
List of Slides

1 Title
2 Chapter 15: Exceptions
3 Chapter aims
4 Section 2: Example:Age next year revisited
5 Aim
6 Age next year revisited
7 Age next year revisited
8 Exception
9 Trying it

10 Trying it
11 Trying it
12 Coursework: FishTankVolume robustness analysis
13 Section 3: Example:Age next year with exception avoidance
14 Aim
15 Age next year with exception avoidance
16 Standard API: Character

0-0

20 Age next year with exception avoidance
21 Age next year with exception avoidance
22 Age next year with exception avoidance
23 Trying it
24 Trying it
25 Coursework: FishTankVolume exception avoidance
26 Section 4: Example:Age next year with exception catching
27 Aim
28 Age next year with exception catching
29 Operating environment: standard error
30 Standard API: System: err.println()
31 Statement: try statement
34 Exception: getMessage()
35 Age next year with exception catching
37 Trying it
38 Trying it
39 Trying it
40 Coursework: FishTankVolume exception catching

0-1

41 Section 5: Example:Age next year with multiple exception catching
42 Aim
43 Age next year with multiple exception catching
44 Exception: there are many types of exception
46 Statement: try statement: with multiple catch clauses
51 Age next year with multiple exception catching
54 Age next year with multiple exception catching
55 Trying it
56 Coursework: FishTankVolume multiple exception catching
57 Section 6: Example:Age next year throwing an exception
58 Aim
59 Age next year throwing an exception
60 Exception: creating exceptions
61 Statement: throw statement
63 Age next year throwing an exception
64 Age next year throwing an exception
67 Trying it
68 Coursework: FishTankVolume throwing exceptions

0-2

69 Section 7: Example:Single times table with exception catching
70 Aim
71 Single times table with exception catching
72 Single times table with exception catching
74 Single times table with exception catching
76 Trying it
77 Coursework: TimesTable with a ScrollPane catching exceptions
78 Section 8: Example:A reusable Date class with exceptions
79 Aim
80 A reusable Date class with exceptions
81 Method: that throws an exception
84 Java tools: javadoc: throws tag
85 A reusable Date class with exceptions
86 A reusable Date class with exceptions
87 A reusable Date class with exceptions
88 A reusable Date class with exceptions
90 A reusable Date class with exceptions
91 A reusable Date class with exceptions

0-3

92 A reusable Date class with exceptions
93 Exception: creating exceptions: with a cause
94 A reusable Date class with exceptions
96 A reusable Date class with exceptions
98 A reusable Date class with exceptions
99 Method: that throws an exception: RuntimeException

105 A reusable Date class with exceptions
106 A reusable Date class with exceptions
107 A reusable Date class with exceptions
108 A reusable Date class with exceptions
111 A reusable Date class with exceptions
112 A reusable Date class with exceptions
114 A reusable Date class with exceptions
116 A reusable Date class with exceptions
117 A reusable Date class with exceptions
119 A reusable Date class with exceptions
121 A reusable Date class with exceptions
122 A reusable Date class with exceptions

0-4

125 A reusable Date class with exceptions
126 A reusable Date class with exceptions
127 A reusable Date class with exceptions
128 A reusable Date class with exceptions
129 Coursework: Date class with nested try statements
130 Section 9: Example:Date difference with command line arguments
131 Aim
132 Date difference with command line arguments
133 Exception: getCause()
134 Date difference with command line arguments
136 Trying it
137 Trying it
138 Trying it
139 Trying it
140 Section 10: Example:Date difference with standard input
141 Aim
142 Date difference with standard input
143 Date difference with standard input

0-5

145 Trying it
146 Concepts covered in this chapter

0-6

Title

Java Just in Time

John Latham

December 6, 2018

December 6, 2018 Java Just in Time - John Latham Page 1(0/0)

Chapter 15

Exceptions

December 6, 2018 Java Just in Time - John Latham Page 2(0/0)

Chapter aims

• So far made unreasonable assumptions about end user

– no mistakes

– programs had little/no code to guard against erroneous input.

• Here look at exceptions

– how we may avoid

∗ but why we do not!

• Then Java’s exception catching mechanism

– let them happen

– recover from them.

• Many kinds of exception

– may treat different kinds differently.

• Also can throw exceptions in own code.

December 6, 2018 Java Just in Time - John Latham Page 3(0/0)

Section 2

Example:

Age next year revisited

December 6, 2018 Java Just in Time - John Latham Page 4(0/0)

Aim

AIM: To take a closer look at run time errors, or as Java calls

them, exceptions.

December 6, 2018 Java Just in Time - John Latham Page 5(0/0)

Age next year revisited

• Revisit AgeNextYear: see what can go wrong.

001: // Gets current age from first argument, and reports age next year.

002: public class AgeNextYear

003: {

004: public static void main(String[] args)

005: {

006: int ageNow = Integer.parseInt(args[0]);

007: int ageNextYear = ageNow + 1;

008:

009: System.out.println("Your age now is " + ageNow);

010: System.out.println("Your age next year will be " + ageNextYear);

011: } // main

012: } // class AgeNextYear

December 6, 2018 Java Just in Time - John Latham Page 6(0/0)

Age next year revisited

• Two ways user can make it fail

– run it without command line argument

∗ can’t access args[0]

– supply argument which is not string representation of int

∗ Integer.parseInt() will fail.

• When exceptional circumstance occurs

– instance of class Exception created.

December 6, 2018 Java Just in Time - John Latham Page 7(0/0)

Exception

• Java calls run time errors exceptions.

• Standard class java.lang.Exception

– used to record and handle exceptions.

• When exceptional situation happens

– instance of Exception created

– contains information about problem

∗ stack trace: source line number,

method name, class name,

etc..

December 6, 2018 Java Just in Time - John Latham Page 8(0/0)

Trying it

• No command line arguments:

Console Input / Output

$ java AgeNextYear

Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 0

at AgeNextYear.main(AgeNextYear.java:6)

$ _ Run

• See kind of exception: ArrayIndexOutOfBoundsException.

– args[0] fails in main method

– stack trace contains only one entry.

• Default action of virtual machine for exceptions in main thread:

– print details of associated Exception object

– end the thread

∗ program terminates unless another thread running.

December 6, 2018 Java Just in Time - John Latham Page 9(0/0)

Trying it

• A string not representing int value:

Console Input / Output

$ java AgeNextYear ""

Exception in thread "main" java.lang.NumberFormatException: For input string: ""

at java.lang.NumberFormatException.forInputString(NumberFormatException.

java:48)

at java.lang.Integer.parseInt(Integer.java:470)

at java.lang.Integer.parseInt(Integer.java:499)

at AgeNextYear.main(AgeNextYear.java:6)

$ java AgeNextYear 4.25

Exception in thread "main" java.lang.NumberFormatException: For input string: "4.25"

at java.lang.NumberFormatException.forInputString(NumberFormatException.java:48)

at java.lang.Integer.parseInt(Integer.java:458)

at java.lang.Integer.parseInt(Integer.java:499)

at AgeNextYear.main(AgeNextYear.java:6)

$ _ Run

• Kind of exception: NumberFormatException.

• Detected within Integer.parseInt(), called from main method.

December 6, 2018 Java Just in Time - John Latham Page 10(0/0)

Trying it

• Also two cases of ‘bad’ input that do not cause exception:

– representation of a negative number

– more than one argument.

Console Input / Output

$ java AgeNextYear -4

Your age now is -4

Your age next year will be -3

$ java AgeNextYear 60 4

Your age now is 60

Your age next year will be 61

$ _ Run

• Let us make this program robust. . . .

December 6, 2018 Java Just in Time - John Latham Page 11(0/0)

Coursework: FishTankVolume robustness analysis

(Summary only)

Take a program you have seen before and analyse where it can go wrong.

December 6, 2018 Java Just in Time - John Latham Page 12(0/0)

Section 3

Example:

Age next year with exception

avoidance

December 6, 2018 Java Just in Time - John Latham Page 13(0/0)

Aim

AIM: To show how we can avoid exceptions using condi-

tional execution. We also meet the Character class.

December 6, 2018 Java Just in Time - John Latham Page 14(0/0)

Age next year with exception avoidance

• Could add code to avoid exceptions.

• First add method to check

– String contains only digits,

– and is not empty.

December 6, 2018 Java Just in Time - John Latham Page 15(0/0)

Standard API: Character

• java.lang.Character has class methods, including:

Public method interfaces for class Character (some of them).

Method Return Arguments Description

isWhitespace boolean char Returns true if the given char is

a white space character, (e.g.

space character, tab character,

new line character), or false oth-

erwise.

December 6, 2018 Java Just in Time - John Latham Page 16(0/0)

Standard API: Character

Public method interfaces for class Character (some of them).

Method Return Arguments Description

isDigit boolean char Returns true if the given char is a

digit (e.g. ’0’, ’8’), or false other-

wise.

isLetter boolean char Returns true if the given char is a

letter (e.g. ’A’, ’a’), or false other-

wise.

isLetterOrDigit boolean char Returns true if the given char is a

letter or a digit, or false otherwise.

December 6, 2018 Java Just in Time - John Latham Page 17(0/0)

Standard API: Character

Public method interfaces for class Character (some of them).

Method Return Arguments Description

isLowerCase boolean char Returns true if the given char is a

lower case letter, or false other-

wise.

isUpperCase boolean char Returns true if the given char is an

upper case letter, or false other-

wise.

December 6, 2018 Java Just in Time - John Latham Page 18(0/0)

Standard API: Character

Public method interfaces for class Character (some of them).

Method Return Arguments Description

toLowerCase char char Returns the lower case equivalent

of the given char if it is an upper

case letter, or the given char if it is

not.a

toUpperCase char char Returns the upper case equivalent

of the given char if it is a lower case

letter, or the given char if it is not.a

aFor maximum portability of code to different regions of the world, it is better to use the String

versions of these methods.

December 6, 2018 Java Just in Time - John Latham Page 19(0/0)

Age next year with exception avoidance

001: // Gets current age from first argument, and reports age next year.

002: // Gives an error message if age is not a valid number.

003: public class AgeNextYear

004: {

005: // Returns true if and only if given string is all digits and not empty.

006: private static boolean isNonEmptyDigits(String shouldBeDigits)

007: {

008: boolean okaySoFar = shouldBeDigits.length() != 0;

009: int index = 0;

010: while (okaySoFar && index < shouldBeDigits.length())

011: {

012: okaySoFar = Character.isDigit(shouldBeDigits.charAt(index));

013: index++;

014: } // while

015: return okaySoFar;

016: } // isNonEmptyDigits

December 6, 2018 Java Just in Time - John Latham Page 20(0/0)

Age next year with exception avoidance

019: // Check argument and compute result or report error.

020: public static void main(String[] args)

021: {

022: if (args.length > 0 && isNonEmptyDigits(args[0]))

023: {

024: int ageNow = Integer.parseInt(args[0]);

025: int ageNextYear = ageNow + 1;

026:

027: System.out.println("Your age now is " + ageNow);

028: System.out.println("Your age next year will be " + ageNextYear);

029: } // if

030: else

031: System.out.println("Please supply your age, as a whole number.");

032: } // main

033:

034: } // class AgeNextYear

December 6, 2018 Java Just in Time - John Latham Page 21(0/0)

Age next year with exception avoidance

Coffee

time:

What would happen if we swapped the order of the con-

juncts in the if else statement condition above?

December 6, 2018 Java Just in Time - John Latham Page 22(0/0)

Trying it

Console Input / Output

$ java AgeNextYear

Please supply your age, as a whole number.

$ java AgeNextYear ""

Please supply your age, as a whole number.

$ java AgeNextYear 4.25

Please supply your age, as a whole number.

$ _ Run

• Program robust against exceptions, (or is it?) but

– code has doubled in size

– our checks also being done

by parts that caused exceptions in first place!

December 6, 2018 Java Just in Time - John Latham Page 23(0/0)

Trying it

Coffee

time:

Worse still, we haven’t even avoided all possible ex-

ceptions – what command line argument could we

present that passes our test and yet still causes

Integer.parseInt() to throw a NumberFormatException?

December 6, 2018 Java Just in Time - John Latham Page 24(0/0)

Coursework: FishTankVolume exception

avoidance

(Summary only)

Take a program you have seen before and make it avoid exceptions.

December 6, 2018 Java Just in Time - John Latham Page 25(0/0)

Section 4

Example:

Age next year with exception

catching

December 6, 2018 Java Just in Time - John Latham Page 26(0/0)

Aim

AIM: To introduce exception catching using the try state-

ment. We also take a look at standard error.

December 6, 2018 Java Just in Time - John Latham Page 27(0/0)

Age next year with exception catching

• Better approach than trying to avoid exceptions:

– allow them to happen

– but catch them

∗ simpler code

∗ less duplication of checks.

• We use this idea here.

• Also have some error messages go to standard error.

December 6, 2018 Java Just in Time - John Latham Page 28(0/0)

Operating environment: standard error

• Programs have standard output and standard input.

• Also standard error.

– intended for output about errors.

• E.g. might redirect standard output to file

– and standard error to different one, etc..

December 6, 2018 Java Just in Time - John Latham Page 29(0/0)

Standard API: System: err.println()

• java.lang.System has class variables called out and in.

• Also one called err

– contains reference to object representing standard error.

• So we have

– System.err.println()

– System.err.print()

– System.err.printf()

December 6, 2018 Java Just in Time - John Latham Page 30(0/0)

Statement: try statement

• The try statement implements exception catching.

• E.g.

try

{

... Code here that might cause an exception to happen.

} // try

catch (Exception exception)

{

... Code here to deal with the exception.

} // catch

• Two parts – try block and catch clause.

– (N.B. – bodies must be compound statements. . . .)

December 6, 2018 Java Just in Time - John Latham Page 31(0/0)

Statement: try statement

• Try block obeyed as usual.

• If exception occurs

– instance of java.lang.Exception created

– control passed to catch clause.

– Exception object is exception parameter

∗ like method parameter

∗ thus declare name (and type) for exception

after reserved word catch.

• E.g. method to compute mean average of int array. . .

December 6, 2018 Java Just in Time - John Latham Page 32(0/0)

Statement: try statement

private double average(int[] anArray)

{

try

{

int total = anArray[0];

for (int i = 1; i < anArray.length; i++)

total += anArray[i];

return total / (double) anArray.length;

} // try

catch (Exception exception)

{

// Report the exception and carry on.

System.err.println(exception);

return 0;

} // catch

} // average

December 6, 2018 Java Just in Time - John Latham Page 33(0/0)

Exception: getMessage()

• An instance of java.lang.Exception, when created

may be given text message describing reason for the error.

• Can be retrieved via getMessage() instance method.

December 6, 2018 Java Just in Time - John Latham Page 34(0/0)

Age next year with exception catching

• Decide to report error messages to standard output,

but also report exception itself to standard error.

001: // Gets current age from first argument, and reports age next year.

002: // Gives an error message if age is not a valid number.

003: public class AgeNextYear

004: {

005: public static void main(String[] args)

006: {

007: try

008: {

009: int ageNow = Integer.parseInt(args[0]);

010: int ageNextYear = ageNow + 1;

011:

012: System.out.println("Your age now is " + ageNow);

013: System.out.println("Your age next year will be " + ageNextYear);

014: } // try

December 6, 2018 Java Just in Time - John Latham Page 35(0/0)

Age next year with exception catching

015: catch (Exception exception)

016: {

017: System.out.println("Please supply your age, as a whole number.");

018: System.out.println("Exception message was: ‘"

019: + exception.getMessage() + "’");

020: System.err.println(exception);

021: } // catch

022: } // main

023:

024: } // class AgeNextYear

December 6, 2018 Java Just in Time - John Latham Page 36(0/0)

Trying it

Console Input / Output

$ java AgeNextYear

Please supply your age, as a whole number.

Exception message was: ‘0’

java.lang.ArrayIndexOutOfBoundsException: 0

$ java AgeNextYear ""

Please supply your age, as a whole number.

Exception message was: ‘For input string: ""’

java.lang.NumberFormatException: For input string: ""

$ java AgeNextYear 4.25

Please supply your age, as a whole number.

Exception message was: ‘For input string: "4.25"’

java.lang.NumberFormatException: For input string: "4.25"

$ _ Run

December 6, 2018 Java Just in Time - John Latham Page 37(0/0)

Trying it

• Now redirect standard output to /dev/null.

Console Input / Output

$ java AgeNextYear > /dev/null

java.lang.ArrayIndexOutOfBoundsException: 0

$ java AgeNextYear "" > /dev/null

java.lang.NumberFormatException: For input string: ""

$ java AgeNextYear 4.25 > /dev/null

java.lang.NumberFormatException: For input string: "4.25"

$ _ Run

December 6, 2018 Java Just in Time - John Latham Page 38(0/0)

Trying it

• Now redirect standard error to /dev/null.

Console Input / Output

$ java AgeNextYear 2> /dev/null

Please supply your age, as a whole number.

Exception message was: ‘0’

$ java AgeNextYear "" 2> /dev/null

Please supply your age, as a whole number.

Exception message was: ‘For input string: ""’

$ java AgeNextYear 4.25 2> /dev/null

Please supply your age, as a whole number.

Exception message was: ‘For input string: "4.25"’

$ _ Run

• Ideally would like to give different error messages

for different kinds of error. . . .

December 6, 2018 Java Just in Time - John Latham Page 39(0/0)

Coursework: FishTankVolume exception catching

(Summary only)

Take a program you have seen before and make it catch exceptions.

December 6, 2018 Java Just in Time - John Latham Page 40(0/0)

Section 5

Example:

Age next year with multiple

exception catching

December 6, 2018 Java Just in Time - John Latham Page 41(0/0)

Aim

AIM: To observe that there are many kinds of exception and

introduce the idea of multiple exception catching by

having a try statement with many catch clauses.

December 6, 2018 Java Just in Time - John Latham Page 42(0/0)

Age next year with multiple exception catching

• Improve AgeNextYear

– give user different error messages

for the two different causes of exception.

– Java has many kinds of exception. . . .

December 6, 2018 Java Just in Time - John Latham Page 43(0/0)

Exception: there are many types of exception

• java.lang.Exception is general model of exceptions

– also many classes for more specific kinds of error.

• E.g.

Exception class Example use

ArrayIndexOutOfBoundsException When some code tries to access an array

element using an array index which is not

in the range of the array being indexed.

IllegalArgumentException When a method is passed a method ar-

gument which is inappropriate in some

way.

December 6, 2018 Java Just in Time - John Latham Page 44(0/0)

Exception: there are many types of exception

Exception class Example use

NumberFormatException In the parseInt() method of the

java.lang.Integer class when it is asked to

interpret an invalid String method argument

as an int. (Actually, NumberFormatException

is a particular kind of the more general

IllegalArgumentException.)

ArithmeticException When an integer division has a denominator

which is zero.

NullPointerException When we have code that tries to access the ob-

ject referenced by a variable, but the variable

actually contains the null reference.

December 6, 2018 Java Just in Time - John Latham Page 45(0/0)

Statement: try statement: with multiple catch

clauses

• A try statement may have more than one catch clause

– each for catching different kind of exception.

• When exception occurs in try block

– execution transfers to first matching catch clause

– or out of try statement if no matching one.

• E.g.. . .

December 6, 2018 Java Just in Time - John Latham Page 46(0/0)

Statement: try statement: with multiple catch clauses

• If array empty: get ArrayIndexOutOfBoundsException

or an array element is not int representation: get NumberFormatException.

private int maximum(String[] anArray)

{

try

{

int maximumSoFar = Integer.parseInt(anArray[0]);

for (int i = 1; i < anArray.length; i++)

{

int thisNumber = Integer.parseInt(anArray[i]);

if (thisNumber > maximumSoFar)

maximumSoFar = thisNumber;

} // for

return maximumSoFar;

} // try

December 6, 2018 Java Just in Time - John Latham Page 47(0/0)

Statement: try statement: with multiple catch

clauses

catch(NumberFormatException exception)

{

System.err.println("Cannot parse item as an int: "

+ exception.getMessage());

return 0;

} // catch

catch(ArrayIndexOutOfBoundsException exception)

{

System.err.println("There is no maximum, as there are no numbers!");

return 0;

} // catch

} // maximum

December 6, 2018 Java Just in Time - John Latham Page 48(0/0)

Statement: try statement: with multiple catch

clauses

• But what if method argument is null reference?

– Get NullPointerException

int maximumSoFar = Integer.parseInt(anArray[0]);

• anArray[0] means

– “follow reference in anArray to array referenced by it

– then get value stored at array index 0.”

• We have no catch clause matching NullPointerException

– execution transfers out of try statement altogether

– and out of the method.

December 6, 2018 Java Just in Time - John Latham Page 49(0/0)

Statement: try statement: with multiple catch

clauses

• If method call was inside following try statement

NullPointerException would get caught there.

try

{

int max = maximum(null);

...

} // try

catch (NullPointerException exception)

{

System.err.println("Silly me!");

} // catch

December 6, 2018 Java Just in Time - John Latham Page 50(0/0)

Age next year with multiple exception catching

• New AgeNextYear has catch clause for each exception we expect to get

– also general one to catch any other exceptions

∗ makes program robust against overlooking other sources of errors.

001: // Gets current age from first argument, and reports age next year.

002: // Gives an error message if age is not a valid number.

003: public class AgeNextYear

004: {

005: public static void main(String[] args)

006: {

007: try

008: {

009: int ageNow = Integer.parseInt(args[0]);

010: int ageNextYear = ageNow + 1;

011:

012: System.out.println("Your age now is " + ageNow);

013: System.out.println("Your age next year will be " + ageNextYear);

014: } // try

December 6, 2018 Java Just in Time - John Latham Page 51(0/0)

Age next year with multiple exception catching

015: catch (ArrayIndexOutOfBoundsException exception)

016: {

017: System.out.println("Please supply your age.");

018: System.err.println(exception);

019: } // catch

020: catch (NumberFormatException exception)

021: {

022: System.out.println("Your age must be a whole number!");

023: System.out.println("Exception message was: ‘"

024: + exception.getMessage() + "’");

025: System.err.println(exception);

026: } // catch

December 6, 2018 Java Just in Time - John Latham Page 52(0/0)

Age next year with multiple exception catching

027: // Other exceptions should not happen,

028: // but we catch anything else, lest we have overlooked something.

029: catch (Exception exception)

030: {

031: System.out.println("Something unforeseen has happened. :-(");

032: System.out.println("Exception message was: ‘"

033: + exception.getMessage() + "’");

034: System.err.println(exception);

035: } // catch

036: } // main

037:

038: } // class AgeNextYear

December 6, 2018 Java Just in Time - John Latham Page 53(0/0)

Age next year with multiple exception catching

Coffee

time:

How can we test the third catch clause in the

code above? For example, could we create a

NullPointerException somehow? Would that need us to

alter the code of the program, just for that test, or is there

a way we could test the code without altering it? (Hint:

think how you could get the main method to be given

the null reference as its method argument, using a differ-

ent class.)

December 6, 2018 Java Just in Time - John Latham Page 54(0/0)

Trying it

Console Input / Output

$ java AgeNextYear

Please supply your age.

java.lang.ArrayIndexOutOfBoundsException: 0

$ java AgeNextYear ""

Your age must be a whole number!

Exception message was: ‘For input string: ""’

java.lang.NumberFormatException: For input string: ""

$ java AgeNextYear 4.25

Your age must be a whole number!

Exception message was: ‘For input string: "4.25"’

java.lang.NumberFormatException: For input string: "4.25"

$ _ Run

December 6, 2018 Java Just in Time - John Latham Page 55(0/0)

Coursework: FishTankVolumemultiple exception

catching

(Summary only)

Take a program you have seen before and make it catch multiple exceptions.

December 6, 2018 Java Just in Time - John Latham Page 56(0/0)

Section 6

Example:

Age next year throwing an

exception

December 6, 2018 Java Just in Time - John Latham Page 57(0/0)

Aim

AIM: To introduce the idea of creating an exception and

throwing an exception when we have detected a

problem, using the throw statement.

December 6, 2018 Java Just in Time - John Latham Page 58(0/0)

Age next year throwing an exception

• Still haven’t dealt with the other erroneous conditions

– negative age

– more than one command line argument.

• Cause inappropriate behaviour rather than exceptions

– deal with in same way as others:

∗ create instances of Exception!

December 6, 2018 Java Just in Time - John Latham Page 59(0/0)

Exception: creating exceptions

• java.lang.Exception has number of constructor methods

– one takes no method arguments

∗ Exception with no associated message.

– one takes String message.

• Other kinds of exception

– (ArrayIndexOutOfBoundsException, IllegalArgumentException,

NumberFormatException, ArithmeticException and NullPointerException,

etc.)

also have these two constructor methods.

December 6, 2018 Java Just in Time - John Latham Page 60(0/0)

Statement: throw statement

• The throw statement used when wish to trigger exception mechanism

– reserved word throw

– followed by reference to Exception object.

• Java virtual machine finds closest try statement currently being executed

– with matching catch clause

– transfers execution to that catch clause.

• If no matching clause found

– exception reported

– thread terminated.

December 6, 2018 Java Just in Time - John Latham Page 61(0/0)

Statement: throw statement

• E.g.:

throw new Exception();

• E.g. with message:

throw new Exception("This is the message associated with the exception");

• E.g.

NumberFormatException exception

= new NumberFormatException("Only digits please");

throw exception;

December 6, 2018 Java Just in Time - John Latham Page 62(0/0)

Age next year throwing an exception

• New AgeNextYear throws

– ArrayIndexOutOfBoundsException if too many arguments

– NumberFormatException if age negative.

• Catches them with corresponding catch clause.

December 6, 2018 Java Just in Time - John Latham Page 63(0/0)

Age next year throwing an exception

001: // Gets current age from first argument, and reports age next year.

002: // Gives an error message if age is not a valid number.

003: public class AgeNextYear

004: {

005: public static void main(String[] args)

006: {

007: try

008: {

009: int ageNow = Integer.parseInt(args[0]);

010: if (args.length > 1)

011: throw new ArrayIndexOutOfBoundsException

012: ("You have supplied " + args.length + " arguments!");

013: if (ageNow < 0)

014: throw new NumberFormatException

015: ("Your age of " + ageNow + " is negative!");

016:

017: int ageNextYear = ageNow + 1;

018: System.out.println("Your age now is " + ageNow);

019: System.out.println("Your age next year will be " + ageNextYear);

020: } // try

December 6, 2018 Java Just in Time - John Latham Page 64(0/0)

Age next year throwing an exception

021: catch (ArrayIndexOutOfBoundsException exception)

022: {

023: System.out.println("Please supply your age, and nothing else.");

024: System.out.println("Exception message was: ‘"

025: + exception.getMessage() + "’");

026: System.err.println(exception);

027: } // catch

028: catch (NumberFormatException exception)

029: {

030: System.out.println("Your age must be a non-negative whole number!");

031: System.out.println("Exception message was: ‘"

032: + exception.getMessage() + "’");

033: System.err.println(exception);

034: } // catch

December 6, 2018 Java Just in Time - John Latham Page 65(0/0)

Age next year throwing an exception

035: // Other exceptions should not happen,

036: // but we catch anything else, lest we have overlooked something.

037: catch (Exception exception)

038: {

039: System.out.println("Something unforeseen has happened. :-(");

040: System.out.println("Exception message was: ‘"

041: + exception.getMessage() + "’");

042: System.err.println(exception);

043: } // catch

044: } // main

045:

046: } // class AgeNextYear

December 6, 2018 Java Just in Time - John Latham Page 66(0/0)

Trying it

Console Input / Output

$ java AgeNextYear 60 4

Please supply your age, and nothing else.

Exception message was: ‘You have supplied 2 arguments!’

java.lang.ArrayIndexOutOfBoundsException: You have supplied 2 arguments!

$ java AgeNextYear -4

Your age must be a non-negative whole number!

Exception message was: ‘Your age of -4 is negative!’

java.lang.NumberFormatException: Your age of -4 is negative!

$ _ Run

December 6, 2018 Java Just in Time - John Latham Page 67(0/0)

Coursework: FishTankVolume throwing exceptions

(Summary only)

Take a program you have seen before and make it throw its own exceptions

and catch them.

December 6, 2018 Java Just in Time - John Latham Page 68(0/0)

Section 7

Example:

Single times table with

exception catching

December 6, 2018 Java Just in Time - John Latham Page 69(0/0)

Aim

AIM: To illustrate the use of exception catching in graphical

user interface (GUI) programs.

December 6, 2018 Java Just in Time - John Latham Page 70(0/0)

Single times table with exception catching

• TimesTable GUI

– deal with user entering multiplier which is not int representation.

• Previous version

– throw an exception in parseInt() during actionPerformed()

– caught by GUI event thread

∗ report on standard error

∗ go back to sleep: wait for more GUI events.

• We shall catch exception within actionPerformed()

– report error message in the results JTextArea.

December 6, 2018 Java Just in Time - John Latham Page 71(0/0)

Single times table with exception catching

001: import java.awt.BorderLayout;

002: import java.awt.Container;

003: import java.awt.event.ActionEvent;

004: import java.awt.event.ActionListener;

005: import javax.swing.JButton;

006: import javax.swing.JFrame;

007: import javax.swing.JTextArea;

008: import javax.swing.JTextField;

009:

010: // Program to show a times table for a multiplier chosen by the user.

011: public class TimesTable extends JFrame implements ActionListener

012: {

013: // A text field for the user to enter the multiplier.

014: private final JTextField multiplierJTextField = new JTextField(5);

015:

016: // A text area for the resulting times table, 15 lines of 20 characters.

017: private final JTextArea displayJTextArea = new JTextArea(15, 20);

018:

019:

December 6, 2018 Java Just in Time - John Latham Page 72(0/0)

Single times table with exception catching

020: // Constructor.

021: public TimesTable()

022: {

023: setTitle("Times Table");

024:

025: Container contents = getContentPane();

026: contents.setLayout(new BorderLayout());

027:

028: contents.add(multiplierJTextField, BorderLayout.NORTH);

029: contents.add(displayJTextArea, BorderLayout.CENTER);

030:

031: JButton displayJButton = new JButton("Display");

032: contents.add(displayJButton, BorderLayout.SOUTH);

033: displayJButton.addActionListener(this);

034:

035: setDefaultCloseOperation(EXIT_ON_CLOSE);

036: pack();

037: } // TimesTable

December 6, 2018 Java Just in Time - John Latham Page 73(0/0)

Single times table with exception catching

040: // Act upon the button being pressed.

041: public void actionPerformed(ActionEvent event)

042: {

043: try

044: {

045: // Empty the text area to remove any previous result.

046: displayJTextArea.setText("");

047:

048: int multiplier = Integer.parseInt(multiplierJTextField.getText());

049:

050: displayJTextArea.append("--------------------------------\n");

051: displayJTextArea.append("| Times table for " + multiplier + "\n");

052: displayJTextArea.append("--------------------------------\n");

053: for (int thisNumber = 1; thisNumber <= 10; thisNumber++)

054: displayJTextArea.append("| " + thisNumber + " x " + multiplier

055: + " = " + thisNumber * multiplier + "\n");

056: displayJTextArea.append("--------------------------------\n");

057: } // try

December 6, 2018 Java Just in Time - John Latham Page 74(0/0)

Single times table with exception catching

058: catch (NumberFormatException exception)

059: {

060: displayJTextArea.setText("Error parsing multiplier ’"

061: + multiplierJTextField.getText() + "’");

062: } // catch

063: } // actionPerformed

• The main method is the same as before.

066: // Create a TimesTable and make it appear on the screen.

067: public static void main(String[] args)

068: {

069: TimesTable theTimesTable = new TimesTable();

070: theTimesTable.setVisible(true);

071: } // main

072:

073: } // class TimesTable

December 6, 2018 Java Just in Time - John Latham Page 75(0/0)

Trying it

Coffee

time:

What would we

do if there was no

handy place in our

GUI to display our

error message?

How easy would

it be for us to

make a separate

window appear in

which we display

the error?

December 6, 2018 Java Just in Time - John Latham Page 76(0/0)

Coursework: TimesTable with a ScrollPane
catching exceptions

(Summary only)

Take a program with a GUI, that you have seen before, and make it catch

exceptions.

December 6, 2018 Java Just in Time - John Latham Page 77(0/0)

Section 8

Example:

A reusable Date class with

exceptions

December 6, 2018 Java Just in Time - John Latham Page 78(0/0)

Aim

AIM: To introduce the throws clause together with its associ-

ated doc comment tag. We also look at supplying an

exception cause when we create an exception, and

discuss the use of RuntimeExceptions.

December 6, 2018 Java Just in Time - John Latham Page 79(0/0)

A reusable Date class with exceptions

• Improve our reusable Date by adding exceptions.

001: /**

002: * This class represents calendar dates and provides certain

003: * manipulations of them.

004: *

005: * @author John Latham

006: */

007: public class Date

008: {

009: // Class variable to hold the present date.

010: private static Date presentDate = null;

• setPresentDate() will now throw an exception if called more than once.

December 6, 2018 Java Just in Time - John Latham Page 80(0/0)

Method: that throws an exception

• If body of method can cause an exception

– either directly or indirectly

which is not caught by it

– then method must have a throws clause in heading.

• Write reserved word throws followed by kind(s) of exception

• E.g. charAt() of java.lang.String

– throws an exception if illegal string index.

public char charAt(int index) throws IndexOutOfBoundsException

{

...

} // charAt

December 6, 2018 Java Just in Time - John Latham Page 81(0/0)

Method: that throws an exception

• Suppose we have a class which provides mutable objects

– representing customer details.

• An instance is allowed to have customer name changed

– but new name not allowed to be empty.

public class Customer

{

private String familyName, firstNames;

...

December 6, 2018 Java Just in Time - John Latham Page 82(0/0)

Method: that throws an exception

public void setName(String requiredFamilyName, String requiredFirstNames)

throws IllegalArgumentException

{

if (requiredFamilyName == null || requiredFirstNames == null

|| requiredFamilyName.equals("") || requiredFirstNames.equals(""))

throw new IllegalArgumentException("Name cannot be null or empty");

familyName = requiredFamilyName;

firstNames = requiredFirstNames;

} // setName

...

} // class Customer

December 6, 2018 Java Just in Time - John Latham Page 83(0/0)

Java tools: javadoc: throws tag

• Another doc comment tag

– for describing exceptions that a method throws.

Tag Meaning Where used

@throws exception

name and description

Describes the circumstances

leading to an exception.

Before a

method.

December 6, 2018 Java Just in Time - John Latham Page 84(0/0)

A reusable Date class with exceptions

013: /**

014: * Sets the present date.

015: * The date must not have already been set.

016: *

017: * @param requiredPresentDate The required date for the present day.

018: *

019: * @throws Exception if present date has already been set

020: * or if given date is null.

021: */

022: public static void setPresentDate(Date requiredPresentDate) throws Exception

023: {

024: if (requiredPresentDate == null)

025: throw new Exception("Present date cannot be set to null");

026: if (presentDate != null)

027: throw new Exception("Present date has already been set");

028: presentDate = requiredPresentDate;

029: } // setPresentDate

December 6, 2018 Java Just in Time - John Latham Page 85(0/0)

A reusable Date class with exceptions

• Resulting API documentation:

Web Browser Window

..

setPresentDate

public static void setPresentDate(Date requiredPresentDate)

throws java.lang.Exception

Sets the present date. The date must not have already been set.

Parameters:

requiredPresentDate - The required date for the present day.

Throws:

java.lang.Exception - if present date has already been set or if given date is null.

..

Run

December 6, 2018 Java Just in Time - John Latham Page 86(0/0)

A reusable Date class with exceptions

032: /**

033: * Gets the present date.

034: *

035: * @return The present date.

036: *

037: * @throws Exception if present date has not been set.

038: */

039: public static Date getPresentDate() throws Exception

040: {

041: if (presentDate == null)

042: throw new Exception("Present date has not been set");

043: return presentDate;

044: } // getPresentDate

December 6, 2018 Java Just in Time - John Latham Page 87(0/0)

A reusable Date class with exceptions

047: // Instance variables: the day, month and year of a date.

048: private final int day, month, year;

• Previous version constructor method ‘corrected’ illegal date values

– e.g. if day was zero or negative, was set to one.

• Here we throw exception instead.

• Also, our leap year calculation only works for dates after 1753. . . .

051: /**

052: * Constructs a date, given the three int components.

053: *

054: * @param requiredDay The required day.

055: * @param requiredMonth The required month.

056: * @param requiredYear The required year.

057: *

December 6, 2018 Java Just in Time - John Latham Page 88(0/0)

A reusable Date class with exceptions

058: * @throws Exception if the date components do not form a legal date since

059: * the start of 1753 (post Gregorian Reformation).

060: */

061: public Date(int requiredDay, int requiredMonth, int requiredYear)

062: throws Exception

063: {

064: year = requiredYear;

065: month = requiredMonth;

066: day = requiredDay;

067: // Now check these components are legal, throw exception if not.

068: checkDateIsLegal();

069: } // Date

• checkDateIsLegal() just checks, and throws Exception if date is not legal. . . .

December 6, 2018 Java Just in Time - John Latham Page 89(0/0)

A reusable Date class with exceptions

072: // Check legality of date components and throw exception if illegal.

073: private void checkDateIsLegal() throws Exception

074: {

075: if (year < 1753)

076: throw new Exception("Year " + year + " must be >= 1753");

077:

078: if (month < 1 || month > 12)

079: throw new Exception("Month " + month + " must be from 1 to 12");

080:

081: if (day < 1 || day > daysInMonth())

082: throw new Exception("Day " + day + " must be from 1 to " + daysInMonth()

083: + " for " + month + "/" + year);

084: } // checkDateIsLegal

December 6, 2018 Java Just in Time - John Latham Page 90(0/0)

A reusable Date class with exceptions

• If checkDateIsLegal() throws exception

– it will continue to be thrown by constructor

∗ constructor does not catch it.

December 6, 2018 Java Just in Time - John Latham Page 91(0/0)

A reusable Date class with exceptions

• New version has second constructor

– takes String representation of date

∗ e.g. "01/07/2019".

• Use split() to split string in to three int values.

• Splitting may fail – e.g. less than 3 values, or not an int representation.

– would result in ArrayIndexOutOfBoundsException or

NumberFormatException.

• Catch such ‘low level’ exceptions

– throw new Exception which is more meaningful.

– new Exception caused by the one we caught. . . .

December 6, 2018 Java Just in Time - John Latham Page 92(0/0)

Exception: creating exceptions: with a cause

• Two more constructor method in java.lang.Exception

– create instance which has another exception that caused it

∗ with or without a message.

• Many other kinds of exception also have these.

December 6, 2018 Java Just in Time - John Latham Page 93(0/0)

A reusable Date class with exceptions

087: /**

088: * Constructs a date, given a String holding the

089: * day/month/year representation of the date.

090: *

091: * @param dateString The required date as day/month/year.

092: *

093: * @throws Exception if dateString is not legal.

094: */

095: public Date(String dateString) throws Exception

096: {

097: try

098: {

099: String[] dateElements = dateString.split("/");

100: if (dateElements.length > 3)

101: // This exception will be caught below.

102: throw new Exception("Too many date elements");

December 6, 2018 Java Just in Time - John Latham Page 94(0/0)

A reusable Date class with exceptions

103: day = Integer.parseInt(dateElements[0]);

104: month = Integer.parseInt(dateElements[1]);

105: year = Integer.parseInt(dateElements[2]);

106: } // try

107: catch (Exception exception)

108: { throw new Exception("Date ‘" + dateString

109: + "’ is not in day/month/year format",

110: exception); }

111: // If we get to here, we just check the date components are legal.

112: checkDateIsLegal();

113: } // Date

Coffee

time:

What if the method argument passed to this new con-

structor method is the null reference? Have we over-

looked that scenario?

December 6, 2018 Java Just in Time - John Latham Page 95(0/0)

A reusable Date class with exceptions

116: /**

117: * Yields the day component of this date.

118: *

119: * @return The day of this date.

120: */

121: public int getDay()

122: {

123: return day;

124: } // getDay

125:

126:

127: /**

128: * Yields the month component of this date.

129: *

130: * @return The month of this date.

131: */

132: public int getMonth()

133: {

134: return month;

135: } // getMonth

136:

137:December 6, 2018 Java Just in Time - John Latham Page 96(0/0)

A reusable Date class with exceptions

138: /**

139: * Yields the year component of this date.

140: *

141: * @return The year of this date.

142: */

143: public int getYear()

144: {

145: return year;

146: } // getYear

147:

148:

149: /**

150: * Provides the day/month/year representation of this date.

151: *

152: * @return A String day/month/year representation of this date.

153: */

154: public String toString()

155: {

156: return day + "/" + month + "/" + year;

157: } // toString

December 6, 2018 Java Just in Time - John Latham Page 97(0/0)

A reusable Date class with exceptions

• Methods that compare with another date

– might be given null reference for other date

– produce NullPointerException

∗ particular kind of more general RuntimeException.

December 6, 2018 Java Just in Time - John Latham Page 98(0/0)

Method: that throws an exception:

RuntimeException

• All exceptions that possibly can be thrown

when running body of a method

– must either be caught by it

– or declared in its throws clause.

• Java relaxes this rule for RuntimeExceptions

– common erroneous situations which are usually avoidable

– typically write code to ensure they do not happen.

• java.lang.RuntimeException is kind of Exception

– more specific kinds of RuntimeException include

∗ java.lang.ArrayIndexOutOfBoundsException

∗ java.lang.IllegalArgumentException

∗ java.lang.NumberFormatException

∗ java.lang.ArithmeticException

∗ java.lang.NullPointerException.

December 6, 2018 Java Just in Time - John Latham Page 99(0/0)

Method: that throws an exception:

RuntimeException

• Would be very inconvenient to have to always declare

these might happen, or explicitly catch them

– when we know they will not happen

due to way we have written the code.

• So Java lets us choose to declare

whether they might be thrown by a method.

December 6, 2018 Java Just in Time - John Latham Page 100(0/0)

Method: that throws an exception:

RuntimeException

• E.g. in the following: array reference and (implicit) array element access

– could give NullPointerException and ArrayIndexOutOfBoundsException

– compiler not clever enough to reason whether actually can occur

∗ but we can be sure they won’t, so no throws clause.

public int sum(int[] array)

{

if (array == null)

return 0;

int sum = 0;

for (int element : array)

sum += element;

return sum;

} // sum

December 6, 2018 Java Just in Time - John Latham Page 101(0/0)

Method: that throws an exception:

RuntimeException

• E.g. following method can cause some kinds of RuntimeException

– we don’t check array is not null

– nor array is not empty.

public double mean(int[] array)

throws NullPointerException, ArrayIndexOutOfBoundsException

{

int sum = array[0];

for (int index = 1; index < array.length; index++)

sum += array[index];

return (double)sum / array.length;

} // sum

December 6, 2018 Java Just in Time - John Latham Page 102(0/0)

Method: that throws an exception:

RuntimeException

• For code intended for software reuse

– good idea to be disciplined.

• If method can throw some kind of RuntimeException, because

– does not avoid possibility

– or even, explicitly throws such exception

should declare in throws clause

– even though not forced to.

December 6, 2018 Java Just in Time - John Latham Page 103(0/0)

Method: that throws an exception:

RuntimeException

• Kinds of exception for which we must either

– have catch clause for

– or list in throws clause

known as checked exceptions.

• Those for which rule is relaxed

– e.g. RuntimeException and its specific kinds

known as unchecked exceptions.

December 6, 2018 Java Just in Time - John Latham Page 104(0/0)

A reusable Date class with exceptions

Coffee

time:

Why have we been able to get so far through this book

without needing to write the reserved word throws in our

programs (except when using a Scanner on a file)? Now

that you know about it, can you think of places where

we might include it if we were writing all those programs

again?

December 6, 2018 Java Just in Time - John Latham Page 105(0/0)

A reusable Date class with exceptions

160: /**

161: * Compares this date with a given other one.

162: *

163: * @param other The other date to compare with.

164: *

165: * @return The value 0 if the other date represents the same date

166: * as this one; a value less than 0 if this date is less than the

167: * other; and a value greater than 0 if this date is greater than

168: * the other.

169: *

170: * @throws NullPointerException if other is null.

171: */

172: public int compareTo(Date other) throws NullPointerException

173: {

174: if (year != other.year) return year - other.year;

175: else if (month != other.month) return month - other.month;

176: else return day - other.day;

177: } // compareTo

December 6, 2018 Java Just in Time - John Latham Page 106(0/0)

A reusable Date class with exceptions

Web Browser Window

..

compareTo

public int compareTo(Date other)

throws java.lang.NullPointerException

Compares this date with a given other one.

Parameters:

other - The other date to compare with.

Returns:

The value 0 if the other date represents the same date as this one; a value less than 0

if this date is less than the other; and a value greater than 0 if this date is greater

than the other.

Throws:

java.lang.NullPointerException - if other is null.

..

Run

December 6, 2018 Java Just in Time - John Latham Page 107(0/0)

A reusable Date class with exceptions

180: /**

181: * Compares this date with a given other one, for equality.

182: *

183: * @param other The other date to compare with.

184: *

185: * @return true if and only if they represent the same date.

186: *

187: * @throws NullPointerException if other is null.

188: */

189: public boolean equals(Date other) throws NullPointerException

190: {

191: return compareTo(other) == 0;

192: } // equals

193:

194:

December 6, 2018 Java Just in Time - John Latham Page 108(0/0)

A reusable Date class with exceptions

195: /**

196: * Compares this date with a given other one, for less than.

197: *

198: * @param other The other date to compare with.

199: *

200: * @return true if and only if this date is less than the other.

201: *

202: * @throws NullPointerException if other is null.

203: */

204: public boolean lessThan(Date other) throws NullPointerException

205: {

206: return compareTo(other) < 0;

207: } // lessThan

208:

209:

December 6, 2018 Java Just in Time - John Latham Page 109(0/0)

A reusable Date class with exceptions

210: /**

211: * Compares this date with a given other one, for greater than.

212: *

213: * @param other The other date to compare with.

214: *

215: * @return true if and only if this date is greater than the other.

216: *

217: * @throws NullPointerException if other is null.

218: */

219: public boolean greaterThan(Date other) throws NullPointerException

220: {

221: return compareTo(other) > 0;

222: } // greaterThan

December 6, 2018 Java Just in Time - John Latham Page 110(0/0)

A reusable Date class with exceptions

• Interesting twist for addDay()

– creates a new Date: constructor can throw an exception

∗ so addDay() must catch or throw it.

• We know newly created Date cannot be erroneous

– but still have to explicitly catch exception!

December 6, 2018 Java Just in Time - John Latham Page 111(0/0)

A reusable Date class with exceptions

225: /**

226: * Constructs a new date which is one day later than this one.

227: *

228: * @return A new date which is one day later than this one.

229: */

230: public Date addDay()

231: {

232: int newDay = day + 1;

233: int newMonth = month;

234: int newYear = year;

235: if (newDay > daysInMonth())

236: {

237: newDay = 1;

238: newMonth++;

239: if (newMonth > 12)

240: {

241: newMonth = 1;

242: newYear++;

243: } // if

244: } // if

December 6, 2018 Java Just in Time - John Latham Page 112(0/0)

A reusable Date class with exceptions

245: // This cannot cause an exception, but Java does not know that.

246: try { return new Date(newDay, newMonth, newYear); }

247: catch (Exception exception) { return null; }

248: } // addDay

Coffee

time:

What if we had decided that the constructor should

throw a RuntimeException rather than an Exception. Would

that have made a difference to us here?

December 6, 2018 Java Just in Time - John Latham Page 113(0/0)

A reusable Date class with exceptions

251: /**

252: * Constructs a new date which is one month later than this one.

253: * If the day is too large for that month, it is truncated to

254: * the number of days in that month.

255: *

256: * @return A new date which is one month later than this one.

257: */

258: public Date addMonth()

259: {

260: int newDay = day;

261: int newMonth = month + 1;

262: int newYear = year;

263: if (newMonth > 12)

264: {

265: newMonth = 1;

266: newYear++;

267: } // if

December 6, 2018 Java Just in Time - John Latham Page 114(0/0)

A reusable Date class with exceptions

268: if (newDay > daysInMonth(newMonth, newYear))

269: newDay = daysInMonth(newMonth, newYear);

270: // This cannot cause an exception, but Java does not know that.

271: try { return new Date(newDay, newMonth, newYear); }

272: catch (Exception exception) { return null; }

273: } // addMonth

December 6, 2018 Java Just in Time - John Latham Page 115(0/0)

A reusable Date class with exceptions

276: /**

277: * Constructs a new date which is one year later than this one.

278: * If this date is a leap day, it returns 28th February of the next year.

279: *

280: * @return A new date which is one year later than this one.

281: */

282: public Date addYear()

283: {

284: // This cannot cause an exception, but Java does not know that.

285: try

286: {

287: if (day == 29 && month == 2)

288: return new Date(28, month, year + 1);

289: else

290: return new Date(day, month, year + 1);

291: } // try

292: catch (Exception exception) { return null; }

293: } // addYear

December 6, 2018 Java Just in Time - John Latham Page 116(0/0)

A reusable Date class with exceptions

296: /**

297: * Constructs a new date which is one day earlier than this one.

298: * This can throw an exception

299: * if the new date is earlier than the start of 1753.

300: *

301: * @return A new date which is one day earlier than this one.

302: *

303: * @throws Exception if the new date is earlier than the start of 1753.

304: */

305: public Date subtractDay() throws Exception

306: {

307: int newDay = day - 1;

308: int newMonth = month;

309: int newYear = year;

December 6, 2018 Java Just in Time - John Latham Page 117(0/0)

A reusable Date class with exceptions

310: if (newDay < 1)

311: {

312: newMonth--;

313: if (newMonth < 1)

314: {

315: newMonth = 12;

316: newYear--;

317: } // if

318: newDay = daysInMonth(newMonth, newYear);

319: } // if

320: return new Date(newDay, newMonth, newYear);

321: } // subtractDay

December 6, 2018 Java Just in Time - John Latham Page 118(0/0)

A reusable Date class with exceptions

324: /**

325: * Constructs a new date which is one month earlier than this one.

326: * This can throw an exception

327: * if the new date is earlier than the start of 1753.

328: * If the day is too large for that month, it is truncated to

329: * the number of days in that month.

330: *

331: * @return A new date which is one month earlier than this one.

332: *

333: * @throws Exception if the new date is earlier than the start of 1753.

334: */

335: public Date subtractMonth() throws Exception

336: {

337: int newDay = day;

338: int newMonth = month - 1;

339: int newYear = year;

December 6, 2018 Java Just in Time - John Latham Page 119(0/0)

A reusable Date class with exceptions

340: if (newMonth < 1)

341: {

342: newMonth = 12;

343: newYear--;

344: } // if

345: if (newDay > daysInMonth(newMonth, newYear))

346: newDay = daysInMonth(newMonth, newYear);

347: return new Date(newDay, newMonth, newYear);

348: } // subtractMonth

December 6, 2018 Java Just in Time - John Latham Page 120(0/0)

A reusable Date class with exceptions

351: /**

352: * Constructs a new date which is one year earlier than this one.

353: * This can throw an exception

354: * if the new date is earlier than the start of 1753.

355: * If this date is a leap day, it returns 28th February of the previous year.

356: *

357: * @return A new date which is one year earlier than this one.

358: *

359: * @throws Exception if the new date is earlier than the start of 1753.

360: */

361: public Date subtractYear() throws Exception

362: {

363: if (day == 29 && month == 2)

364: return new Date(28, month, year - 1);

365: else

366: return new Date(day, month, year - 1);

367: } // subtractYear

December 6, 2018 Java Just in Time - John Latham Page 121(0/0)

A reusable Date class with exceptions

370: /**

371: * Calculates how many days this date is from a given other.

372: * If the other date is less than this one, then the distance

373: * is negative. It is non-negative otherwise (including zero

374: * if they represent the same date).

375: *

376: * @param other The other date.

377: *

378: * @return The distance in days.

379: *

380: * @throws NullPointerException if other is null.

381: */

382: public int daysFrom(Date other) throws NullPointerException

383: {

384: // The code here is a prototype

385: // -- the result should be computed more efficiently than this!

December 6, 2018 Java Just in Time - John Latham Page 122(0/0)

A reusable Date class with exceptions

386: if (equals(other))

387: return 0;

388: else if (lessThan(other))

389: {

390: Date someDate = addDay();

391: int noOfDaysDistance = 1;

392: while (someDate.lessThan(other))

393: {

394: someDate = someDate.addDay();

395: noOfDaysDistance++;

396: } // while

397: return noOfDaysDistance;

398: } // else if

399: else

December 6, 2018 Java Just in Time - John Latham Page 123(0/0)

A reusable Date class with exceptions

400: try // We should not get an exception from subtractDay,

401: // because target date is legal. But Java does not know this.

402: {

403: Date someDate = subtractDay();

404: int noOfDaysDistance = -1;

405: while (someDate.greaterThan(other))

406: {

407: someDate = someDate.subtractDay();

408: noOfDaysDistance--;

409: } // while

410: return noOfDaysDistance;

411: } // try

412: // Java does not know we cannot get an exception.

413: catch (Exception e){ return 0; }

414: } // daysFrom

December 6, 2018 Java Just in Time - John Latham Page 124(0/0)

A reusable Date class with exceptions

• daysInMonth() now both instance method and class method.

417: // Calculate the number of days in the month.

418: private int daysInMonth()

419: {

420: return daysInMonth(month, year);

421: } // daysInMonth

December 6, 2018 Java Just in Time - John Latham Page 125(0/0)

A reusable Date class with exceptions

424: // Number of days in each month for normal and leap years.

425: // The first index (0) is not used.

426: private static final int[]

427: DAYS_PER_MONTH_NON_LEAP_YEAR

428: // Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

429: = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},

430: DAYS_PER_MONTH_LEAP_YEAR

431: = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};

432:

433:

434: // Calculate the number of days in a given month for a given year.

435: // This will never be called with a month out of range 1 to 12.

436: private static int daysInMonth(int month, int year)

437: {

438: if (isLeapYear(year)) return DAYS_PER_MONTH_LEAP_YEAR[month];

439: else return DAYS_PER_MONTH_NON_LEAP_YEAR[month];

440: } // daysInMonth

December 6, 2018 Java Just in Time - John Latham Page 126(0/0)

A reusable Date class with exceptions

443: // Return true if and only if year is a leap year.

444: // (We can ignore pre Gregorian Reformation years.)

445: // Year is a leap year if it is divisible by 4

446: // and is not divisible by 100

447: // or is divisible by 400.

448: private static boolean isLeapYear(int year)

449: {

450: return year % 4 == 0

451: && (year % 100 != 0 || year % 400 == 0);

452: } // isLeapYear

453:

454: } // class Date

December 6, 2018 Java Just in Time - John Latham Page 127(0/0)

A reusable Date class with exceptions

Coffee

time:

In this exploration of the Date example, we added code

to throw exceptions which are Exception objects. We

might instead have chosen to use RuntimeException ob-

jects. What difference would that make? Which would

really be the most appropriate?

December 6, 2018 Java Just in Time - John Latham Page 128(0/0)

Coursework: Date class with nested try statements

(Summary only)

Modify a class so that it uses nested try statements.

December 6, 2018 Java Just in Time - John Latham Page 129(0/0)

Section 9

Example:

Date difference with

command line arguments

December 6, 2018 Java Just in Time - John Latham Page 130(0/0)

Aim

AIM: To further illustrate the use of exceptions and introduce

the getCause() instance method in the Exception class.

December 6, 2018 Java Just in Time - John Latham Page 131(0/0)

Date difference with command line arguments

• Given two dates as command line arguments

– output number of days between them.

• Next section – same program

– except data from standard input.

• Interesting how approach to exception handling differs.

• Also show causes of exceptions. . . .

December 6, 2018 Java Just in Time - John Latham Page 132(0/0)

Exception: getCause()

• The exception cause inside an Exception

– retrieved via getCause() instance method

– returns null reference if no cause.

December 6, 2018 Java Just in Time - John Latham Page 133(0/0)

Date difference with command line arguments

001: // Obtain two dates in day/month/year format from first and second arguments.

002: // Report how many days there are from first to second,

003: // which is negative if first date is the earliest one.

004: public class DateDifference

005: {

006: public static void main(String[] args)

007: {

008: try

009: {

010: // The two dates come from args 0 and 1.

011: Date date1 = new Date(args[0]);

012: Date date2 = new Date(args[1]);

013: if (args.length > 2)

014: throw new ArrayIndexOutOfBoundsException(args.length + " is > 2");

015: System.out.println("From " + date1 + " to " + date2 + " is "

016: + date1.daysFrom(date2) + " days");

017: } // try

December 6, 2018 Java Just in Time - John Latham Page 134(0/0)

Date difference with command line arguments

018: catch (ArrayIndexOutOfBoundsException exception)

019: {

020: System.out.println("Please supply exactly two dates");

021: System.err.println(exception);

022: if (exception.getCause() != null)

023: System.err.println("Caused by: " + exception.getCause());

024: } // catch

025: catch (Exception exception)

026: {

027: System.out.println(exception.getMessage());

028: System.err.println(exception);

029: if (exception.getCause() != null)

030: System.err.println("Caused by: " + exception.getCause());

031: } // catch

032: } // main

033:

034: } // class DateDifference

December 6, 2018 Java Just in Time - John Latham Page 135(0/0)

Trying it

• Two legal dates.

Console Input / Output

$ java DateDifference 01/07/2018 01/07/2019

From 1/7/2018 to 1/7/2019 is 365 days

$ java DateDifference 01/07/2019 01/07/2018

From 1/7/2019 to 1/7/2018 is -365 days

$ _ Run

December 6, 2018 Java Just in Time - John Latham Page 136(0/0)

Trying it

• Test ArrayIndexOutOfBoundsException exceptions.

Console Input / Output

$ java DateDifference

Please supply exactly two dates

java.lang.ArrayIndexOutOfBoundsException: 0

$ java DateDifference 01/07/2018

Please supply exactly two dates

java.lang.ArrayIndexOutOfBoundsException: 1

$ java DateDifference 01/07/2018 01/07/2019 ExtraArgument

Please supply exactly two dates

java.lang.ArrayIndexOutOfBoundsException: 3 is > 2

$ _ Run

December 6, 2018 Java Just in Time - John Latham Page 137(0/0)

Trying it

• Test invalid date format exceptions.

Console Input / Output

$ java DateDifference 01/07/2019 "Hello mum"

Date ‘Hello mum’ is not in day/month/year format

java.lang.Exception: Date ‘Hello mum’ is not in day/month/year format

Caused by: java.lang.NumberFormatException: For input string: "Hello mum"

$ java DateDifference 01/07 "Hello mum"

Date ‘01/07’ is not in day/month/year format

java.lang.Exception: Date ‘01/07’ is not in day/month/year format

Caused by: java.lang.ArrayIndexOutOfBoundsException: 2

$ _ Run

December 6, 2018 Java Just in Time - John Latham Page 138(0/0)

Trying it

• Test illegal date exceptions.

Console Input / Output

$ java DateDifference 13/07/2019 07/13/2019

Month 13 must be from 1 to 12

java.lang.Exception: Month 13 must be from 1 to 12

$ java DateDifference 01/07/2019 2019/07/01

Year 1 must be >= 1753

java.lang.Exception: Year 1 must be >= 1753

$ java DateDifference 01/07/2019 30/2/2019

Day 30 must be from 1 to 28 for 2/2019

java.lang.Exception: Day 30 must be from 1 to 28 for 2/2019

$ _ Run

December 6, 2018 Java Just in Time - John Latham Page 139(0/0)

Section 10

Example:

Date difference with standard

input

December 6, 2018 Java Just in Time - John Latham Page 140(0/0)

Aim

AIM: To introduce the idea of obtaining possibly erroneous

information from the end user on standard input, de-

tecting problems with it, and requesting it again until it

is acceptable.

December 6, 2018 Java Just in Time - John Latham Page 141(0/0)

Date difference with standard input

001: import java.util.Scanner;

002:

003: // Obtain two dates in day/month/year format from the user.

004: // Report how many days there are from first to second,

005: // which is negative if first date is earliest one.

006: public class DateDifference

007: {

008: public static void main(String[] args)

009: {

010: // A scanner for reading from standard input.

011: Scanner input = new Scanner(System.in);

012: // The two dates are obtained from the user.

013: Date date1 = inputDate(input, "first");

014: Date date2 = inputDate(input, "second");

015:

016: System.out.println();

017: System.out.println("From " + date1 + " to " + date2 + " is "

018: + date1.daysFrom(date2) + " days");

019: } // main

December 6, 2018 Java Just in Time - John Latham Page 142(0/0)

Date difference with standard input

022: // Obtain a date from the user via the given Scanner.

023: // The second argument is part of the prompt.

024: // Keep repeating until user has entered a valid date.

025: private static Date inputDate(Scanner input, String whichDate)

026: {

027: // Result will eventually refer to a legal date.

028: Date result = null;

029: System.out.print("Please type the " + whichDate + " date: ");

030: // Keep trying until we get a legal date.

031: boolean inputValidYet = false;

December 6, 2018 Java Just in Time - John Latham Page 143(0/0)

Date difference with standard input

032: do

033: {

034: try

035: {

036: result = new Date(input.nextLine());
037: // If we get here then date was valid.
038: inputValidYet = true;

039: } // try

040: catch (Exception exception)

041: {

042: System.out.println(exception.getMessage());
043: System.out.print("Please re-type the " + whichDate + " date: ");

044: } // catch

045: } while (!inputValidYet);

046: // When we get here the result must be a valid date.
047: return result;

048: } // inputDate

049:

050: } // class DateDifference

December 6, 2018 Java Just in Time - John Latham Page 144(0/0)

Trying it

Console Input / Output

$ java DateDifference

Please type the first date: 01/07/2019

Please type the second date: 01/07/2020

From 1/7/2019 to 1/7/2020 is 366 days

$ java DateDifference

Please type the first date: Umm, err...

Date ‘Umm, err...’ is not in day/month/year format

Please re-type the first date: Oh, a date!

Date ‘Oh, a date!’ is not in day/month/year format

Please re-type the first date: 01/07/2019

Please type the second date: Another one?

Date ‘Another one?’ is not in day/month/year format

Please re-type the second date: 01/07/2020

From 1/7/2019 to 1/7/2020 is 366 days

$ _ Run

December 6, 2018 Java Just in Time - John Latham Page 145(0/0)

Concepts covered in this chapter

• Each book chapter ends with a list of concepts covered in it.

• Each concept has with it

– a self-test question,

– and a page reference to where it was covered.

• Please use these to check your understanding before we start the next

chapter.

December 6, 2018 Java Just in Time - John Latham Page 146(0/0)

	Title
	Chapter 15: Exceptions
	Chapter aims
	Section 2: Example: Age next year revisited
	Aim
	Age next year revisited
	Age next year revisited
	Exception
	Exception

	Trying it
	Trying it
	Trying it
	Coursework: FishTankVolume robustness analysis
	Section 3: Example: Age next year with exception avoidance
	Aim
	Age next year with exception avoidance
	Standard API: Character
	Standard API: Character

	Age next year with exception avoidance
	Age next year with exception avoidance
	Age next year with exception avoidance
	Trying it
	Trying it
	Coursework: FishTankVolume exception avoidance
	Section 4: Example: Age next year with exception catching
	Aim
	Age next year with exception catching
	Operating environment: standard error
	Operating environment: standard error

	Standard API: System: err.println()
	Standard API: System: err.println()

	Statement: try statement
	Statement: try statement

	Exception: getMessage()
	Exception: getMessage()

	Age next year with exception catching
	Trying it
	Trying it
	Trying it
	Coursework: FishTankVolume exception catching
	Section 5: Example: Age next year with multiple exception catching
	Aim
	Age next year with multiple exception catching
	Exception: there are many types of exception
	Exception: there are many types of exception

	Statement: try statement: with multiple catch clauses
	Statement: try statement: with multiple catch clauses

	Age next year with multiple exception catching
	Age next year with multiple exception catching
	Trying it
	Coursework: FishTankVolume multiple exception catching
	Section 6: Example: Age next year throwing an exception
	Aim
	Age next year throwing an exception
	Exception: creating exceptions
	Exception: creating exceptions

	Statement: throw statement
	Statement: throw statement

	Age next year throwing an exception
	Age next year throwing an exception
	Trying it
	Coursework: FishTankVolume throwing exceptions
	Section 7: Example: Single times table with exception catching
	Aim
	Single times table with exception catching
	Single times table with exception catching
	Single times table with exception catching
	Trying it
	Coursework: TimesTable with a ScrollPane catching exceptions
	Section 8: Example: A reusable Date class with exceptions
	Aim
	A reusable Date class with exceptions
	Method: that throws an exception
	Method: that throws an exception

	Java tools: javadoc: throws tag
	Java tools: javadoc: throws tag

	A reusable Date class with exceptions
	A reusable Date class with exceptions
	A reusable Date class with exceptions
	A reusable Date class with exceptions
	A reusable Date class with exceptions
	A reusable Date class with exceptions
	A reusable Date class with exceptions
	Exception: creating exceptions: with a cause
	Exception: creating exceptions: with a cause

	A reusable Date class with exceptions
	A reusable Date class with exceptions
	A reusable Date class with exceptions
	Method: that throws an exception: RuntimeException
	Method: that throws an exception: RuntimeException

	A reusable Date class with exceptions
	A reusable Date class with exceptions
	A reusable Date class with exceptions
	A reusable Date class with exceptions
	A reusable Date class with exceptions
	A reusable Date class with exceptions
	A reusable Date class with exceptions
	A reusable Date class with exceptions
	A reusable Date class with exceptions
	A reusable Date class with exceptions
	A reusable Date class with exceptions
	A reusable Date class with exceptions
	A reusable Date class with exceptions
	A reusable Date class with exceptions
	A reusable Date class with exceptions
	A reusable Date class with exceptions
	Coursework: Date class with nested try statements
	Section 9: Example: Date difference with command line arguments
	Aim
	Date difference with command line arguments
	Exception: getCause()
	Exception: getCause()

	Date difference with command line arguments
	Trying it
	Trying it
	Trying it
	Trying it
	Section 10: Example: Date difference with standard input
	Aim
	Date difference with standard input
	Date difference with standard input
	Trying it
	Concepts covered in this chapter

