaying(): String
+ speak()
+ toString(): String

AudienceMember

+ AudienceMember(name: String)
+ getPersonType(): String
+ getCurrentSaying(): String

TVHost

+ TVHost(name: String)
+ getPersonType(): String
+ getCurrentSaying(): String

Director

+ Director(name: String)
+ getPersonType(): String
+ getCurrentSaying(): String

Punter

+ Punter(name: String)
+ getPersonType(): String
+ getCurrentSaying(): String
+ isHappy(): boolean

MoodyPerson

− isHappyNow: boolean

+ MoodyPerson(name: String, initialHappiness: boolean)
+ MoodyPerson(name: String)
+ isHappy(): boolean
+ setHappy(newHappiness: boolean)

Psychic

+ Psychic(name: String)
+ getPersonType(): String
+ getCurrentSaying(): String

Teenager

+ Teenager(name: String)
+ getPersonType(): String
+ getCurrentSaying(): String

TraineeWorker

− efficiency: double

+ TraineeWorker(name: String, requiredEfficiency: double)
+ getPersonName(): String
+ getPersonType(): String
+ makeNewBall(number: int, colour: Color): Ball

Worker

+ Worker(name: String)
+ getPersonType(): String
+ getCurrentSaying(): String
+ makeNewBall(number: int, colour: Color): Ball
+ fillMachine(game: Game)

CleverPunter

− currentGame: Game
− currentGuess: int[]

+ CleverPunter(name: String)
+ getPersonType(): String
+ getPersonName(): String
+ getCurrentSaying(): String
+ setGame(requiredGame: Game)

January 28, 2019 Java Just in Time - John Latham Page 197(0/0)

The CleverPunter class

001: // Representation of a clever person playing the lottery who actually knows

002: // enough to make some guesses and score them against a game.

003: public class CleverPunter extends MoodyPerson

004: {

005: // The game which is currently being played.

006: private Game currentGame = null;

007:

008: // The guess of what balls will come out.

009: private int[] currentGuess = null;

010:

011:

012: // Constructor is given the person’s name.

013: public CleverPunter(String name)

014: {

015: super(name);

016: } // CleverPunter

January 28, 2019 Java Just in Time - John Latham Page 198(0/0)

The CleverPunter class

019: // Returns the name of the type of Person.

020: public String getPersonType()

021: {

022: return "Clever Punter";

023: } // getPersonType

024:
025:

026: // Returns the Person’s name, with the current guess include d.

027: public String getPersonName()

028: {

029: String result = super.getPersonName();
030: if (currentGuess != null && currentGuess.length != 0)

031: {

032: result += "(guess " + currentGuess[0];
033: for (int index = 1; index < currentGuess.length; index++)
034: result += "," + currentGuess[index];
035: result += ")";

036: } // if

037: return result;

038: } // getPersonName

January 28, 2019 Java Just in Time - John Latham Page 199(0/0)

The CleverPunter class

041: // Returns the Person’s current saying.

042: public String getCurrentSaying()

043: {

044: if (currentGame == null)

045: {

046: setHappy(false);

047: return "I need a game to play!";

048: } // if

049: else

January 28, 2019 Java Just in Time - John Latham Page 200(0/0)

The CleverPunter class

050: {

051: int noOfMatches = getNoOfMatches();

052: int noOfNonMatches = currentGame.getRackNoOfBalls() - noOfM atches;

053: // Is happy if and only if there are no non-matches.

054: setHappy(noOfNonMatches == 0);

055: if (noOfMatches == currentGame.getRackSize())

056: return "Yippee!! I’ve won the jackpot!";

057: else if (noOfNonMatches != 0)

058: return "Doh! " + noOfNonMatches + " not matched";

059: else if (noOfMatches == 0) // I.e. the rack is still empty.

060: return "I’m excited!";

061: else

062: return noOfMatches + " matched so far!";

063: } // else

064: } // getCurrentSaying

January 28, 2019 Java Just in Time - John Latham Page 201(0/0)

The CleverPunter class

065:

066:

067: // Helper method to find out how many of the guesses currently match the

068: // game rack. Note: this does not get called if currentGuess i s null.

069: private int getNoOfMatches()

070: {

071: int noMatchedSoFar = 0;

072: for (int oneNumber : currentGuess)

073: if (currentGame.rackContains(oneNumber))

074: noMatchedSoFar++;

075: return noMatchedSoFar;

076: } // getNoOfMatches

• Next, observe software reuse – play a mock game to get the guess!. . .

January 28, 2019 Java Just in Time - John Latham Page 202(0/0)

The CleverPunter class

079: // Set the game being currently played.

080: public void setGame(Game requiredGame)

081: {

082: currentGame = requiredGame;

083: currentGuess = new int[currentGame.getRackSize()];

084: // An easy way to obtain a guess is to play a mock game!

085: Game mockGame =new Game("", currentGame.getMachineSize(),

086: "", currentGame.getRackSize());

087: Worker mockWorker = new Worker("");

088: mockWorker.fillMachine(mockGame);

089: for (int index = 0; index < currentGame.getRackSize(); index++)

090: currentGuess[index] = mockGame.ejectBall().getValue() ;

091: } // setGame

092:

093: } // class CleverPunter

January 28, 2019 Java Just in Time - John Latham Page 203(0/0)

The CleverPunter class

Coffee

time:

Whilst that may have been a bit ‘clever’ of us, was it re-

ally the best way to have software reuse for sharing code

between CleverPunter and Machine ? (Hint: some kind of

number chooser?)

January 28, 2019 Java Just in Time - John Latham Page 204(0/0)

The TestCleverPunter class

001: // Given a machine size and a rack size from the first two argum ents,

002: // create a game and a clever punter to play it,

003: // reporting result as eject each ball.

004: public class TestCleverPunter

005: {

006: public static void main(String[] args)

007: {

008: int machineSize = Integer.parseInt(args[0]);

009: int rackSize = Integer.parseInt(args[1]);

010:

011: Game game = new Game("Lott O’Luck Larry", machineSize,

012: "Slippery’s Mile", rackSize);

013: Worker worker = new Worker("May Kit Dewitt");

014: worker.fillMachine(game);

015:

January 28, 2019 Java Just in Time - John Latham Page 205(0/0)

The TestCleverPunter class

016: CleverPunter cleverPunter = new CleverPunter("Wendy Athinkile-Win");

017: System.out.println(cleverPunter);

018: cleverPunter.speak();

019: System.out.println(cleverPunter);

020:

021: cleverPunter.setGame(game);

022: cleverPunter.speak();

023: System.out.println(cleverPunter);

024: for (int count = 1; count <= game.getRackSize(); count++)

025: {

026: System.out.println("Ejected: " + game.ejectBall().getV alue());

027: cleverPunter.speak();

028: System.out.println(cleverPunter.isHappy()

029: + " " + cleverPunter.getLatestSaying());

030: } // for

031: } // main

032:

033: } // class TestCleverPunter

January 28, 2019 Java Just in Time - John Latham Page 206(0/0)

Trying it

Console Input / Output

$ java TestCleverPunter 10 5

Clever Punter Wendy Athinkile-Win true I am Wendy Athinkile -Win

Clever Punter Wendy Athinkile-Win false I need a game to play !

Clever Punter Wendy Athinkile-Win(guess 8,3,6,4,7) true I ’m excited!

Ejected: 4

true 1 matched so far!

Ejected: 10

false Doh! 1 not matched

Ejected: 8

false Doh! 1 not matched

Ejected: 7

false Doh! 1 not matched

Ejected: 6

false Doh! 1 not matched

$ _ Run

January 28, 2019 Java Just in Time - John Latham Page 207(0/0)

Trying it

Console Input / Output

$ java TestCleverPunter 7 7

Clever Punter Wendy Athinkile-Win true I am Wendy Athinkile -Win

Clever Punter Wendy Athinkile-Win false I need a game to play !

Clever Punter Wendy Athinkile-Win(guess 6,2,4,3,7,1,5) t rue I’m excited!

Ejected: 7

true 1 matched so far!

Ejected: 6

true 2 matched so far!

Ejected: 5

true 3 matched so far!

Ejected: 2

true 4 matched so far!

Ejected: 1

true 5 matched so far!

Ejected: 3

true 6 matched so far!

Ejected: 4

true Yippee!! I’ve won the jackpot!

$ _ Run

January 28, 2019 Java Just in Time - John Latham Page 208(0/0)

Trying it

Console Input / Output

$ java TestCleverPunter 49 7

Clever Punter Wendy Athinkile-Win true I am Wendy Athinkile -Win

Clever Punter Wendy Athinkile-Win false I need a game to play !

Clever Punter Wendy Athinkile-Win(guess 36,12,30,26,27, 15,17) true I’m excited!

Ejected: 49

false Doh! 1 not matched

Ejected: 43

false Doh! 2 not matched

Ejected: 45

false Doh! 3 not matched

Ejected: 13

false Doh! 4 not matched

Ejected: 6

false Doh! 5 not matched

Ejected: 7

false Doh! 6 not matched

Ejected: 1

false Doh! 7 not matched

$ _ Run

January 28, 2019 Java Just in Time - John Latham Page 209(0/0)

Coursework: Making it more realistic

(Summary only)

Add more complexity to an inheritance hierarchy at appropriate places.

January 28, 2019 Java Just in Time - John Latham Page 210(0/0)

Section 14

The GUI classes

January 28, 2019 Java Just in Time - John Latham Page 211(0/0)

Aim

AIM: To characterize the rest of the Notional Lottery program

development.

January 28, 2019 Java Just in Time - John Latham Page 212(0/0)

The GUI classes

• Second phase concerns graphical user interface classes

– details would be distraction, so merely characterize.

• Class LotteryGUI to provide graphical user interface.

• Classes to provide images for model objects

– PersonImage , BallImage ,

– and BallContainerImage

∗ with subclasses MachineImage and RackImage .

• Person modified

so each instance has a corresponding instance of PersonImage

– created by constructor method of Person

– stored in new instance variable.

January 28, 2019 Java Just in Time - John Latham Page 213(0/0)

The GUI classes

• Similarly Ball , Machine and Rack objects

– each have corresponding

BallImage , MachineImage and RackImage object.

• PersonImage has update() instance method

– ensures image on screen reflects state of Person

– Person modified to invoke update() whenever state changes.

• E.g. MoodyPerson setHappy() :

January 28, 2019 Java Just in Time - John Latham Page 214(0/0)

MoodyPerson.java

...

032: // Sets the happiness of the person to the given state.

033: public void setHappy(boolean newHappiness)

034: {

035: isHappyNow = newHappiness;

036: getImage().update();

037: } // setHappy

...

January 28, 2019 Java Just in Time - John Latham Page 215(0/0)

The GUI classes

• Similar relationship for other model classes with corresponding image class.

• Have classes SpeedController and SpeedControllerGUI

to control speed of game.

• Person and Ball have flash() instance method

– causes their image objects to flash on screen

– invoked at various points in model

∗ e.g. just before ball is ejected from machine.

• Each kind of Person has different coloured face in image

– getColour() instance method added to Person .

Coffee

time:

How would we add getColour() to the Person model

classes, so that each type of person has a different

colour?

January 28, 2019 Java Just in Time - John Latham Page 216(0/0)

Section 15

The Object class and

constructor chaining

January 28, 2019 Java Just in Time - John Latham Page 217(0/0)

Aim

AIM: To introduce the class Object and the fact that the con-

structor method of the superclass is invoked implicitly

by default. We also take a more thorough look at con-

structor chaining.

January 28, 2019 Java Just in Time - John Latham Page 218(0/0)

Standard API: Object

• All objects are also instances of java.lang.Object .

• If class not declared to extend some other class

– implicitly extends Object directly.

• ALL classes reside in single inheritance hierarchy

– Object at root.

• Every class has one superclass

– except Object .

January 28, 2019 Java Just in Time - John Latham Page 219(0/0)

Standard API: Object

• Object has one constructor method.

public class Object

{

...

public Object()

{

... Code here to actually create an object,

... allocating memory for it, etc..

} // Object

...

} // class Object

January 28, 2019 Java Just in Time - John Latham Page 220(0/0)

Inheritance: invoking the superclass constructor:

implicitly

• In constructor method, if first statement

– is not superclass constructor call

– nor alternative constructor call

– then implicit call super() assumed.

• The first work done by constructor must be to actually create the object

– allocate memory for it

– done inside constructor of java.lang.Object .

January 28, 2019 Java Just in Time - John Latham Page 221(0/0)

The Object class and constructor chaining

• E.g. Person constructor we saw previously.

January 28, 2019 Java Just in Time - John Latham Page 222(0/0)

Person.java

...

012: public Person(String requiredPersonName)

013: {

014: personName = requiredPersonName;

015: latestSaying = "I am " + personName;

016: } // Person

...

January 28, 2019 Java Just in Time - John Latham Page 223(0/0)

The Object class and constructor chaining

• Treated as though has call to constructor of superclass of Person

– which is Object .

January 28, 2019 Java Just in Time - John Latham Page 224(0/0)

Person.java-WITH-SUPER

...

012: public Person(String requiredPersonName)

013: {

014: super();

015: personName = requiredPersonName;

016: latestSaying = "I am " + personName;

017: } // Person

...

January 28, 2019 Java Just in Time - John Latham Page 225(0/0)

Inheritance: constructor chaining

• When constructor method invoked, first thing is

– either call to another constructor in same class

– or call to constructor method in superclass.

• This does the same

– all way up inheritance hierarchy

– until constructor of java.lang.Object is called.

• Known as constructor chaining.

• Constructor chaining must always be possible for every class

– else could not have objects created at run time

∗ constructor method of Object actually creates object.

• One rule

– at least one constructor must not call another of same class!

January 28, 2019 Java Just in Time - John Latham Page 226(0/0)

The Object class and constructor chaining

• E.g. see TraineeWorker being created.

Person person = new TraineeWorker("Justin de Neaushob", 0.0);

January 28, 2019 Java Just in Time - John Latham Page 227(0/0)

TraineeWorker.java

...

012: public TraineeWorker(String name, double requiredEfficiency)

013: {

014: super(name);

015: efficiency = requiredEfficiency;

016: } // TraineeWorker

...

January 28, 2019 Java Just in Time - John Latham Page 228(0/0)

Worker.java

...

008: public Worker(String name)

009: {

010: super(name);

011: } // Worker

...

January 28, 2019 Java Just in Time - John Latham Page 229(0/0)

MoodyPerson.java

...

010: public MoodyPerson(String name, boolean initialHappiness)

011: {

012: super(name);

013: isHappyNow = initialHappiness;

014: } // MoodyPerson

...

019: public MoodyPerson(String name)

020: {

021: this(name, true);

022: } // MoodyPerson

...

January 28, 2019 Java Just in Time - John Latham Page 230(0/0)

Person.java

...

012: public Person(String requiredPersonName)

013: {

014: personName = requiredPersonName;

015: latestSaying = "I am " + personName;

016: } // Person

...

January 28, 2019 Java Just in Time - John Latham Page 231(0/0)

The Object class and constructor chaining

• And finally that implicitly calls constructor of Object .

Coffee

time:

Suppose a (non-abstract) class does not have a con-

structor method defined by the programmer. Can it still

be instantiated? How does this fit in with constructor

chaining?

January 28, 2019 Java Just in Time - John Latham Page 232(0/0)

Method: constructor methods: default

• If class does not include constructor method

– Java assumes default constructor

– public empty one, no method arguments.

• E.g. for class called FabulousThing .

public FabulousThing()

{

} // FabulousThing

• which is same as:

public FabulousThing()

{

super();

} // FabulousThing

January 28, 2019 Java Just in Time - John Latham Page 233(0/0)

Method: constructor methods: default

• Default constructor only assumed

for classes with no explicitly defined constructor

– so not every class has constructor method with no arguments.

• E.g. VeryFabulousThing does not.

public class VeryFabulousThing

{

... Some code, but no more constructor methods.

public VeryFabulousThing(String name)

{

...

} // VeryFabulousThing

... Some code, but no more constructor methods.

} // class VeryFabulousThing

January 28, 2019 Java Just in Time - John Latham Page 234(0/0)

Method: constructor methods: default

• So this is illegal!

public class TheMostFabulousThingInTheUniverse extends VeryFabulousThing

{

... Code here, but no constructor method.

} // class TheMostFabulousThingInTheUniverse

Coffee

time:

Why?

• Default constructors not often what we want.

• Recommend: always explicitly write at least one constructor

in classes intended to have instances

– even when that constructor is empty

– shows that is deliberately empty rather than been omitted.

January 28, 2019 Java Just in Time - John Latham Page 235(0/0)

Trying it

Console Input / Output

$ javac TheMostFabulousThingInTheUniverse.java

TheMostFabulousThingInTheUniverse.java:1: cannot find symbol

symbol : constructor VeryFabulousThing()

location: class VeryFabulousThing

public class TheMostFabulousThingInTheUniverse extends VeryFabulousThing

ˆ

1 error

$ _ Run

January 28, 2019 Java Just in Time - John Latham Page 236(0/0)

Coursework: Exploring constructor chaining

(Summary only)

Add tracing to existing constructor methods in order to explore constructor

chaining.

January 28, 2019 Java Just in Time - John Latham Page 237(0/0)

Section 16

Overloaded methods versus

override

January 28, 2019 Java Just in Time - John Latham Page 238(0/0)

Aim

AIM: To take a closer look at overloaded methods and in

particular how an intended override can accidentally

become an overload. We revisit the overloaded meth-

ods System.out.println() , and look at toString() from

the Object class.

January 28, 2019 Java Just in Time - John Latham Page 239(0/0)

Overloaded methods versus override

• Can have overloaded methods

– more than one method with same name in same class

– including those inherited from a superclass.

• Can be confused with instance methods that override another.

January 28, 2019 Java Just in Time - John Latham Page 240(0/0)

Does an int match a double?

001: public class WhoAmI

002: {

003: public static void identify(int arg)

004: {

005: System.out.println("I am an int: " + arg);

006: } // identify

007:

008: public static void identify(double arg)

009: {

010: System.out.println("I am a double: " + arg);

011: } // identify

012:

January 28, 2019 Java Just in Time - John Latham Page 241(0/0)

Does an int match a double?

013: public static void identifyToo(double arg)

014: {

015: System.out.println("I too am a double: " + arg);

016: } // identifyToo

017:

018: public static void main(String[] args)

019: {

020: identify(10); // An int argument is surely an int.

021: identify(20.0); // A double argument is surely a double.

022: identifyToo(30); // An int argument is surely an int.

023: } // main

024:

025: } // class WhoAmI

January 28, 2019 Java Just in Time - John Latham Page 242(0/0)

Does an int match a double?

Console Input / Output

$ java WhoAmI

I am an int: 10

I am a double: 20.0

I too am a double: 30.0

$ _ Run

• First method call, method argument is int

– two methods match

– compiler picks most specific one.

• Second method call, one method matches

– int method argument matches double method parameter,

∗ but not vice-versa.

• Third method call, one method matches

– int method argument automatically cast to double.

January 28, 2019 Java Just in Time - John Latham Page 243(0/0)

Does an int match a double?

Coffee

time:

What would happen if we had the following?

. public static void m(int i, double d) { ... }

. public static void m(double d, int i) { ... }

. ... m(10, 10);

January 28, 2019 Java Just in Time - John Latham Page 244(0/0)

Standard API: System: out.println(): with any

argument

• java.lang.System has overloaded methods out.println() & out.print() for

– every primitive type of method argument

– and java.lang.Object .

• Each treats argument, (arg) , as ("" + arg)

– int output in decimal

– non-null object reference has toString() used

– etc..

• Another version of System.out.println() / System.out.print() takes a

character array and print the characters in it.

January 28, 2019 Java Just in Time - John Latham Page 245(0/0)

Standard API: Object: toString()

• java.lang.Object has toString() instance method

– String representation of type of object followed by ’@’ and

hexadecimal number (hash code).

• Classes which do not provide own version inherit this default one.

January 28, 2019 Java Just in Time - John Latham Page 246(0/0)

System.out.println() and inheritance

• Previously said arrays are objects

– superclass of every array type: java.lang.Object .

– So inherit default toString() .

• What is result of following?. . .

January 28, 2019 Java Just in Time - John Latham Page 247(0/0)

System.out.println() and inheritance

001: public class PrintlnOverloadDemo

002: {

003: private static char[] vowels = {’a’, ’e’, ’i’, ’o’, ’u’ };

004:

005: public static void main(String[] args)

006: {

007: System.out.println("Printing vowels as a char[]");

008: System.out.println(vowels);

009: System.out.println();

010: System.out.println("Printing vowels as an Object");

011: System.out.println((Object)vowels);

012: } // main

013:

014: } // class PrintlnOverloadDemo

January 28, 2019 Java Just in Time - John Latham Page 248(0/0)

System.out.println() and inheritance

• Two versions of System.out.println() match first call

– one takes a char[] , one takes an Object

– compiler chooses most specific

∗ so vowels are printed as string of characters.

• For second call, cast tells compiler to treat array as Object

– so get version of System.out.println() that takes an Object

– uses toString() of array – inherited from Object .

Console Input / Output

$ java PrintlnOverloadDemo

Printing vowels as a char[]

aeiou

Printing vowels as an Object

[C@1a46e30

$ _ Run

January 28, 2019 Java Just in Time - John Latham Page 249(0/0)

Accidental overload

• The compiler produces byte code to call a method

with particular method interface

– based on types of method arguments.

• Where there is choice of matching methods

– chooses most specific one

– decision made at compile time.

• Then dynamic method binding chooses correct

method implementation at run time.

• Common error: intended override results in overloaded method.

• E.g. contrived example: police inspectors

– interrogating other police inspectors. . .

January 28, 2019 Java Just in Time - John Latham Page 250(0/0)

Accidental overload

001: public class Inspector

002: {

003: private final String name;

004:

005: public Inspector(String requiredName)

006: {

007: name = requiredName;

008: } // Inspector

009:

010: public String getName()

011: {

012: return name;

013: } // getName

014:

January 28, 2019 Java Just in Time - John Latham Page 251(0/0)

Accidental overload

015: public void interrogate(Inspector suspect)

016: {

017: System.out.println("I am Inspector " + getName()

018: + ", who are you? " + suspect);

019: } // interrogate

020:

021: public String toString()

022: {

023: return "I am Inspector " + getName() + "!";

024: } // toString

January 28, 2019 Java Just in Time - John Latham Page 252(0/0)

Accidental overload

• A class method to arrange interrogation.

026: public static void makeInspection(Inspector inspectingOfficer,

027: Inspector suspect)

028: {

029: inspectingOfficer.interrogate(suspect);

030: } // makeInspection

031:

032: } // class Inspector

January 28, 2019 Java Just in Time - John Latham Page 253(0/0)

Overloaded methods versus override

001: public class ChiefInspector extends Inspector

002: {

003: public ChiefInspector(String name)

004: {

005: super(name);

006: } // ChiefInspector

007:

008: public void interrogate(ChiefInspector suspect)

009: {

010: System.out.println("I am Chief Inspector " + getName()

011: + ", who are you? " + suspect);

012: } // interrogate

013:

014: public String toString()

015: {

016: return "I am Chief Inspector " + getName() + "!";

017: } // toString

January 28, 2019 Java Just in Time - John Latham Page 254(0/0)

Overloaded methods versus override

019: public static void main(String[] args)

020: {

021: Inspector clouseau = new Inspector("Clouseau");

022: ChiefInspector dreyfus = new ChiefInspector("Dreyfus");

023:

024: Inspector.makeInspection(clouseau, dreyfus);

025: Inspector.makeInspection(dreyfus, clouseau);

026: Inspector.makeInspection(dreyfus, dreyfus);

027: System.out.println();

028: clouseau.interrogate(dreyfus);

029: dreyfus.interrogate(clouseau);

030: dreyfus.interrogate(dreyfus);

031: } // main

032:

033: } // class ChiefInspector

January 28, 2019 Java Just in Time - John Latham Page 255(0/0)

Overloaded methods versus override

Coffee

time:

Before reading on, predict what the output will be. In

particular, do you expect the results of the first three inter-

rogations to be the same as the second three?

January 28, 2019 Java Just in Time - John Latham Page 256(0/0)

Overloaded methods versus override

Console Input / Output

$ java ChiefInspector

I am Inspector Clouseau, who are you? I am Chief Inspector Dre yfus!

I am Inspector Dreyfus, who are you? I am Inspector Clouseau!

I am Inspector Dreyfus, who are you? I am Chief Inspector Drey fus!

I am Inspector Clouseau, who are you? I am Chief Inspector Dre yfus!

I am Inspector Dreyfus, who are you? I am Inspector Clouseau!

I am Chief Inspector Dreyfus, who are you? I am Chief Inspecto r Dreyfus!

$ _ Run

• In some outputs Chief Inspector Dreyfus is wrongly titled Inspector.

• Look carefully at ChiefInspector code

– instance method intended to override

– instead is overloaded method.

January 28, 2019 Java Just in Time - John Latham Page 257(0/0)

Inheritance: overriding a method: @Override

annotation

• Since Java 5.0 – annotations

– allow us to provide additional information to compiler.

• The override annotation, @Override

– written immediately before instance method heading

– says we believe overrides one from superclass,

– or is method implementation of abstract method in superclass.

• Compiler will complain if not true

– protecting us from getting method signature wrong

∗ misspelling method name

∗ or differently ordering method parameter types.

January 28, 2019 Java Just in Time - John Latham Page 258(0/0)

Overloaded methods versus override

• Copy of ChiefInspector

– called SafeChiefInspector

– and has override annotation.

January 28, 2019 Java Just in Time - John Latham Page 259(0/0)

SafeChiefInspector.java-WITH-HIDE

001: public class SafeChiefInspector extends Inspector

002: {

...

008: @Override

009: public void interrogate(SafeChiefInspector suspect)

010: {

011: System.out.println("I am Chief Inspector " + getName()

012: + ", who are you? " + suspect);

013: } // interrogate

...

January 28, 2019 Java Just in Time - John Latham Page 260(0/0)

Overloaded methods versus override

Console Input / Output

$ javac SafeChiefInspector.java

SafeChiefInspector.java:8: method does not override or im plement a method from a

supertype

@Override

ˆ

1 error

$ _ Run

January 28, 2019 Java Just in Time - John Latham Page 261(0/0)

Coursework: Using the @Override annotation

(Summary only)

Add to your instance methods that override another, an annotation which

helps protect against errors.

January 28, 2019 Java Just in Time - John Latham Page 262(0/0)

Concepts covered in this chapter

• Each book chapter ends with a list of concepts covered in it.

• Each concept has with it

– a self-test question,

– and a page reference to where it was covered.

• Please use these to check your understanding before we start the next

chapter.

January 28, 2019 Java Just in Time - John Latham Page 263(0/0)

	Title
	Chapter 16: Inheritance
	Chapter aims
	Section 2: The Notional Lottery game
	Aim
	The Notional Lottery game
	The Notional Lottery game
	The Notional Lottery game
	Section 3: The Person class
	Aim
	The Person class
	The Person class
	Inheritance
	Inheritance

	The Person class
	The Person class
	The Person class
	The Person class
	The Person class
	The Person class
	The Person class
	The Person class
	The TestPerson class
	Trying it
	Coursework: Stock control system
	Section 4: The AudienceMember class
	Aim
	Inheritance: a subclass extends its superclass
	Inheritance: a subclass extends its superclass

	The AudienceMember class
	Inheritance: invoking the superclass constructor
	Inheritance: invoking the superclass constructor

	The AudienceMember class
	The AudienceMember class
	Inheritance: overriding a method
	Inheritance: overriding a method

	The AudienceMember class
	The AudienceMember class
	Design: UML
	Design: UML

	Design: UML: class diagram
	Design: UML: class diagram

	The AudienceMember class
	The AudienceMember class
	The full AudienceMember code
	The TestAudienceMember class
	The TestAudienceMember class
	Trying it
	Coursework: Your first stock item!
	Section 5: The Punter class
	Aim
	The Punter class
	The Punter class
	The Punter class
	The TestPunter class
	Trying it
	Coursework: Your catalogue
	Section 6: The Person abstract class
	Aim
	The Person abstract class
	Inheritance: abstract class
	Inheritance: abstract class

	The Person class
	The Person class
	Inheritance: abstract method
	Inheritance: abstract method

	The Person class
	The Person class
	The Person class
	The AudienceMember and Punter classes
	Trying it
	Coursework: An abstract stock item
	Section 7: The remaining simple subclasses of Person
	Aim
	The remaining simple subclasses of Person
	The Director class
	The Director class
	The Psychic class
	The TVHost class
	Latest inheritance hierarchy
	The TestPersonSubclasses class
	The TestPersonSubclasses class
	The TestPersonSubclasses class
	Inheritance: polymorphism
	Inheritance: polymorphism

	The TestPersonSubclasses class
	The TestPersonSubclasses class
	Inheritance: polymorphism: dynamic method binding
	Inheritance: polymorphism: dynamic method binding

	Inheritance: final methods and classes
	Inheritance: final methods and classes

	The TestPersonSubclasses class
	Trying it
	Coursework: More stock items
	Section 8: The MoodyPerson classes
	Aim
	The MoodyPerson classes
	The MoodyPerson classes
	The MoodyPerson class
	Inheritance: adding more object state
	Inheritance: adding more object state

	The MoodyPerson class
	The MoodyPerson class
	Method: constructor methods: more than one: using this
	Method: constructor methods: more than one: using this

	The MoodyPerson class
	Inheritance: adding more instance methods
	Inheritance: adding more instance methods

	The MoodyPerson class
	The Teenager class
	The Teenager class
	The Teenager class
	The Teenager class
	The Teenager class
	The TestPersonSubclasses class
	The TestPersonSubclasses class
	Inheritance: testing for an instance of a class
	Inheritance: testing for an instance of a class

	Inheritance: casting to a subclass
	Inheritance: casting to a subclass

	The TestPersonSubclasses class
	The TestPersonSubclasses class
	Trying it
	Coursework: Lots of different mouse mats!
	Section 9: The Ball class
	Aim
	The Ball class
	GUI API: Color
	GUI API: Color

	The Ball class
	Section 10: The BallContainer classes
	Aim
	The BallContainer classes
	The BallContainer classes
	The BallContainer classes
	The BallContainer class
	The BallContainer class
	The BallContainer class
	The BallContainer class
	The Machine class
	Array: partially filled array: deleting an element
	Array: partially filled array: deleting an element

	The Machine class
	The Rack class
	The Rack class
	The Rack class
	Section 11: The Game class
	Aim
	The Game class
	Inheritance: is a versus has a
	Inheritance: is a versus has a

	The Game class
	The Game class
	The Game class
	The Game class
	The Game class
	The Game class
	Coursework: Shopping baskets
	Section 12: The Worker classes
	Aim
	The Worker classes
	The Worker classes
	The Worker classes
	The Worker class
	The Worker class
	The Worker class
	The Worker class
	The TraineeWorker class
	The TraineeWorker class
	The TraineeWorker class
	Inheritance: using an overridden method
	Inheritance: using an overridden method

	The TraineeWorker class
	The TraineeWorker class
	The TraineeWorker class
	The TestWorkers class
	Trying it
	Coursework: Loads of disc space
	Section 13: The CleverPunter class
	Aim
	The CleverPunter class
	The CleverPunter class
	The CleverPunter class
	The CleverPunter class
	The CleverPunter class
	The CleverPunter class
	The CleverPunter class
	The TestCleverPunter class
	Trying it
	Trying it
	Trying it
	Coursework: Making it more realistic
	Section 14: The GUI classes
	Aim
	The GUI classes
	The GUI classes
	MoodyPerson.java
	The GUI classes
	Section 15: The Object class and constructor chaining
	Aim
	Standard API: Object
	Standard API: Object

	Inheritance: invoking the superclass constructor: implicitly
	Inheritance: invoking the superclass constructor: implicitly

	The Object class and constructor chaining
	Person.java
	The Object class and constructor chaining
	Person.java-WITH-SUPER
	Inheritance: constructor chaining
	Inheritance: constructor chaining

	The Object class and constructor chaining
	TraineeWorker.java
	Worker.java
	MoodyPerson.java
	Person.java
	The Object class and constructor chaining
	Method: constructor methods: default
	Method: constructor methods: default

	Trying it
	Coursework: Exploring constructor chaining
	Section 16: Overloaded methods versus override
	Aim
	Overloaded methods versus override
	Does an .85plus.85minus.8510.851.18int match a .85plus.85minus.8510.851.18double?
	Does an .85plus.85minus.8510.851.18int match a .85plus.85minus.8510.851.18double?
	Does an .85plus.85minus.8510.851.18int match a .85plus.85minus.8510.851.18double?
	Standard API: System: out.println(): with any argument
	Standard API: System: out.println(): with any argument

	Standard API: Object: toString()
	Standard API: Object: toString()

	System.out.println() and inheritance
	System.out.println() and inheritance
	System.out.println() and inheritance
	Accidental overload
	Accidental overload
	Accidental overload
	Overloaded methods versus override
	Overloaded methods versus override
	Overloaded methods versus override
	Overloaded methods versus override
	Inheritance: overriding a method: @Override annotation
	Inheritance: overriding a method: @Override annotation

	Overloaded methods versus override
	SafeChiefInspector.java-WITH-HIDE
	Overloaded methods versus override
	Coursework: Using the @Override annotation
	Concepts covered in this chapter

