
List of Slides

1 Title
2 Chapter 14: Arrays
3 Chapter aims
4 Section 2: Example:Salary analysis
5 Aim
6 Salary analysis
7 Salary analysis
8 Array

10 Type: array type
11 Salary analysis
12 Variable: of an array type
13 Array: array creation
15 Salary analysis
16 Array: element access
18 Salary analysis
19 Salary analysis

0-0

20 Standard API: Math: round()
21 Salary analysis
22 Standard API: System: out.printf(): string item
24 Standard API: System: out.printf(): fixed text and many items
25 Salary analysis
26 Salary analysis
27 Trying it
28 Trying it
29 Trying it
30 Trying it
31 Expression: arithmetic: double division: by zero
32 Double division by zero: not a number
33 An empty array is still an array!
34 Array: length
35 Array: empty array
36 Coursework: Mark analysis
37 Section 3: Example:Sorted salary analysis
38 Aim

0-1

39 Sorted salary analysis
41 Statement: for-each loop: on arrays
47 Sorted salary analysis
49 Sorted salary analysis
50 Design: Sorting a list
51 Design: Sorting a list: bubble sort
56 Sorted salary analysis
57 Method: accepting parameters: of an array type
58 Sorted salary analysis
60 Sorted salary analysis
61 Trying it
62 Trying it
63 Coursework: Mark analysis with sorting
64 Section 4: Example:Get a good job
65 Aim
66 Get a good job
67 Get a good job
68 Get a good job

0-2

69 Get a good job
70 The Job class
71 The Job class
72 The Job class
73 Standard API: System: out.printf(): left justification
74 Standard API: String: format()
75 The Job class
76 JobAnalysis class
77 Array: of objects
79 JobAnalysis class
81 JobAnalysis class
82 JobAnalysis class
83 JobAnalysis class
84 JobAnalysis class
85 JobAnalysis class
87 Trying it
88 Coursework: Mark analysis with student names and sorting
89 Section 5: Example:Sort out a job share?

0-3

90 Aim
91 Sort out a job share?
92 Sort out a job share?
93 Sort out a job share?
94 Sort out a job share?
95 Sort out a job share?
96 The JobSurvey class
97 Standard API: Scanner: for a file
98 The JobSurvey class

100 The Job class
102 Variable: final variables: class constant: a set of choices
103 The Job class
104 Variable: final variables: class constant: a set of choices: dangerous
105 Type: enum type
107 The Job class
108 The Job class
109 The Job class
110 The Job class

0-4

111 The JobList class
112 The JobList class
113 Array: partially filled array
114 Array: array extension
116 The JobList class
117 The JobList class
118 Method: returning a value: of an array type
119 The JobList class
120 Type: enum type: access from another class
121 The JobList class
122 The JobList class
123 The JobList class
125 Standard API: String: split()
127 The JobList class
128 Array: shallow copy
129 The JobList class
130 The JobList class
131 The JobList class

0-5

133 The JobList class
135 The JobList class
136 Trying it
137 Trying it
138 Trying it
139 Coursework: Random order text puzzle
140 Section 6: Example:Diet monitoring
141 Aim
142 Diet monitoring
143 Diet monitoring
144 Diet monitoring
145 Diet monitoring
146 Diet monitoring
147 Diet monitoring
149 The Food class
150 Array: array creation: initializer
151 The Food class
152 The Food class

0-6

153 The Food class
154 The Food class
155 The FoodList class
159 Expression: boolean: logical operators: conditional
160 Design: Searching a list: linear search
162 The FoodList class
163 The Diet class
164 The Diet class
165 The Diet class
167 The Diet class
168 Trying it
169 Trying it
170 Coursework: Viewing phone call details
171 Section 7: Example:A weekly diet
172 Aim
173 A weekly diet
174 A weekly diet
175 The WeeklyDiet class

0-7

176 The WeeklyDiet class
177 Array: array of arrays
179 Array: array of arrays: two-dimensional arrays
181 The WeeklyDiet class
182 Array: element access: in two-dimensional arrays
183 The WeeklyDiet class
184 The WeeklyDiet class
186 The WeeklyDiet class
187 The WeeklyDiet class
188 Trying it
189 Coursework: Maze solver
190 Concepts covered in this chapter

0-8

Title

Java Just in Time

John Latham

November 27, 2018

November 27, 2018 Java Just in Time - John Latham Page 1(0/0)

Chapter 14

Arrays

November 27, 2018 Java Just in Time - John Latham Page 2(0/0)

Chapter aims

• An array is list of items

– store collection of values in one place

– arbitrary order or specific order.

• Explore definition and use of arrays

– array creation

– array element access

– sorting items

– partially filled arrays

– array extension

– two-dimensional arrays.

• Also reinforce references

– have several arrays containing references to same objects.

November 27, 2018 Java Just in Time - John Latham Page 3(0/0)

Section 2

Example:

Salary analysis

November 27, 2018 Java Just in Time - John Latham Page 4(0/0)

Aim

AIM: To introduce the basic concepts of arrays, including ar-

ray type, array variables, array creation, array element

access, array length and empty arrays. We also meet

Math.round() and revisit System.out.printf() and divi-

sion by zero.

November 27, 2018 Java Just in Time - John Latham Page 5(0/0)

Salary analysis

001: import java.util.Scanner;

002:

003: /* This program analyses integer salaries entered by the user.

004: It outputs each salary together with its difference from the

005: mean of the salaries. There must be at least one salary.

006: */

007: public class SalaryAnalysis

008: {

009: public static void main(String[] args)

010: {

011: // A Scanner for getting data from the user.

012: Scanner salariesScanner = new Scanner(System.in);

013:

014: System.out.print("Enter the number of salaries: ");

015: int numberOfSalaries = salariesScanner.nextInt();

November 27, 2018 Java Just in Time - John Latham Page 6(0/0)

Salary analysis

• Problem: need to have all salaries before compute average

– but need average before output analysis of each one.

• How can we store them all?

November 27, 2018 Java Just in Time - John Latham Page 7(0/0)

Array

• An array is ordered collection (list) of items

– of some particular type

– fixed size.

• Items stored in adjacent computer memory locations at run time.

• E.g. an array of 8 int values.

2 3 5 7 11 13 17 19

November 27, 2018 Java Just in Time - John Latham Page 8(0/0)

Array

• Each array element contains a value

– can be changed

– i.e. each element is separate variable.

• But array as a whole is single entity.

• Similar to idea of objects having instance variables

– but elements of array must all be same type.

• Indeed, arrays in Java are objects.

November 27, 2018 Java Just in Time - John Latham Page 9(0/0)

Type: array type

• Java arrays are objects

– but treated differently from instances of classes.

• To denote array type write type of array elements followed by [].

• Type of elements known as array base type.

• E.g. int[] – arrays with int as base type

– each element is an int variable.

• E.g. String[]

– each element can contain reference to a String object.

November 27, 2018 Java Just in Time - John Latham Page 10(0/0)

Salary analysis

Coffee

time:

You have actually met arrays before in this book, in fact

we have been using them frequently since the very be-

ginning! Where, and what for?

November 27, 2018 Java Just in Time - John Latham Page 11(0/0)

Variable: of an array type

• Can have variables of array type.

• E.g.

int[] salaries;

• As arrays are objects, are accessed via references

– variable of array type at run time holds reference to an array

– or null reference.

• E.g.

int[] salaries

15000 25000 23950 49950 1270017750

November 27, 2018 Java Just in Time - John Latham Page 12(0/0)

Array: array creation

• Create arrays using reserved word new

– just like for other objects.

• Give array base type then array size in square brackets.

• E.g.

new double[10]

At run time creates new array and yields reference to it.

• E.g.

double[] myFingerLengths = new double[10];

November 27, 2018 Java Just in Time - John Latham Page 13(0/0)

Array: array creation

• Thanks to references, size of array does not need to be known

at compile time

– compiler does not need to allocate memory for it

– can create array of right size for actual data being processed.

• E.g.

int noOfEmployees = Integer.parseInt(args[0]);

String[] employeeNames = new String[noOfEmployees];

November 27, 2018 Java Just in Time - John Latham Page 14(0/0)

Salary analysis

• Have already asked user how many salaries there are.

017: // Salaries are ints, stored in an array.

018: int[] salaries = new int[numberOfSalaries];

November 27, 2018 Java Just in Time - John Latham Page 15(0/0)

Array: element access

• The array elements are accessed via array index

– whole number greater than or equal to zero

– first element indexed by 0, second by 1,. . . .

• To access element, use reference to array

followed by index in square brackets.

• E.g.

double[] myFingerLengths = new double[10];

Somehow get lengths of my fingers and thumbs in array, then:

double myTotalFingerLength = 0;

for (int index = 0; index < 10; index++)

myTotalFingerLength += myFingerLengths[index];

November 27, 2018 Java Just in Time - John Latham Page 16(0/0)

Array: element access

• Arrays are like ordinary objects

– array elements are like instance variables

– but number of them chosen when array created

– and all same type

– and ‘named’ by index rather than names

– and accessed via different syntax.

• Not much difference then! ;-)

November 27, 2018 Java Just in Time - John Latham Page 17(0/0)

Salary analysis

• Obtain salaries one by one in for loop.

020: // Obtain the salaries from the input.

021: for (int index = 0; index < numberOfSalaries; index++)

022: {

023: System.out.print("Enter salary # " + (index + 1) + ": ");

024: salaries[index] = salariesScanner.nextInt();

025: } // for

• Then loop through to get sum.

027: // Now compute the sum of the salaries.

028: int sumOfSalaries = 0;

029: for (int index = 0; index < numberOfSalaries; index++)

030: sumOfSalaries += salaries[index];

November 27, 2018 Java Just in Time - John Latham Page 18(0/0)

Salary analysis

Coffee

time:

Could we have combined the above two for loops into

one? Would that make the program clearer? Faster?

• Want mean average salary rounded to nearest pound. . . .

November 27, 2018 Java Just in Time - John Latham Page 19(0/0)

Standard API: Math: round()

• The class java.lang.Math has class method round()

– takes double method argument

– returns long

– nearest whole number to given one.

• Often want to turn result into int

– via cast.

• E.g.

int myPennies = ... Obtain this somehow.

int myNearlyPounds = (int) Math.round(myPennies / 100.0);

November 27, 2018 Java Just in Time - John Latham Page 20(0/0)

Salary analysis

032: // Compute the mean, which is a double, not an integer.

033: double meanSalary = sumOfSalaries / (double)numberOfSalaries;

034:

035: // But we also want to round it to simplify the results.

036: int meanSalaryRounded = (int) Math.round(meanSalary);

037:

038: // Produce the results.

039: System.out.println();

040: System.out.println("The mean salary is:\t" + meanSalary);

041: System.out.println("which rounds to:\t" + meanSalaryRounded);

042: System.out.println();

November 27, 2018 Java Just in Time - John Latham Page 21(0/0)

Standard API: System: out.printf(): string item

• System.out.printf() can print a String

– use s as conversion character in format specifier.

• E.g.

System.out.println("123456789012345");

System.out.printf("%15s%n", "Hello World");

produces:

123456789012345

Hello World

November 27, 2018 Java Just in Time - John Latham Page 22(0/0)

Standard API: System: out.printf(): string item

• If item is reference to some other object (i.e. not a string)

– toString() is used.

• E.g. assume Point class is defined as expected:

System.out.println("123456789012345");

System.out.printf("%15s%n", new Point(3, 4));

produces:

123456789012345

(3.0,4.0)

November 27, 2018 Java Just in Time - John Latham Page 23(0/0)

Standard API: System: out.printf(): fixed text

and many items

• System.out.printf() can have format string with

– more than one format specifier

– more than one value to be printed

– other text not part of a format specifier.

• Also, if no width given in format specifier then natural width is used.

• E.g.

Point p1 = new Point(3, 4);

Point p2 = new Point(45, 60);

System.out.printf("The distance between %s and %s is %1.2f.%n",

p1, p2, p1.distanceFromPoint(p2));

produces:

The distance between (3.0,4.0) and (45.0,60.0) is 70.00.

November 27, 2018 Java Just in Time - John Latham Page 24(0/0)

Salary analysis

044: for (int index = 0; index < numberOfSalaries; index++)

045: {

046: int differenceFromMean = salaries[index] - meanSalaryRounded;

047: String comparisonToMean = differenceFromMean == 0

048: ? "zero difference from"

049: : (differenceFromMean < 0

050: ? "less than" : "greater than");

051: System.out.printf("Person %2d earns %5d, which is %5d %s the mean%n",

052: (index + 1), salaries[index],

053: Math.abs(differenceFromMean), comparisonToMean);

054: } // for

055: } // main

056:

057: } // class SalaryAnalysis

November 27, 2018 Java Just in Time - John Latham Page 25(0/0)

Salary analysis

Coffee

time:

Notice the nested conditional expressions in the code

above. Do you think that is an acceptable style, or is it

pushing the boundaries of code clarity?

Coffee

time:

Before reading on, predict what the results will look like for

the following input salaries. 15049, 49959, 25750, 24627,

12523, 19852

November 27, 2018 Java Just in Time - John Latham Page 26(0/0)

Trying it

• Carefully ensured one salary exactly equal to rounded mean.

Console Input / Output

$ java SalaryAnalysis

Enter the number of salaries: 6

Enter salary # 1: 15049

Enter salary # 2: 49959

Enter salary # 3: 25750

Enter salary # 4: 24627

Enter salary # 5: 12523

Enter salary # 6: 19852

The mean salary is: 24626.666666666668

which rounds to: 24627

Person 1 earns 15049, which is 9578 less than the mean

Person 2 earns 49959, which is 25332 greater than the mean

Person 3 earns 25750, which is 1123 greater than the mean

Person 4 earns 24627, which is 0 zero difference from the mean

Person 5 earns 12523, which is 12104 less than the mean

Person 6 earns 19852, which is 4775 less than the mean

$ _ Run

November 27, 2018 Java Just in Time - John Latham Page 27(0/0)

Trying it

• Two salaries.

Console Input / Output

$ java SalaryAnalysis

Enter the number of salaries: 2

Enter salary # 1: 15000

Enter salary # 2: 25000

The mean salary is: 20000.0

which rounds to: 20000

Person 1 earns 15000, which is 5000 less than the mean

Person 2 earns 25000, which is 5000 greater than the mean

$ _ Run

November 27, 2018 Java Just in Time - John Latham Page 28(0/0)

Trying it

• Odd, but works with just one salary.

Console Input / Output

$ java SalaryAnalysis

Enter the number of salaries: 1

Enter salary # 1: 15000

The mean salary is: 15000.0

which rounds to: 15000

Person 1 earns 15000, which is 0 zero difference from the mean

$ _ Run

November 27, 2018 Java Just in Time - John Latham Page 29(0/0)

Trying it

• What if no salaries?

Console Input / Output

$ java SalaryAnalysis

Enter the number of salaries: 0

The mean salary is: NaN

which rounds to: 0

$ _ Run

• Program has evaluated 0 / (double)0

– does not produce exception!

November 27, 2018 Java Just in Time - John Latham Page 30(0/0)

Expression: arithmetic: double division: by zero

• With double division, if denominator zero but numerator not zero

– get model of infinity

– represented by System.out.println() (etc) as Infinity.

• If both numerator and denominator zero

– get model of not a number

– represented by System.out.println() (etc) as NaN.

• Observe difference from integer division

– produces exception if denominator zero.

November 27, 2018 Java Just in Time - John Latham Page 31(0/0)

Double division by zero: not a number

Coffee

time:

By looking at the API on-line documentation of the

Math.round() class method, figure out why NaN gets

‘rounded’ to 0 in the SalaryAnalysis program when it is

given no salaries.

November 27, 2018 Java Just in Time - John Latham Page 32(0/0)

An empty array is still an array!

• Running with no salaries shows can have empty array

– no elements, array length zero.

November 27, 2018 Java Just in Time - John Latham Page 33(0/0)

Array: length

• Every array has public instance variable called length

– type int

– contains array length

– final variable – we cannot change value.

• E.g.

int[] myArray = new int[25];

int myArrayLength = myArray.length;

variable myArrayLength has value 25.

November 27, 2018 Java Just in Time - John Latham Page 34(0/0)

Array: empty array

• When create array we give number of array elements

– can be zero!

• An empty array may not seem much use?

– But still exists

– e.g. can access its array length.

• E.g. this outputs zero:

int[] myEmptyArray = new int[0];

System.out.println(myEmptyArray.length);

• But next code causes run time error (NullPointerException):

int[] myNonArray = null;

System.out.println(myNonArray.length);

– there is no array, so cannot ask for its length!

November 27, 2018 Java Just in Time - John Latham Page 35(0/0)

Coursework: Mark analysis

(Summary only)

Write a program that analyses student coursework marks.

November 27, 2018 Java Just in Time - John Latham Page 36(0/0)

Section 3

Example:

Sorted salary analysis

November 27, 2018 Java Just in Time - John Latham Page 37(0/0)

Aim

AIM: To reinforce arrays and introduce the idea of sorting,

together with one simple sorting algorithm. We also

introduce the for-each loop, and have an array as a

method parameter to a method.

November 27, 2018 Java Just in Time - John Latham Page 38(0/0)

Sorted salary analysis

• Same as last example, except report salaries in ascending order.

– Have separate class method to sort array.

001: import java.util.Scanner;

002:

003: /* This program analyses integer salaries entered by the user.

004: It outputs each salary together with its difference from the

005: mean of the salaries. There must be at least one salary.

006: The salaries are output in ascending order.

007: */

008: public class SalaryAnalysis

009: {

010: public static void main(String[] args)

011: {

012: // A Scanner for getting data from the user.

013: Scanner salariesScanner = new Scanner(System.in);

014:

November 27, 2018 Java Just in Time - John Latham Page 39(0/0)

Sorted salary analysis

015: System.out.print("Enter the number of salaries: ");

016: int numberOfSalaries = salariesScanner.nextInt();

017:

018: // Salaries are ints, stored in an array.

019: int[] salaries = new int[numberOfSalaries];

020:

021: // Obtain the salaries from the input.

022: for (int index = 0; index < numberOfSalaries; index++)

023: {

024: System.out.print("Enter salary # " + (index + 1) + ": ");

025: salaries[index] = salariesScanner.nextInt();

026: } // for

• Code to calculate sum of salaries is better expressed using

for-each loop. . . .

November 27, 2018 Java Just in Time - John Latham Page 40(0/0)

Statement: for-each loop: on arrays

• Since Java 5.0: enhanced for statement

– commonly known as for-each loop.

• E.g.

double[] myFingerLengths = new double[10];

... Code here to assign values to the array elements.

find sum of them:

double myTotalFingerLength = 0;

for (double fingerLength : myFingerLengths)

myTotalFingerLength += fingerLength;

November 27, 2018 Java Just in Time - John Latham Page 41(0/0)

Statement: for-each loop: on arrays

double myTotalFingerLength = 0;

for (double fingerLength : myFingerLengths)

myTotalFingerLength += fingerLength;

• Loop over all elements in array referenced by myFingerLengths

– store each in turn in fingerLength

– add to myTotalFingerLength.

• ‘For each fingerLength in myFingerLengths

– add fingerLength to myTotalFingerLength’.

November 27, 2018 Java Just in Time - John Latham Page 42(0/0)

Statement: for-each loop: on arrays

double myTotalFingerLength = 0;

for (double fingerLength : myFingerLengths)

myTotalFingerLength += fingerLength;

• Shorthand for:

double myTotalFingerLength = 0;

for (int index = 0; index < myFingerLengths.length; index++)

{

double fingerLength = myFingerLengths[index];

myTotalFingerLength += fingerLength;

} // for

November 27, 2018 Java Just in Time - John Latham Page 43(0/0)

Statement: for-each loop: on arrays

• General case (assume SomeType[] anArray):

for (SomeType elementName : anArray)

... Statement using elementName.

shorthand for:

for (int index = 0; index < anArray.length; index++)

{

SomeType elementName = anArray[index];

... Statement using elementName.

} // for

November 27, 2018 Java Just in Time - John Latham Page 44(0/0)

Statement: for-each loop: on arrays

• For-each can and should be used instead of for loop

– when wish to loop over all elements of single array

– and array index is only used to access elements

∗ i.e. where element values matter

but position in array not directly used

– and only one array.

• E.g. following cannot be replaced with for-each:

int weightedSum = 0;

for (int index = 0; index < numbers.length; index++)

weightedSum += numbers[index] * index;

• Nor this:

for (int index = 0; index < numbers.length; index++)

otherNumbers[index] = numbers[index];

November 27, 2018 Java Just in Time - John Latham Page 45(0/0)

Statement: for-each loop: on arrays

• Common error –

think that for-each can be used to change array elements.

• E.g. following compiles without errors:

int[] numbers = new int[100];

for (int number : numbers)

number = 10;

shorthand for:

for (int index = 0; index < numbers.length; index++)

{

int number = numbers[index];

number = 10;

} // for

which achieves nothing!

November 27, 2018 Java Just in Time - John Latham Page 46(0/0)

Sorted salary analysis

028: // Now compute the sum of the salaries.

029: int sumOfSalaries = 0;

030: for (int salary : salaries)

031: sumOfSalaries += salary;

032:

033: // Compute the mean, which is a double, not an integer.

034: double meanSalary = sumOfSalaries / (double)numberOfSalaries;

035:

036: // But we also want to round it to simplify the results.

037: int meanSalaryRounded = (int) Math.round(meanSalary);

038:

039: // Sort the salaries into ascending order.

040: sort(salaries);

041:

November 27, 2018 Java Just in Time - John Latham Page 47(0/0)

Sorted salary analysis

042: // Produce the results.

043: System.out.println();

044: System.out.println("The mean salary is:\t" + meanSalary);

045: System.out.println("which rounds to:\t" + meanSalaryRounded);

046: System.out.println();

047:

048: for (int index = 0; index < numberOfSalaries; index++)

049: {

050: int differenceFromMean = salaries[index] - meanSalaryRounded;

051: String comparisonToMean = differenceFromMean == 0

052: ? "zero difference from"

053: : (differenceFromMean < 0

054: ? "less than" : "greater than");

055: System.out.printf("Person %2d earns %5d, which is %5d %s the mean%n",

056: (index + 1), salaries[index],

057: Math.abs(differenceFromMean), comparisonToMean);

058: } // for

059: } // main

November 27, 2018 Java Just in Time - John Latham Page 48(0/0)

Sorted salary analysis

Coffee

time:

Why did we not replace the other two for loops with a for-each

loop? What do you think of the following code as an alternative

to the first for loop?

. int salaryNo = 1;

. for (int salary : salaries)

. {

. System.out.print("Enter salary # " + salaryNo + ": ");

. salary = salariesScanner.nextInt();

. salaryNo++;

. } // for

November 27, 2018 Java Just in Time - John Latham Page 49(0/0)

Design: Sorting a list

• A list e.g. array has items in some order

– perhaps arbitrary.

• Often want to rearrange into specific order

– without losing or gaining any.

• Known as sorting

– E.g. list of numbers may be sorted into ascending numerical order

– e.g. list of names may be sorted alphabetically

– etc..

• Many different sort algorithms: bubble sort, insertion sort, selection sort,

quick sort, merge sort, tree sort

November 27, 2018 Java Just in Time - John Latham Page 50(0/0)

Design: Sorting a list: bubble sort

• A sort algorithm – bubble sort.

• Pass through list, look at adjacent items – swap if wrong order.

• One pass not enough to ensure the list completely sorted

– more passes made until it is.

• After first pass, ‘highest’ item must be at end of list.

• E.g.

45 78 12 79 60 17

– First pass, compare 45 with 78 – okay

– then 78 with 12 – swap

– then 78 with 79, etc.

– 79 moves to end of list.

November 27, 2018 Java Just in Time - John Latham Page 51(0/0)

Design: Sorting a list: bubble sort

Start 45 78 12 79 60 17

45 <= 78 okay 45 <= 78 12 79 60 17

78 > 12 swap 45 12 <= 78 79 60 17

78 <= 79 okay 45 12 78 <= 79 60 17

79 > 60 swap 45 12 78 60 <= 79 17

79 > 17 swap 45 12 78 60 17 <= 79

• 79 is in place, preceding items still not sorted.

• After second pass, second highest item must be at penultimate place.

– If N items then N −1 passes guarantee whole list sorted.

• First pass looks at N −1 pairs

– next looks at N −2 pairs

– last pass looks at one pair.

November 27, 2018 Java Just in Time - John Latham Page 52(0/0)

Design: Sorting a list: bubble sort

• Results at end of next passes:

Pass

2 12 45 60 17 78 79

3 12 45 17 60 78 79

4 12 17 45 60 78 79

5 12 17 45 60 78 79

• Pass 5 unnecessary – became sorted after pass 4.

November 27, 2018 Java Just in Time - John Latham Page 53(0/0)

Design: Sorting a list: bubble sort

• Bubble sort pseudo code:

for passCount = 1 to anArray length - 1

for pairLeftIndex = 0 to anArray length - 1 - passCount

if items in anArray at pairLeftIndex and pairLeftIndex + 1

are out of order

swap them over

November 27, 2018 Java Just in Time - John Latham Page 54(0/0)

Design: Sorting a list: bubble sort

• Improvement – list may be sorted before N −1 passes

perhaps already sorted at start!

int unsortedLength = anArray length

boolean changedOnThisPass

do

changedOnThisPass = false

for pairLeftIndex = 0 to unsortedLength - 2

if items in anArray at pairLeftIndex and pairLeftIndex + 1

are out of order

swap them over

changedOnThisPass = true

end-if

end-for

unsortedLength--

while changedOnThisPass

November 27, 2018 Java Just in Time - John Latham Page 55(0/0)

Sorted salary analysis

Coffee

time:

Use the bubble sort algorithm (on paper) to sort the

following numbers into descending order rather than

ascending order which has already been explored.

45 78 12 79 60 17

November 27, 2018 Java Just in Time - John Latham Page 56(0/0)

Method: accepting parameters: of an array type

• The method parameters of a method can be any type.

• If array type then method argument will be

– reference to array of that type

– or null reference.

• E.g. main method is given reference to String[]

command line argument array.

November 27, 2018 Java Just in Time - John Latham Page 57(0/0)

Sorted salary analysis

062: // Sort a given array of int into ascending order.

063: private static void sort(int[] anArray)

064: {

065: // Each pass of the sort reduces unsortedLength by one.

066: int unsortedLength = anArray.length;

067: // If no change is made on a pass, the main loop can stop.

068: boolean changedOnThisPass;

November 27, 2018 Java Just in Time - John Latham Page 58(0/0)

Sorted salary analysis

069: do

070: {

071: changedOnThisPass = false;

072: for (int pairLeftIndex = 0;

073: pairLeftIndex < unsortedLength - 1; pairLeftIndex++)

074: if (anArray[pairLeftIndex] > anArray[pairLeftIndex + 1])

075: {

076: int thatWasAtPairLeftIndex = anArray[pairLeftIndex];

077: anArray[pairLeftIndex] = anArray[pairLeftIndex + 1];

078: anArray[pairLeftIndex + 1] = thatWasAtPairLeftIndex;

079: changedOnThisPass = true;

080: } // if

081: unsortedLength--;

082: } while (changedOnThisPass);

083: } // sort

084:

085: } // class SalaryAnalysis

November 27, 2018 Java Just in Time - John Latham Page 59(0/0)

Sorted salary analysis

Coffee

time:

Suppose we decided we wanted the output to be sorted

in descending order of salary. What change would we

need to make to our program?

Coffee

time:

Sorting an array is quite a common thing we wish to do

in our programs. Clearly it is good for you to see how we

can write our own code for sorting, but do you think it is

likely that there is in fact some code in a standard class

somewhere? See if you can find it! Does it allow us to

choose which order to sort into?

November 27, 2018 Java Just in Time - John Latham Page 60(0/0)

Trying it

Console Input / Output

$ java SalaryAnalysis

Enter the number of salaries: 6

Enter salary # 1: 15049

Enter salary # 2: 49959

Enter salary # 3: 25750

Enter salary # 4: 24627

Enter salary # 5: 12523

Enter salary # 6: 19852

The mean salary is: 24626.666666666668

which rounds to: 24627

Person 1 earns 12523, which is 12104 less than the mean

Person 2 earns 15049, which is 9578 less than the mean

Person 3 earns 19852, which is 4775 less than the mean

Person 4 earns 24627, which is 0 zero difference from the mean

Person 5 earns 25750, which is 1123 greater than the mean

Person 6 earns 49959, which is 25332 greater than the mean

$ _ Run

November 27, 2018 Java Just in Time - John Latham Page 61(0/0)

Trying it

Coffee

time:

Does the output still make sense? For example, what

is the meaning of Person 1? While they are only num-

bers, perhaps it does not matter that the output numbers

bear no correspondence to the input ones. Or perhaps

it should! How could we modify our program so that the

person numbers produced in the output were the posi-

tion of that salary in the input list?

November 27, 2018 Java Just in Time - John Latham Page 62(0/0)

Coursework: Mark analysis with sorting

(Summary only)

Write a program that analyses student coursework marks, and presents the

results in a sorted order.

November 27, 2018 Java Just in Time - John Latham Page 63(0/0)

Section 4

Example:

Get a good job

November 27, 2018 Java Just in Time - John Latham Page 64(0/0)

Aim

AIM: To examine arrays in which the array elements are ref-

erences to objects. In particular, we see how this im-

pacts on sorting with the use of a compareTo() instance

method. We also revisit System.out.printf() and meet

String.format().

November 27, 2018 Java Just in Time - John Latham Page 65(0/0)

Get a good job

• Variation of previous program:

– input is list of pairs: name of firm, typical salary.

• Analysis as before

– but keep name of firm and salary together while sorting.

November 27, 2018 Java Just in Time - John Latham Page 66(0/0)

Get a good job

• Two classes:

Class list for JobAnalysis

Class Description

JobAnalysis The main class containing the main method. It will read the

input data, and make instances of Job.

Job An instance of this will represent a firm’s name together with

their typical salary.

November 27, 2018 Java Just in Time - John Latham Page 67(0/0)

Get a good job

Public method interfaces for class JobAnalysis.

Method Return Arguments Description

main String[] The main method for the program.

• Also private class method to sort Jobs.

November 27, 2018 Java Just in Time - John Latham Page 68(0/0)

Get a good job

Public method interfaces for class Job.

Method Return Arguments Description

Constructor String, int Constructs a job with the given em-

ployer and salary.

getEmployer String Gives the employer.

getSalary int Gives the salary.

compareTo int Job Compare this job with the given other,

to support ordering by ascending

salary.

toString String Returns a string representation of the

job.

November 27, 2018 Java Just in Time - John Latham Page 69(0/0)

The Job class

001: // A class for representing a Job,

002: // comprising a firm’s name and their typical salary.

003: public class Job

004: {

005: // The name of the firm for this instance.

006: private final String employer;

007:

008: // Their typical salary.

009: private final int salary;

010:

011:

012: // The constructor method.

013: public Job(String requiredEmployer, int requiredSalary)

014: {

015: employer = requiredEmployer;

016: salary = requiredSalary;

017: } // Job

November 27, 2018 Java Just in Time - John Latham Page 70(0/0)

The Job class

020: // Get the employer.

021: public String getEmployer()

022: {

023: return employer;

024: } // getEmployer

025:

026:

027: // Get the salary.

028: public int getSalary()

029: {

030: return salary;

031: } // getSalary

November 27, 2018 Java Just in Time - John Latham Page 71(0/0)

The Job class

034: // Compare this Job with a given other,

035: // basing the comparison on the salaries, then the employers.

036: // Returns -ve(<), 0(=) or +ve(>) int. -ve means this one is the smallest.

037: public int compareTo(Job other)

038: {

039: if (salary == other.salary)

040: return employer.compareTo(other.employer);

041: else

042: return salary - other.salary;

043: } // compareTo

November 27, 2018 Java Just in Time - John Latham Page 72(0/0)

Standard API: System: out.printf(): left
justification

• System.out.printf() can print things left justified rather than right

– just place hyphen in front of format specifier width.

• E.g.

System.out.println("123456789012345X");

System.out.printf("%-15sX%n", "Hello World");

produces:

123456789012345X

Hello World X

November 27, 2018 Java Just in Time - John Latham Page 73(0/0)

Standard API: String: format()

• java.lang.String has class method called format

– introduced in Java 5.0

– works with format specifiers just like System.out.printf()

– but returns formatted string rather than prints it.

• E.g.

System.out.println(String.format("The distance between %s and %s is %1.2f.",

p1, p2, p1.distanceFromPoint(p2)));

• precisely same effect as (observe %n):

System.out.printf("The distance between %s and %s is %1.2f.%n",

p1, p2, p1.distanceFromPoint(p2));

November 27, 2018 Java Just in Time - John Latham Page 74(0/0)

The Job class

046: // Return a string representation.

047: public String toString()

048: {

049: return String.format("%-15s pays %5d", employer, salary);

050: } // toString

051:

052: } // class Job

November 27, 2018 Java Just in Time - John Latham Page 75(0/0)

JobAnalysis class

• The main method

– takes input data in pairs

∗ creates Job objects

∗ stores in array

– sorts array

– outputs results.

November 27, 2018 Java Just in Time - John Latham Page 76(0/0)

Array: of objects

• An array base type can be any type

– including a class

– if so, array elements contain references to objects

∗ or null reference.

November 27, 2018 Java Just in Time - John Latham Page 77(0/0)

Array: of objects

• E.g. command line arguments for JobAnalysis

(if were not using standard input):

public static void main(String[] args)

"Quick Hackers"

"49959"

"15049"

"Top Soft"

"Middle Ware"

"27750"

String object

String objectString[] args

String object

String object

String object

String object

0

2

3

4

5

1

November 27, 2018 Java Just in Time - John Latham Page 78(0/0)

JobAnalysis class

001: import java.util.Scanner;

002:

003: /* Program to analyse Job information supplied by the user. Each Job comprises

004: a firm name and their typical salary. Output is mean salary and ascending

005: sorted list of jobs. There must be at least one job.

006: */

007: public class JobAnalysis

008: {

009: public static void main(String[] args)

010: {

011: // A Scanner for getting data from the user.

012: Scanner inputScanner = new Scanner(System.in);

013:

November 27, 2018 Java Just in Time - John Latham Page 79(0/0)

JobAnalysis class

014: System.out.print("Enter the number of jobs: ");

015: int noOfJobs = inputScanner.nextInt();

016: // Skip past the end of that line.

017: inputScanner.nextLine();

018:

019: // We keep the jobs in an array.

020: Job[] jobs = new Job[noOfJobs];

November 27, 2018 Java Just in Time - John Latham Page 80(0/0)

JobAnalysis class

022: // Read the data in pairs,

023: // build Job objects and store them in jobs array.

024: for (int jobCount = 1; jobCount <= noOfJobs; jobCount++)

025: {

026: System.out.print("Enter the name of employer " + jobCount + ": ");

027: String employer = inputScanner.nextLine();

028: System.out.print("Enter the salary for ‘" + employer + "’: ");

029: int salary = inputScanner.nextInt();

030: // Skip past the end of that line.

031: inputScanner.nextLine();

032: jobs[jobCount - 1] = new Job(employer, salary);

033: } // for

• Diagram

November 27, 2018 Java Just in Time - John Latham Page 81(0/0)

JobAnalysis class

Job[] jobs

salary

employer
"Quick Hackers"

15049

"Top Soft"
employer

salary

49959

"Middle Ware"
employer

salary

27750

String objectJob object

Job object String object

String objectJob object

0

1

2

November 27, 2018 Java Just in Time - John Latham Page 82(0/0)

JobAnalysis class

035: // Now compute the sum of the salaries.

036: int sumOfSalaries = 0;

037: for (Job job : jobs)

038: sumOfSalaries += job.getSalary();

039:

040: // Compute the mean, which is a double, not an integer.

041: double meanSalary = sumOfSalaries / (double)noOfJobs;

042:

043: // But we also want to round it to simplify the results.

044: int meanSalaryRounded = (int) Math.round(meanSalary);

045:

046: // Sort the jobs by salary into ascending order.

047: sort(jobs);

048:

049: // Produce the results.

050: System.out.println();

051: System.out.println("The mean salary is:\t" + meanSalary);

052: System.out.println("which rounds to:\t" + meanSalaryRounded);

053: System.out.println();

November 27, 2018 Java Just in Time - John Latham Page 83(0/0)

JobAnalysis class

• No longer need array index appearing in output

– so can use for-each loop.

055: // Output each job.

056: for (Job job : jobs)

057: {

058: int differenceFromMean = job.getSalary() - meanSalaryRounded;

059: String comparisonToMean = differenceFromMean == 0

060: ? "zero difference from"

061: : (differenceFromMean < 0

062: ? "less than" : "greater than");

063: System.out.printf("%s, which is %5d %s the mean%n",

064: job, Math.abs(differenceFromMean), comparisonToMean);

065: } // for

066: } // main

November 27, 2018 Java Just in Time - John Latham Page 84(0/0)

JobAnalysis class

• Class method to sort array uses

compareTo() instance method of Job objects.

069: // Sort the given array of Jobs using compareTo on the Job objects.

070: private static void sort(Job[] anArray)

071: {

072: // Each pass of the sort reduces unsortedLength by one.

073: int unsortedLength = anArray.length;

074: // If no change is made on a pass, the main loop can stop.

075: boolean changedOnThisPass;

November 27, 2018 Java Just in Time - John Latham Page 85(0/0)

JobAnalysis class

076: do

077: {

078: changedOnThisPass = false;

079: for (int pairLeftIndex = 0;

080: pairLeftIndex < unsortedLength - 1; pairLeftIndex++)

081: if (anArray[pairLeftIndex].compareTo(anArray[pairLeftIndex + 1]) > 0)

082: {

083: Job thatWasAtPairLeftIndex = anArray[pairLeftIndex];

084: anArray[pairLeftIndex] = anArray[pairLeftIndex + 1];

085: anArray[pairLeftIndex + 1] = thatWasAtPairLeftIndex;

086: changedOnThisPass = true;

087: } // if

088: unsortedLength--;

089: } while (changedOnThisPass);

090: } // sort

091:

092: } // class JobAnalysis

November 27, 2018 Java Just in Time - John Latham Page 86(0/0)

Trying it

Console Input / Output

$ java JobAnalysis

Enter the number of jobs: 6

Enter the name of employer 1: Quick Hackers

Enter the salary for ‘Quick Hackers’: 15049

Enter the name of employer 2: Top Soft

Enter the salary for ‘Top Soft’: 49959

Enter the name of employer 3: Middle Ware

Enter the salary for ‘Middle Ware’: 25750

Enter the name of employer 4: Mean Media

Enter the salary for ‘Mean Media’: 24627

Enter the name of employer 5: OK Coral

Enter the salary for ‘OK Coral’: 12523

Enter the name of employer 6: Cheaper Cheers

Enter the salary for ‘Cheaper Cheers’: 19852

The mean salary is: 24626.666666666668

which rounds to: 24627

OK Coral pays 12523, which is 12104 less than the mean

Quick Hackers pays 15049, which is 9578 less than the mean

Cheaper Cheers pays 19852, which is 4775 less than the mean

Mean Media pays 24627, which is 0 zero difference from the mean

Middle Ware pays 25750, which is 1123 greater than the mean

Top Soft pays 49959, which is 25332 greater than the mean

$ _ Run

November 27, 2018 Java Just in Time - John Latham Page 87(0/0)

Coursework: Mark analysis with student names and

sorting

(Summary only)

Write a program that analyses named student coursework marks, and

presents the results in a sorted order.

November 27, 2018 Java Just in Time - John Latham Page 88(0/0)

Section 5

Example:

Sort out a job share?

November 27, 2018 Java Just in Time - John Latham Page 89(0/0)

Aim

AIM: To introduce partially filled arrays with array extension,

array copying to make a shallow copy and returning

an array from amethod. We also look at object sharing

as we have three arrays containing references to the

same objects. Along the way we meet the use of a

Scanner on a file, enum types and split() on a String.

November 27, 2018 Java Just in Time - John Latham Page 90(0/0)

Sort out a job share?

• Elaboration of previous example

– each command line argument is name of text file

∗ containing employer and salary data for kind of job.

– Data presented twice:

∗ sorted by name of employer

∗ again by salary.

November 27, 2018 Java Just in Time - John Latham Page 91(0/0)

Sort out a job share?

• Three classes.

Class list for JobSurvey

Class Description

JobSurvey The main class containing the main method. It will make an

instance of JobList for each command line argument.

JobList This holds a collection of Jobs, one for each data pair in the

associated data file.

Job An instance of this will represent a firm’s name together with

their typical salary.

November 27, 2018 Java Just in Time - John Latham Page 92(0/0)

Sort out a job share?

Public method interfaces for class JobSurvey.

Method Return Arguments Description

main String[] The main method for the program.

November 27, 2018 Java Just in Time - John Latham Page 93(0/0)

Sort out a job share?

Public method interfaces for class JobList.

Method Return Arguments Description

Constructor Scanner Constructs a job list, reading the infor-

mation from the given Scanner.

toString String Returns a string representation of the

job list including the jobs sorted by em-

ployer and again by salary.

November 27, 2018 Java Just in Time - John Latham Page 94(0/0)

Sort out a job share?

Public method interfaces for class Job.

Method Return Arguments Description

Constructor String, int Constructs a job with the given em-

ployer and salary.

getEmployer String Gives the employer.

getSalary int Gives the salary.

compareTo int Job, SortOrder Compare this job with the given

other, to support ordering by em-

ployer or salary, as specified by the

second argument.

toString String Returns a string representation of

the job.

November 27, 2018 Java Just in Time - John Latham Page 95(0/0)

The JobSurvey class

• The main method in JobSurvey: for each text file command line argument:

– create Scanner with access to file

∗ pass to JobList constructor method.

November 27, 2018 Java Just in Time - John Latham Page 96(0/0)

Standard API: Scanner: for a file

• java.util.Scanner can be used to read file, e.g.

import java.io.File;

import java.util.Scanner;

...

Scanner input = new Scanner(new File("my-data.txt"));

• java.io.File is standard class used to represent file names.

• E.g. reading all lines of file, with help of hasNextLine():

while (input.hasNextLine())

{

String line = input.nextLine();

...

} // while

November 27, 2018 Java Just in Time - John Latham Page 97(0/0)

The JobSurvey class

• Creating Scanner for file could cause run time error

– more serious kind than so far met: Java won’t let us ignore it!

• Handling exceptions is topic of next chapter – here do minimum:

– add throws Exception to main method heading.

001: import java.io.File;
002: import java.util.Scanner;
003:
004: /* Program to report jobs and their salaries.
005: Each command line argument is the name of a text file containing:
006: The first line is a name or description of the jobs.
007: Subsequent lines describe one job, in the format:
008: Employer (including spaces but not tabs) <TAB> salary
009: Output is a report for each file containing:
010: Name or description of the jobs, average salary
011: Job details in name order and again in salary order.
012: */

November 27, 2018 Java Just in Time - John Latham Page 98(0/0)

The JobSurvey class

013: public class JobSurvey

014: {

015: public static void main(String[] args) throws Exception

016: {

017: for (String fileName : args)

018: {

019: JobList jobList = new JobList(new Scanner(new File(fileName)));

020: System.out.println(jobList);

021: System.out.println();

022: } // for

023: } // main

024:

025: } // class JobSurvey

November 27, 2018 Java Just in Time - John Latham Page 99(0/0)

The Job class

001: // A class for representing a Job,

002: // comprising a firm’s name and their typical salary.

003: public class Job

004: {

005: // The name of the firm for this instance.

006: private final String employer;

007:

008: // Their typical salary.

009: private final int salary;

010:

011:

012: // The constructor method.

013: public Job(String requiredEmployer, int requiredSalary)

014: {

015: employer = requiredEmployer;

016: salary = requiredSalary;

017: } // Job

018:

019:

November 27, 2018 Java Just in Time - John Latham Page 100(0/0)

The Job class

020: // Get the employer.

021: public String getEmployer()

022: {

023: return employer;

024: } // getEmployer

025:

026:

027: // Get the salary.

028: public int getSalary()

029: {

030: return salary;

031: } // getSalary

• compareTo() needs to be able to order by employer or salary. . . .

November 27, 2018 Java Just in Time - John Latham Page 101(0/0)

Variable: final variables: class constant: a set of

choices

• Can use class constants to define set of options for users of class

– don’t have to know what values are used to model each option.

• E.g. possible directions in game?

public static final int UP = 0;

public static final int DOWN = 1;

public static final int LEFT = 2;

public static final int RIGHT = 3;

• Code more readable than if numbers are used directly.

• Also more flexible for source code maintainer – can change values.

November 27, 2018 Java Just in Time - John Latham Page 102(0/0)

The Job class

• Would have:

public static final int SORT_BY_EMPLOYER = 1;

public static final int SORT_BY_SALARY = 2;

and

public int compareTo(Job other, int sortOrder)

{

switch (sortOrder)

{

case SORT_BY_EMPLOYER: ...

case SORT_BY_SALARY: ...

default: ...

} // switch

} // compareTo

November 27, 2018 Java Just in Time - John Latham Page 103(0/0)

Variable: final variables: class constant: a set of

choices: dangerous

• Use of int class constants to model options has two dangers

– Constants could be used for other purposes

∗ e.g. could be used inappropriately in some arithmetic expression.

– Could accidentally use another int value, not one of constants,

November 27, 2018 Java Just in Time - John Latham Page 104(0/0)

Type: enum type

• Since 5.0 Java has enum types

– allows us to identify enumeration of named values as type.

• E.g. four possible directions in some game:

private enum Direction { UP, DOWN, LEFT, RIGHT }

• A bit like defining class called Direction

– with four variables

∗ each referring to a unique instance of Direction.

• So, e.g.:

private Direction currentDirection = Direction.UP;

private Direction nextDirection = null;

• Could declare as public if want to be available in other classes.

November 27, 2018 Java Just in Time - John Latham Page 105(0/0)

Type: enum type

• Enum types can be used in switch statements.

switch (currentDirection)

{

case UP: ...

case DOWN: ...

case LEFT: ...

case RIGHT: ...

default: ...

} // switch

November 27, 2018 Java Just in Time - John Latham Page 106(0/0)

The Job class

034: // These are the possible sort orders.

035: // If more are required, then add here and update compareTo.

036: public enum SortOrder { BY_EMPLOYER, BY_SALARY }

November 27, 2018 Java Just in Time - John Latham Page 107(0/0)

The Job class

039: // Compare this Job with a given other,

040: // basing the comparison on the given sort order.

041: // Returns -ve(<), 0(=) or +ve(>) int. -ve means this one is the smallest.

042: public int compareTo(Job other, SortOrder sortOrder)

043: {

044: switch (sortOrder)

045: {

046: case BY_EMPLOYER: if (employer.equals(other.employer))

047: return salary - other.salary;

048: else

049: return employer.compareTo(other.employer);

050: case BY_SALARY: if (salary == other.salary)

051: return employer.compareTo(other.employer);

052: else

053: return salary - other.salary;

054: default: return 0;

055: } // switch

056: } // compareTo

November 27, 2018 Java Just in Time - John Latham Page 108(0/0)

The Job class

• sortOrder could be null.

• Plus other subtle reason why need to have default entry

even though both enumeration values are covered. . . .

Coffee

time:

Imagine that the enum type is defined in one class, and

the switch statement appears in another. What would

happen if a third value was added to the enum type,

without the second class being recompiled?

Coffee

time:

If we wished to alter the sorting by salary so that it was

descending, instead of ascending, what change would

we need to make to compareTo()?

November 27, 2018 Java Just in Time - John Latham Page 109(0/0)

The Job class

059: // Return a string representation.

060: public String toString()

061: {

062: return String.format("%-15s pays %5d", employer, salary);

063: } // toString

064:

065: } // class Job

November 27, 2018 Java Just in Time - John Latham Page 110(0/0)

The JobList class

• First line of text from Scanner is description of JobList.

001: import java.util.Scanner;

002:

003: /* A JobList holds a list of Job objects, the data for which is read from a

004: Scanner passed to the constructor. It sorts these by employer and by

005: salary. The toString method returns a String showing both lists.

006: */

007: public class JobList

008: {

009: // The description of this JobList.

010: private final String description;

November 27, 2018 Java Just in Time - John Latham Page 111(0/0)

The JobList class

• For convenience, do not require number of jobs stated up front

– program counts them as they are read.

• But how big should array be?

– Too big – waste memory

– too small – can’t process all jobs.

November 27, 2018 Java Just in Time - John Latham Page 112(0/0)

Array: partially filled array

• A partially filled array – not all array elements used

– only leading portion

– size of portion stored in another variable.

• E.g.

private final int MAX_NO_OF_ITEMS = 100;

private int noOfItemsInArray = 0;

private SomeType[] anArray = new SomeType[MAX_NO_OF_ITEMS];

add item into array – e.g. ignore if full:

if (noOfItemsInArray < MAX_NO_OF_ITEMS)

{

anArray[noOfItemsInArray] = aNewItem;

noOfItemsInArray++;

} // if

November 27, 2018 Java Just in Time - John Latham Page 113(0/0)

Array: array extension

• What if partially filled array full, but more data to be added?

– Use array extension:

∗ make new, bigger array

∗ copy existing items to it.

• E.g.

private static final int INITIAL_ARRAY_SIZE = 100;

private static final int ARRAY_RESIZE_FACTOR = 2;

private int noOfItemsInArray = 0;

private SomeType[] anArray = new SomeType[INITIAL_ARRAY_SIZE];

adding item. . .

November 27, 2018 Java Just in Time - John Latham Page 114(0/0)

Array: array extension

if (noOfItemsInArray == anArray.length)

{

SomeType[] biggerArray

= new SomeType[anArray.length * ARRAY_RESIZE_FACTOR];

for (int index = 0; index < noOfItemsInArray; index++)

biggerArray[index] = anArray[index];

anArray = biggerArray;

} // if

anArray[noOfItemsInArray] = aNewItem;

noOfItemsInArray++;

• New array need not be twice as big

– just bigger

– but only one bigger would be slow. . . .

November 27, 2018 Java Just in Time - John Latham Page 115(0/0)

The JobList class

012: // The number of Jobs.

013: private int noOfJobs;

014:

015: // The jobs in original order.

016: // Only the first 0 to noOfJobs - 1 indices are used.

017: private Job[] jobsInOriginalOrder;

018:

019: // The jobs in ascending order by employer name.

020: private final Job[] jobsSortedByEmployer;

021:

022: // The jobs in ascending order by salary.

023: private final Job[] jobsSortedBySalary;

024:

025: // The mean and rounded mean salary.

026: private final double meanSalary;

027: private final int meanSalaryRounded;

November 27, 2018 Java Just in Time - John Latham Page 116(0/0)

The JobList class

030: // The constructor is given a Scanner from which to read

031: // the description of the JobList

032: // and then the job data.

033: public JobList(Scanner scanner)

034: {

035: description = scanner.nextLine();

036: readJobsInOriginalOrder(scanner);

• Next copy elements into two more arrays

– just big enough

– one for each of the other two array variables.

November 27, 2018 Java Just in Time - John Latham Page 117(0/0)

Method: returning a value: of an array type

• The return type of a method may be array type

– value will be reference to array

– or null reference.

November 27, 2018 Java Just in Time - John Latham Page 118(0/0)

The JobList class

038: // Copy the jobs into two arrays.

039: jobsSortedByEmployer = copyJobArray(jobsInOriginalOrder, noOfJobs);

040: jobsSortedBySalary = copyJobArray(jobsInOriginalOrder, noOfJobs);

• Next sort these arrays

– one by employer

– one by salary.

November 27, 2018 Java Just in Time - John Latham Page 119(0/0)

Type: enum type: access from another class

• An enum type declared public can be used in other classes

– accessed using dot like other kinds of access.

• E.g. if Direction defined in Movement:

Movement.Direction requestedDirection = Movement.Direction.UP;

November 27, 2018 Java Just in Time - John Latham Page 120(0/0)

The JobList class

042: // Sort each array into its correct order.

043: sort(jobsSortedByEmployer, Job.SortOrder.BY_EMPLOYER);

044: sort(jobsSortedBySalary, Job.SortOrder.BY_SALARY);

045:

046: // Now compute the sum of the salaries.

047: int sumOfSalaries = 0;

048: for (Job job : jobsSortedBySalary)

049: sumOfSalaries += job.getSalary();

050:

051: // Compute the mean, which is a double, not an integer.

052: meanSalary = sumOfSalaries / (double)noOfJobs;

053:

054: // But we also want to round it to simplify the results.

055: meanSalaryRounded = (int) Math.round(meanSalary);

056: } // JobList

November 27, 2018 Java Just in Time - John Latham Page 121(0/0)

The JobList class

• When reading jobs

– start array with initial size

– create new array for extension if/when required.

• For testing, set values small.

059: // Initial size of the jobsInOriginalOrder array.

060: private static final int INITIAL_ARRAY_SIZE = 2;

061:

062: // When jobsInOriginalOrder is full, we extend it by this factor.

063: private static final int ARRAY_RESIZE_FACTOR = 2;

• Have helper method to read one line from scanner and create Job. . . .

November 27, 2018 Java Just in Time - John Latham Page 122(0/0)

The JobList class

066: // Read job data from the given Scanner, count them using noOfJobs,

067: // and store in jobsInOriginalOrder -- extending as required.

068: private void readJobsInOriginalOrder(Scanner scanner)

069: {

070: jobsInOriginalOrder = new Job[INITIAL_ARRAY_SIZE];

071: noOfJobs = 0;

072: while (scanner.hasNextLine())

073: {

074: // Obtain the next Job.

075: Job currentJob = readOneJob(scanner);

076: // Extend the array if it is too small.

November 27, 2018 Java Just in Time - John Latham Page 123(0/0)

The JobList class

077: if (noOfJobs == jobsInOriginalOrder.length)

078: {

079: Job[] biggerArray

080: = new Job[jobsInOriginalOrder.length * ARRAY_RESIZE_FACTOR];

081: for (int index = 0; index < jobsInOriginalOrder.length; index++)

082: biggerArray[index] = jobsInOriginalOrder[index];

083: jobsInOriginalOrder = biggerArray;

084: } // if

085: // Finally store the Job and update noOfJobs.

086: jobsInOriginalOrder[noOfJobs] = currentJob;

087: noOfJobs++;

088: } // while

089: } // readJobsInOriginalOrder

November 27, 2018 Java Just in Time - John Latham Page 124(0/0)

Standard API: String: split()

• The instance method java.lang.String.split()

– returns array of Strings

– each array element is portion of the String

– split depending on method argument

∗ regular expression describing what separates the portions.

November 27, 2018 Java Just in Time - John Latham Page 125(0/0)

Standard API: String: split()

• E.g.

String and regular expression Resulting array

"The-cat-sat-on-the-mat".split("-") { "The", "cat", "sat",

"on", "the", "mat" }

"The--cat--sat--on--the--mat".split("-") { "The", "", "cat", "",

"sat", "", "on", "",

"the", "", "mat" }

"The--cat--sat--on--the--mat".split("-+") { "The", "cat", "sat",

"on", "the", "mat" }

"The-cat--sat---on----the--mat".split("-+") { "The", "cat", "sat",

"on", "the", "mat" }

• "-+" means “one or more hyphens”.

November 27, 2018 Java Just in Time - John Latham Page 126(0/0)

The JobList class

Coffee

time:

Read the Java API on-line documentation to find out

more about regular expressions.

092: // Read one line of text from the Scanner,

093: // split it into employer name <TAB> salary,

094: // create a corresponding Job and return it.

095: private Job readOneJob(Scanner scanner)

096: {

097: String[] jobData = scanner.nextLine().split("\t");

098: return new Job(jobData[0], Integer.parseInt(jobData[1]));

099: } // readOneJob

• Next instance method to make copy of original array. . . .

November 27, 2018 Java Just in Time - John Latham Page 127(0/0)

Array: shallow copy

• When copy array containing references to objects

– can make shallow copy

∗ contains same references

so objects end up shared by the two arrays

– or deep copy

∗ contains references to copies of original objects.

November 27, 2018 Java Just in Time - John Latham Page 128(0/0)

The JobList class

102: // Return a shallow copy of given source,

103: // but only the first dataLength elements.

104: private Job[] copyJobArray(Job[] source, int dataLength)

105: {

106: Job[] result = new Job[dataLength];

107: for (int index = 0; index < dataLength; index++)

108: result[index] = source[index];

109: return result;

110: } // copyJobArray

Coffee

time:

Why can we not use a for-each loop in the above code?

November 27, 2018 Java Just in Time - John Latham Page 129(0/0)

The JobList class

15049 49959 25750 24627 12523

Job[]

salary salary salary salary salary

1 2 3 4

0 1 2 3 4

salary

19852

5 6 7

5

0

null null

Job[]

{objects
(showing salary only)

Job

jobsInOriginalOrder

jobsSortedBySalary

November 27, 2018 Java Just in Time - John Latham Page 130(0/0)

The JobList class

113: // Sort the given array of Jobs

114: // using compareTo on the Job objects with the given sortOrder.

115: private void sort(Job[] anArray, Job.SortOrder sortOrder)

116: {

117: // Each pass of the sort reduces unsortedLength by one.

118: int unsortedLength = anArray.length;

119: // If no change is made on a pass, the main loop can stop.

120: boolean changedOnThisPass;

November 27, 2018 Java Just in Time - John Latham Page 131(0/0)

The JobList class

121: do

122: {

123: changedOnThisPass = false;

124: for (int pairLeftIndex = 0;

125: pairLeftIndex < unsortedLength - 1; pairLeftIndex++)

126: if (anArray[pairLeftIndex]

127: .compareTo(anArray[pairLeftIndex + 1], sortOrder) > 0)

128: {

129: Job thatWasAtPairLeftIndex = anArray[pairLeftIndex];

130: anArray[pairLeftIndex] = anArray[pairLeftIndex + 1];

131: anArray[pairLeftIndex + 1] = thatWasAtPairLeftIndex;

132: changedOnThisPass = true;

133: } // if

134: unsortedLength--;

135: } while (changedOnThisPass);

136: } // sort

November 27, 2018 Java Just in Time - John Latham Page 132(0/0)

The JobList class

139: // Return job details sorted by employer name and then salary.

140: public String toString()

141: {

142: return String.format("Job list: %s\tAverage: %f%n%n"

143: + "Sorted by employer%s%n%nSorted by salary%s",

144: description, meanSalary,

145: listOneJobArray(jobsSortedByEmployer),

146: listOneJobArray(jobsSortedBySalary));

147: } // toString

148:

149:

November 27, 2018 Java Just in Time - John Latham Page 133(0/0)

The JobList class

150: // Helper method for toString.
151: private String listOneJobArray(Job[] jobArray)

152: {

153: String result = "";
154: for (Job job : jobArray)

155: {

156: int differenceFromMean = job.getSalary() - meanSalaryRounded;

157: String comparisonToMean = differenceFromMean == 0

158: ? "zero difference from"

159: : (differenceFromMean < 0

160: ? "less than" : "greater than");

161: result +=
162: String.format("%n%s, which is %5d %s the mean",
163: job, Math.abs(differenceFromMean), comparisonToMean);

164: } // for

165: return result;

166: } // listOneJobArray

167:
168: } // class JobList

November 27, 2018 Java Just in Time - John Latham Page 134(0/0)

The JobList class

Coffee

time:

Why did we not declare noOfJobs and

jobsInOriginalOrder as being final variables?

Coffee

time:

In a previous coffee time you were invited to find out

about StringBuffer. Do you think the toString() instance

method above would be a good place to use one?

November 27, 2018 Java Just in Time - John Latham Page 135(0/0)

Trying it

Console Input / Output

$ cat programmers.txt

Programmers

Quick Hackers 15049

Top Soft 49959

Middle Ware 25750

Mean Media 24627

OK Coral 12523

Cheaper Cheers 19852

$ cat testers.txt

Testers

Quick Hackers 13999

Top Soft 49059

Middle Ware 24049

Mean Media 23316

OK Coral 10999

Cheaper Cheers 18474

$ _ Run

November 27, 2018 Java Just in Time - John Latham Page 136(0/0)

Trying it

Console Input / Output

$ java JobSurvey programmers.txt testers.txt

Job list: Programmers Average: 24626.666667

Sorted by employer

Cheaper Cheers pays 19852, which is 4775 less than the mean

Mean Media pays 24627, which is 0 zero difference from the mean

Middle Ware pays 25750, which is 1123 greater than the mean

OK Coral pays 12523, which is 12104 less than the mean

Quick Hackers pays 15049, which is 9578 less than the mean

Top Soft pays 49959, which is 25332 greater than the mean

Sorted by salary

OK Coral pays 12523, which is 12104 less than the mean

Quick Hackers pays 15049, which is 9578 less than the mean

Cheaper Cheers pays 19852, which is 4775 less than the mean

Mean Media pays 24627, which is 0 zero difference from the mean

Middle Ware pays 25750, which is 1123 greater than the mean

Top Soft pays 49959, which is 25332 greater than the mean

Job list: Testers Average: 23316.000000

Sorted by employer

Cheaper Cheers pays 18474, which is 4842 less than the mean

Mean Media pays 23316, which is 0 zero difference from the mean

...

$ _ Run

November 27, 2018 Java Just in Time - John Latham Page 137(0/0)

Trying it

Coffee

time:

Did you notice a %f without a precision (number of

decimal places) in the format specifier string in our

toString()? Can you guess what the default number of

decimal places is?

November 27, 2018 Java Just in Time - John Latham Page 138(0/0)

Coursework: Random order text puzzle

(Summary only)

Write a random order text line sorting puzzle program.

November 27, 2018 Java Just in Time - John Latham Page 139(0/0)

Section 6

Example:

Diet monitoring

November 27, 2018 Java Just in Time - John Latham Page 140(0/0)

Aim

AIM: To reinforce ideas met so far, and introduce array ini-

tializer and array searching, for which we revisit the

logical operators.

November 27, 2018 Java Just in Time - John Latham Page 141(0/0)

Diet monitoring

• Program to aid people monitoring their diet

– record food name and how many grams eaten

– (tab character separated) in text file diet-diary.txt.

• E.g.

Console Input / Output

$ cat diet-diary.txt

pizza 400

garlic bread 200

cheesecake 260

burger 200

fries 180

milkshake 400

fried chicken 360

wedges 270

$ _ Run

November 27, 2018 Java Just in Time - John Latham Page 142(0/0)

Diet monitoring

• Program produces summary table

how much of each nutritional component was eaten:

– protein, carbohydrate, etc..

• Reads file food-details.txt containing various foods breakdown

– grams per kilogram.

Console Input / Output

$ cat food-details.txt

Food Protein Carb Fat Fibre Sodium

burger 150 200 100 25 12

cheesecake 50 300 200 6 5

fried chicken 225 115 190 15 10

fries 35 400 150 50 12

garlic bread 130 420 95 25 5

milkshake 28 202 32 1 2

pizza 140 300 119 25 8

wedges 210 390 99 41 12

$ _ Run

November 27, 2018 Java Just in Time - John Latham Page 143(0/0)

Diet monitoring

• Three classes.

Class list for Diet

Class Description

Diet The main method makes an instance of FoodList from

food-details.txt. It then accumulates nutritional components

from food items listed in diet-diary.txt, and outputs those totals.

FoodList This will make an instance of Food for each item specified in the

text file, and store them in an array.

Food An instance of this will store a food name together with its nutri-

tional data.

November 27, 2018 Java Just in Time - John Latham Page 144(0/0)

Diet monitoring

Public method interfaces for class Diet.

Method Return Arguments Description

main String[] The main method for the program.

November 27, 2018 Java Just in Time - John Latham Page 145(0/0)

Diet monitoring

Public method interfaces for class FoodList.

Method Return Arguments Description

Constructor Scanner Constructs a food list, reading from the

given Scanner.

findFood Food String Return (a reference to) the Food object

corresponding to the food named by

the given String, or null if it is not rec-

ognized.

November 27, 2018 Java Just in Time - John Latham Page 146(0/0)

Diet monitoring

Public method interfaces for class Food.

Method Return Arguments Description

Constructor String Constructs a Food with the details spec-

ified by the given String. This will be

a line of text from the food-details.txt

data text file.

getName String Returns the food name.

November 27, 2018 Java Just in Time - John Latham Page 147(0/0)

Diet monitoring

Public method interfaces for class Food.

Method Return Arguments Description

componentMilliGramsForWeight int[] int Produces an array

of nutritional compo-

nent amounts corre-

sponding to a given

number of grams of

the food being con-

sumed.

November 27, 2018 Java Just in Time - John Latham Page 148(0/0)

The Food class

• Have class constant array of nutritional component names.

November 27, 2018 Java Just in Time - John Latham Page 149(0/0)

Array: array creation: initializer

• Can create actual array at same time as declaring array variable

– using array initializer

∗ list array elements, instead of stating length.

• E.g.

int[] smallPrimes = {2, 3, 5, 7, 11, 13, 17, 19};

• Shorthand for:

int[] smallPrimes = new int[8];

...

smallPrimes[0]=2; smallPrimes[1]=3; smallPrimes[2]=5;

smallPrimes[3]=7; smallPrimes[4]=11; smallPrimes[5]=13;

smallPrimes[6]=17; smallPrimes[7]=19;

November 27, 2018 Java Just in Time - John Latham Page 150(0/0)

The Food class

001: // Representation of a food, as a name

002: // together with nutritional data in grams per kilogram.

003: public class Food

004: {

005: // This defines the spelling and order of nutritional components.

006: public static final String[] NUTRITIONAL_COMPONENTS

007: = { "Protein", "Carb", "Fat", "Fibre", "Sodium" };

008:

009: // The name of this food.

010: private final String name;

011:

012: // Nutritional data in the same order as NUTRITIONAL_COMPONENTS.

013: private final int[] nutrientGramsPerKilogram

014: = new int[NUTRITIONAL_COMPONENTS.length];

November 27, 2018 Java Just in Time - John Latham Page 151(0/0)

The Food class

017: // Constructor is given name and data as tab separated parts of a string.

018: public Food(String details)

019: {

020: String[] detailParts = details.split("\t+");

021: name = detailParts[0];

022: for (int index = 0; index < NUTRITIONAL_COMPONENTS.length; index++)

023: nutrientGramsPerKilogram[index]

024: = Integer.parseInt(detailParts[index + 1]);

025: } // Food

026:

027:

028: // Accessor for name.

029: public String getName()

030: {

031: return name;

032: } // getName

November 27, 2018 Java Just in Time - John Latham Page 152(0/0)

The Food class

035: // Returns the number of milligrams of each component

036: // for the given number of grams consumed.

037: public int[] componentMilliGramsForWeight(int grams)

038: {

039: int[] result = new int[NUTRITIONAL_COMPONENTS.length];

040: for (int index = 0; index < NUTRITIONAL_COMPONENTS.length; index++)

041: result[index] = nutrientGramsPerKilogram[index] * grams;

042: return result;

043: } // componentMilliGramsForWeight

044:

045: } // class Food

November 27, 2018 Java Just in Time - John Latham Page 153(0/0)

The Food class

Coffee

time:

By declaring the array NUTRITIONAL COMPONENTS as a final

variable, have we made it impossible for code (inside or

outside of this class) to alter the order or spellings of the

components?

November 27, 2018 Java Just in Time - John Latham Page 154(0/0)

The FoodList class

001: import java.util.Scanner;

002:

003: // Keeps a list of food items, and provides a search facility.

004: public class FoodList

005: {

006: // For array extension of foodList.

007: private static final int INITIAL_ARRAY_SIZE = 100, ARRAY_RESIZE_FACTOR = 2;

008:

009: // The food details are stored in a partially filled array

010: // with an associated count.

011: private final int noOfFoodItems;

012: private final Food[] foodList;

013:

014:

November 27, 2018 Java Just in Time - John Latham Page 155(0/0)

The FoodList class

015: // The constructor reads the food details from the given scanner

016: // and stores them in foodList, extending as necessary.

017: public FoodList(Scanner scanner)

018: {

019: // The first line is just titles.

020: scanner.nextLine();

021: Food[] foodListSoFar = new Food[INITIAL_ARRAY_SIZE];

022: int noOfFoodItemsSoFar = 0;

November 27, 2018 Java Just in Time - John Latham Page 156(0/0)

The FoodList class

023: while (scanner.hasNextLine())

024: {

025: // Food constructor parses the whole line.

026: Food latestFood = new Food(scanner.nextLine());

027: // Extend the array if it is full.

028: if (noOfFoodItemsSoFar == foodListSoFar.length)

029: {

030: Food[] biggerArray

031: = new Food[foodListSoFar.length * ARRAY_RESIZE_FACTOR];

032: for (int index = 0; index < foodListSoFar.length; index++)

033: biggerArray[index] = foodListSoFar[index];

034: foodListSoFar = biggerArray;

035: } // if

036: // Store the new item and count it.

037: foodListSoFar[noOfFoodItemsSoFar] = latestFood;

038: noOfFoodItemsSoFar++;

039: } // while

November 27, 2018 Java Just in Time - John Latham Page 157(0/0)

The FoodList class

040: noOfFoodItems = noOfFoodItemsSoFar;

041: foodList = foodListSoFar;

042: } // FoodList

November 27, 2018 Java Just in Time - John Latham Page 158(0/0)

Expression: boolean: logical operators: conditional

• The logical operator && is conditional and

and || is conditional or

– are lazy

∗ if result determined by left operand, don’t evaluate right one.

• I.e. if first disjunct of || is true

or if first conjunct of && is false.

• Can safely write, e.g.:

data == null || data.length == 0

November 27, 2018 Java Just in Time - John Latham Page 159(0/0)

Design: Searching a list: linear search

• Simplest way to find item in list: linear search

– start at front, look at each item in turn.

• E.g. array search method:

private int posOfInt(int[] anArray, int toFind)

{

int searchPos = 0;

while (searchPos < anArray.length && anArray[searchPos] != toFind)

searchPos++;

if (searchPos == anArray.length) return -1;

else return searchPos;

} // posOfInt

November 27, 2018 Java Just in Time - John Latham Page 160(0/0)

Design: Searching a list: linear search

• But if swap conjuncts:

// Definitely silly code.

while (anArray[searchPos] != toFind && searchPos < anArray.length)

searchPos++;

causes ArrayIndexOutOfBoundsException.

November 27, 2018 Java Just in Time - John Latham Page 161(0/0)

The FoodList class

045: // Find the Food object corresponding to foodNameToFind

046: // or return null if not found.

047: public Food findFood(String foodNameToFind)

048: {

049: int foodIndex = 0;

050: while (foodIndex < noOfFoodItems

051: && ! foodList[foodIndex].getName().equals(foodNameToFind))

052: foodIndex++;

053: if (foodIndex == noOfFoodItems) return null;

054: else return foodList[foodIndex];

055: } // findFood

056:

057: } // class FoodList

November 27, 2018 Java Just in Time - John Latham Page 162(0/0)

The Diet class

001: import java.io.File;
002: import java.util.Scanner;
003:
004: /* This program reads food information from food-details.txt
005: and diet information from diet-diary.txt
006: and produces a table of how much nutritional component was eaten.
007: */
008: public class Diet

009: {

010: // The FoodList to be obtained from food-details.txt.
011: private static FoodList foodList;
012:
013:
014: // The main method.
015: public static void main(String[] args) throws Exception

016: {

017: foodList = new FoodList(new Scanner(new File("food-details.txt")));
018: readDietDiary(new Scanner(new File("diet-diary.txt")));
019: printDietTable();

020: } // main

November 27, 2018 Java Just in Time - John Latham Page 163(0/0)

The Diet class

023: // An array of total nutritional component amounts:

024: // Index is [component number]

025: // and data is accumulated as number of milligrams of that component.

026: private static int[] dietTable = new int[Food.NUTRITIONAL_COMPONENTS.length];

November 27, 2018 Java Just in Time - John Latham Page 164(0/0)

The Diet class

029: // Read the diet information from the given Scanner

030: // accumulating nutritional components in dietTable.

031: private static void readDietDiary(Scanner scanner)

032: {

033: // First initialize the amounts to zero.

034: for (int componentIndex = 0;

035: componentIndex < Food.NUTRITIONAL_COMPONENTS.length; componentIndex++)

036: dietTable[componentIndex] = 0;

037: // Now read each line.

038: while (scanner.hasNextLine())

039: {

040: String[] portionDetails = scanner.nextLine().split("\t+");

041: // Food name is the first item.

042: Food food = foodList.findFood(portionDetails[0]);

November 27, 2018 Java Just in Time - John Latham Page 165(0/0)

The Diet class

043: if (food == null)

044: System.out.println("Unrecognized food name: " + portionDetails[0]);

045: else

046: {

047: // Food amount is the second item.

048: int amount = Integer.parseInt(portionDetails[1]);

049: // Obtain nutritional components from that amount.

050: int[] foodComponents = food.componentMilliGramsForWeight(amount);

051: // And accumulate them in dietTable.

052: for (int componentIndex = 0;

053: componentIndex < Food.NUTRITIONAL_COMPONENTS.length;

054: componentIndex++)

055: dietTable[componentIndex] += foodComponents[componentIndex];

056: } // else

057: } // while

058: } // readDietDiary

November 27, 2018 Java Just in Time - John Latham Page 166(0/0)

The Diet class

061: // Print the dietTable as grams (so divide by 1000).

062: private static void printDietTable()

063: {

064: for (int componentIndex = 0;

065: componentIndex < Food.NUTRITIONAL_COMPONENTS.length; componentIndex++)

066: System.out.println(Food.NUTRITIONAL_COMPONENTS[componentIndex] + "\t"

067: + Math.round(dietTable[componentIndex] / 1000));

068: } // printDietTable

069:

070: } // class Diet

November 27, 2018 Java Just in Time - John Latham Page 167(0/0)

Trying it

Console Input / Output

$ java Diet

Protein 280

Carb 621

Fat 273

Fibre 47

Sodium 17

$ _ Run

November 27, 2018 Java Just in Time - John Latham Page 168(0/0)

Trying it

Coffee

time:

Find out about equalsIgnoreCase() from the String class,

and propose a change so that the user would not need

to have consistent capitalization in the names of the food

items.

Coffee

time:

Suppose you wish to delete an element from an arbitrarily

ordered partially filled array. How can you, using only

one assignment and one decrement?

Coffee

time:

How could we add saturated fat to the program? What

extra issue would we have for Kcals?

November 27, 2018 Java Just in Time - John Latham Page 169(0/0)

Coursework: Viewing phone call details

(Summary only)

Write a program to allow the user to view certain phone call details.

November 27, 2018 Java Just in Time - John Latham Page 170(0/0)

Section 7

Example:

A weekly diet

November 27, 2018 Java Just in Time - John Latham Page 171(0/0)

Aim

AIM: To introduce two-dimensional arrays.

November 27, 2018 Java Just in Time - John Latham Page 172(0/0)

A weekly diet

• Elaboration of previous:

dieter also records day of week when food consumed.

Console Input / Output

$ cat diet-diary.txt

Mon pizza 400

Mon garlic bread 200

Mon cheesecake 260

Tue burger 200

Tue fries 180

Tue milkshake 400

Wed fried chicken 360

Wed wedges 270

Thu pizza 650

Fri burger 400

Fri fries 360

Sat fried chicken 360

Sat wedges 540

Sun garlic bread 800

Sun cheesecake 260

$ _ Run

November 27, 2018 Java Just in Time - John Latham Page 173(0/0)

A weekly diet

• Program produces table of nutritional component amounts

– row for each day of week.

• Much is same as previous

– food-details.txt

– classes Food and FoodList.

• Have WeeklyDiet instead of Diet.

November 27, 2018 Java Just in Time - John Latham Page 174(0/0)

The WeeklyDiet class

001: import java.io.File;

002: import java.util.Scanner;

003:

004: /* This program reads food information from food-details.txt

005: and diet information from diet-diary.txt

006: and produces a table of how much nutritional component was eaten

007: on each day of the week.
008: */
009: public class WeeklyDiet

010: {

011: // The FoodList to be obtained from food-details.txt.

012: private static FoodList foodList;

013:

014:

015: // The main method.

016: public static void main(String[] args) throws Exception

017: {

018: foodList = new FoodList(new Scanner(new File("food-details.txt")));

019: readDietDiary(new Scanner(new File("diet-diary.txt")));

020: printDietTable();

021: } // main

November 27, 2018 Java Just in Time - John Latham Page 175(0/0)

The WeeklyDiet class

024: // Days of the week -- this defines spelling for use in diet-diary.txt

025: // and their order in dietTable.
026: private static final String[] DAY_NAMES

027: = { "Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun" };

028:
029:
030: // Find the day index for the given day name, or -1 if not found.

031: private static int findDayIndex(String dayName)

032: {

033: int dayIndex = 0;

034: while (dayIndex < DAY_NAMES.length

035: && ! DAY_NAMES[dayIndex].equals(dayName))

036: dayIndex++;

037: if (dayIndex == DAY_NAMES.length)

038: return -1;
039: else

040: return dayIndex;

041: } // findDayIndex

November 27, 2018 Java Just in Time - John Latham Page 176(0/0)

Array: array of arrays

• The array elements of an array may be any type: including arrays.

• E.g.

0

4

int[][] myArray

17 −999 3 99 −256 10 7 −23

012−3679799108−1

0 1 2 0 1 2 3

2103210

1 2 3 4

null

November 27, 2018 Java Just in Time - John Latham Page 177(0/0)

Array: array of arrays

• Created (not populated) via:

int[][] myArray = new int[5][];

myArray[0] = new int[5];

myArray[1] = new int[3];

myArray[2] = new int[4];

myArray[3] = null;

myArray[4] = new int[3];

November 27, 2018 Java Just in Time - John Latham Page 178(0/0)

Array: array of arrays: two-dimensional arrays

• Common situation

with array of arrays

– no array elements are

null reference

– all arrays referenced

are same length.

• Known as

two-dimensional array

– essentially a grid.

0

3

int[][] my2DArray

17 −999 3 99

27−79923

57 −93 30 79

7680−101

14 15 0 −13

0 1 2

0 1 2 3

3210

1 2 3

3210

0

1

2

3

4

November 27, 2018 Java Just in Time - John Latham Page 179(0/0)

Array: array of arrays: two-dimensional arrays

• Could be be created (not populated) via:

int[][] my2DArray = new int[5][];

my2DArray[0] = new int[4];

my2DArray[1] = new int[4];

my2DArray[2] = new int[4];

my2DArray[3] = new int[4];

my2DArray[4] = new int[4];

• But Java has shorthand:

int[][] my2DArray = new int[5][4];

November 27, 2018 Java Just in Time - John Latham Page 180(0/0)

The WeeklyDiet class

044: // A two dimensional array of nutritional component amounts:

045: // Index is [day number][component number]

046: // and data is accumulated as number of milligrams of that component

047: // eaten on that day.

048: private static int[][] dietTable

049: = new int[DAY_NAMES.length][Food.NUTRITIONAL_COMPONENTS.length];

November 27, 2018 Java Just in Time - John Latham Page 181(0/0)

Array: element access: in two-dimensional arrays

• Each grid element in two-dimensional array indexed by two indices

– first array index accesses row array

– second accesses array element within row.

• E.g.

int[][] my2DArray = new int[5][4];

– my2DArray[0] is reference to first row

– my2DArray[0][0] is first element in first row

– my2DArray[4][3] is last element in last row.

November 27, 2018 Java Just in Time - John Latham Page 182(0/0)

The WeeklyDiet class

052: // Read the diet information from the given Scanner

053: // accumulating nutritional components in dietTable.

054: private static void readDietDiary(Scanner scanner)

055: {

056: // First initialize the amounts to zero.

057: for (int dayIndex = 0 ; dayIndex < DAY_NAMES.length; dayIndex++)

058: for (int componentIndex = 0;

059: componentIndex < Food.NUTRITIONAL_COMPONENTS.length;

060: componentIndex++)

061: dietTable[dayIndex][componentIndex] = 0;

November 27, 2018 Java Just in Time - John Latham Page 183(0/0)

The WeeklyDiet class

062: // Now read each line.

063: while (scanner.hasNextLine())

064: {

065: String[] portionDetails = scanner.nextLine().split("\t+");

066: // Day name is the first item.

067: int dayIndex = findDayIndex(portionDetails[0]);

068: if (dayIndex == -1)

069: System.out.println("Unrecognized day name: " + portionDetails[0]);

070: // Food name is the second item.

071: Food food = foodList.findFood(portionDetails[1]);

072: if (food == null)

073: System.out.println("Unrecognized food name: " + portionDetails[1]);

November 27, 2018 Java Just in Time - John Latham Page 184(0/0)

The WeeklyDiet class

074: if (dayIndex != -1 && food != null)

075: {

076: // Food amount is the third item.

077: int amount = Integer.parseInt(portionDetails[2]);

078: // Obtain nutritional components from that amount.

079: int[] foodComponents = food.componentMilliGramsForWeight(amount);

080: // And accumulate them in dietTable.

081: for (int componentIndex = 0;

082: componentIndex < Food.NUTRITIONAL_COMPONENTS.length;

083: componentIndex++)

084: dietTable[dayIndex][componentIndex]

085: += foodComponents[componentIndex];

086: } // if

087: } // while

088: } // readDietDiary

November 27, 2018 Java Just in Time - John Latham Page 185(0/0)

The WeeklyDiet class

091: // Print the dietTable as grams (so divide by 1000).

092: private static void printDietTable()

093: {

094: // First print the column headings.

095: for (String componentName : Food.NUTRITIONAL_COMPONENTS)

096: System.out.print("\t" + componentName);

097: System.out.println();

November 27, 2018 Java Just in Time - John Latham Page 186(0/0)

The WeeklyDiet class

099: // Now print the rows, one for each day of the week.

100: for (int dayIndex = 0; dayIndex < DAY_NAMES.length; dayIndex++)

101: {

102: System.out.print(DAY_NAMES[dayIndex]);

103: for (int amountOfComponentEaten : dietTable[dayIndex])

104: System.out.print(

105: "\t" + Math.round(amountOfComponentEaten / 1000));

106: System.out.println();

107: } // for

108: } // printDietTable

109:

110: } // class WeeklyDiet

November 27, 2018 Java Just in Time - John Latham Page 187(0/0)

Trying it

Console Input / Output

$ java WeeklyDiet

Protein Carb Fat Fibre Sodium

Mon 95 282 118 16 5

Tue 47 192 59 14 5

Wed 137 146 95 16 6

Thu 91 195 77 16 5

Fri 72 224 94 28 9

Sat 194 252 121 27 10

Sun 117 414 128 21 5

$ _ Run

Coffee

time:

What would happen if we declared DAY NAMES as follows?

. private static final String[] DAY NAMES

. = { "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat" };

November 27, 2018 Java Just in Time - John Latham Page 188(0/0)

Coursework: Maze solver

(Summary only)

Write a program that finds the shortest path through a maze.

November 27, 2018 Java Just in Time - John Latham Page 189(0/0)

Concepts covered in this chapter

• Each book chapter ends with a list of concepts covered in it.

• Each concept has with it

– a self-test question,

– and a page reference to where it was covered.

• Please use these to check your understanding before we start the next

chapter.

November 27, 2018 Java Just in Time - John Latham Page 190(0/0)

	Title
	Chapter 14: Arrays
	Chapter aims
	Section 2: Example: Salary analysis
	Aim
	Salary analysis
	Salary analysis
	Array
	Array

	Type: array type
	Type: array type

	Salary analysis
	Variable: of an array type
	Variable: of an array type

	Array: array creation
	Array: array creation

	Salary analysis
	Array: element access
	Array: element access

	Salary analysis
	Salary analysis
	Standard API: Math: round()
	Standard API: Math: round()

	Salary analysis
	Standard API: System: out.printf(): string item
	Standard API: System: out.printf(): string item

	Standard API: System: out.printf(): fixed text and many items
	Standard API: System: out.printf(): fixed text and many items

	Salary analysis
	Salary analysis
	Trying it
	Trying it
	Trying it
	Trying it
	Expression: arithmetic: double division: by zero
	Expression: arithmetic: double division: by zero

	Double division by zero: not a number
	An empty array is still an array!
	Array: length
	Array: length

	Array: empty array
	Array: empty array

	Coursework: Mark analysis
	Section 3: Example: Sorted salary analysis
	Aim
	Sorted salary analysis
	Statement: for-each loop: on arrays
	Statement: for-each loop: on arrays

	Sorted salary analysis
	Sorted salary analysis
	Design: Sorting a list
	Design: Sorting a list

	Design: Sorting a list: bubble sort
	Design: Sorting a list: bubble sort

	Sorted salary analysis
	Method: accepting parameters: of an array type
	Method: accepting parameters: of an array type

	Sorted salary analysis
	Sorted salary analysis
	Trying it
	Trying it
	Coursework: Mark analysis with sorting
	Section 4: Example: Get a good job
	Aim
	Get a good job
	Get a good job
	Get a good job
	Get a good job
	The Job class
	The Job class
	The Job class
	Standard API: System: out.printf(): left justification
	Standard API: System: out.printf(): left justification

	Standard API: String: format()
	Standard API: String: format()

	The Job class
	JobAnalysis class
	Array: of objects
	Array: of objects

	JobAnalysis class
	JobAnalysis class
	JobAnalysis class
	JobAnalysis class
	JobAnalysis class
	JobAnalysis class
	Trying it
	Coursework: Mark analysis with student names and sorting
	Section 5: Example: Sort out a job share?
	Aim
	Sort out a job share?
	Sort out a job share?
	Sort out a job share?
	Sort out a job share?
	Sort out a job share?
	The JobSurvey class
	Standard API: Scanner: for a file
	Standard API: Scanner: for a file

	The JobSurvey class
	The Job class
	Variable: final variables: class constant: a set of choices
	Variable: final variables: class constant: a set of choices

	The Job class
	Variable: final variables: class constant: a set of choices: dangerous
	Variable: final variables: class constant: a set of choices: dangerous

	Type: enum type
	Type: enum type

	The Job class
	The Job class
	The Job class
	The Job class
	The JobList class
	The JobList class
	Array: partially filled array
	Array: partially filled array

	Array: array extension
	Array: array extension

	The JobList class
	The JobList class
	Method: returning a value: of an array type
	Method: returning a value: of an array type

	The JobList class
	Type: enum type: access from another class
	Type: enum type: access from another class

	The JobList class
	The JobList class
	The JobList class
	Standard API: String: split()
	Standard API: String: split()

	The JobList class
	Array: shallow copy
	Array: shallow copy

	The JobList class
	The JobList class
	The JobList class
	The JobList class
	The JobList class
	Trying it
	Trying it
	Trying it
	Coursework: Random order text puzzle
	Section 6: Example: Diet monitoring
	Aim
	Diet monitoring
	Diet monitoring
	Diet monitoring
	Diet monitoring
	Diet monitoring
	Diet monitoring
	The Food class
	Array: array creation: initializer
	Array: array creation: initializer

	The Food class
	The Food class
	The Food class
	The Food class
	The FoodList class
	Expression: boolean: logical operators: conditional
	Expression: boolean: logical operators: conditional

	Design: Searching a list: linear search
	Design: Searching a list: linear search

	The FoodList class
	The Diet class
	The Diet class
	The Diet class
	The Diet class
	Trying it
	Trying it
	Coursework: Viewing phone call details
	Section 7: Example: A weekly diet
	Aim
	A weekly diet
	A weekly diet
	The WeeklyDiet class
	The WeeklyDiet class
	Array: array of arrays
	Array: array of arrays

	Array: array of arrays: two-dimensional arrays
	Array: array of arrays: two-dimensional arrays

	The WeeklyDiet class
	Array: element access: in two-dimensional arrays
	Array: element access: in two-dimensional arrays

	The WeeklyDiet class
	The WeeklyDiet class
	The WeeklyDiet class
	The WeeklyDiet class
	Trying it
	Coursework: Maze solver
	Concepts covered in this chapter

